linux/drivers/usb/musb/tusb6010_omap.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

721 lines
18 KiB
C

/*
* TUSB6010 USB 2.0 OTG Dual Role controller OMAP DMA interface
*
* Copyright (C) 2006 Nokia Corporation
* Tony Lindgren <tony@atomide.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/usb.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <plat/dma.h>
#include <plat/mux.h>
#include "musb_core.h"
#define to_chdat(c) ((struct tusb_omap_dma_ch *)(c)->private_data)
#define MAX_DMAREQ 5 /* REVISIT: Really 6, but req5 not OK */
struct tusb_omap_dma_ch {
struct musb *musb;
void __iomem *tbase;
unsigned long phys_offset;
int epnum;
u8 tx;
struct musb_hw_ep *hw_ep;
int ch;
s8 dmareq;
s8 sync_dev;
struct tusb_omap_dma *tusb_dma;
void __iomem *dma_addr;
u32 len;
u16 packet_sz;
u16 transfer_packet_sz;
u32 transfer_len;
u32 completed_len;
};
struct tusb_omap_dma {
struct dma_controller controller;
struct musb *musb;
void __iomem *tbase;
int ch;
s8 dmareq;
s8 sync_dev;
unsigned multichannel:1;
};
static int tusb_omap_dma_start(struct dma_controller *c)
{
struct tusb_omap_dma *tusb_dma;
tusb_dma = container_of(c, struct tusb_omap_dma, controller);
/* DBG(3, "ep%i ch: %i\n", chdat->epnum, chdat->ch); */
return 0;
}
static int tusb_omap_dma_stop(struct dma_controller *c)
{
struct tusb_omap_dma *tusb_dma;
tusb_dma = container_of(c, struct tusb_omap_dma, controller);
/* DBG(3, "ep%i ch: %i\n", chdat->epnum, chdat->ch); */
return 0;
}
/*
* Allocate dmareq0 to the current channel unless it's already taken
*/
static inline int tusb_omap_use_shared_dmareq(struct tusb_omap_dma_ch *chdat)
{
u32 reg = musb_readl(chdat->tbase, TUSB_DMA_EP_MAP);
if (reg != 0) {
DBG(3, "ep%i dmareq0 is busy for ep%i\n",
chdat->epnum, reg & 0xf);
return -EAGAIN;
}
if (chdat->tx)
reg = (1 << 4) | chdat->epnum;
else
reg = chdat->epnum;
musb_writel(chdat->tbase, TUSB_DMA_EP_MAP, reg);
return 0;
}
static inline void tusb_omap_free_shared_dmareq(struct tusb_omap_dma_ch *chdat)
{
u32 reg = musb_readl(chdat->tbase, TUSB_DMA_EP_MAP);
if ((reg & 0xf) != chdat->epnum) {
printk(KERN_ERR "ep%i trying to release dmareq0 for ep%i\n",
chdat->epnum, reg & 0xf);
return;
}
musb_writel(chdat->tbase, TUSB_DMA_EP_MAP, 0);
}
/*
* See also musb_dma_completion in plat_uds.c and musb_g_[tx|rx]() in
* musb_gadget.c.
*/
static void tusb_omap_dma_cb(int lch, u16 ch_status, void *data)
{
struct dma_channel *channel = (struct dma_channel *)data;
struct tusb_omap_dma_ch *chdat = to_chdat(channel);
struct tusb_omap_dma *tusb_dma = chdat->tusb_dma;
struct musb *musb = chdat->musb;
struct musb_hw_ep *hw_ep = chdat->hw_ep;
void __iomem *ep_conf = hw_ep->conf;
void __iomem *mbase = musb->mregs;
unsigned long remaining, flags, pio;
int ch;
spin_lock_irqsave(&musb->lock, flags);
if (tusb_dma->multichannel)
ch = chdat->ch;
else
ch = tusb_dma->ch;
if (ch_status != OMAP_DMA_BLOCK_IRQ)
printk(KERN_ERR "TUSB DMA error status: %i\n", ch_status);
DBG(3, "ep%i %s dma callback ch: %i status: %x\n",
chdat->epnum, chdat->tx ? "tx" : "rx",
ch, ch_status);
if (chdat->tx)
remaining = musb_readl(ep_conf, TUSB_EP_TX_OFFSET);
else
remaining = musb_readl(ep_conf, TUSB_EP_RX_OFFSET);
remaining = TUSB_EP_CONFIG_XFR_SIZE(remaining);
/* HW issue #10: XFR_SIZE may get corrupt on DMA (both async & sync) */
if (unlikely(remaining > chdat->transfer_len)) {
DBG(2, "Corrupt %s dma ch%i XFR_SIZE: 0x%08lx\n",
chdat->tx ? "tx" : "rx", chdat->ch,
remaining);
remaining = 0;
}
channel->actual_len = chdat->transfer_len - remaining;
pio = chdat->len - channel->actual_len;
DBG(3, "DMA remaining %lu/%u\n", remaining, chdat->transfer_len);
/* Transfer remaining 1 - 31 bytes */
if (pio > 0 && pio < 32) {
u8 *buf;
DBG(3, "Using PIO for remaining %lu bytes\n", pio);
buf = phys_to_virt((u32)chdat->dma_addr) + chdat->transfer_len;
if (chdat->tx) {
dma_cache_maint(phys_to_virt((u32)chdat->dma_addr),
chdat->transfer_len, DMA_TO_DEVICE);
musb_write_fifo(hw_ep, pio, buf);
} else {
musb_read_fifo(hw_ep, pio, buf);
dma_cache_maint(phys_to_virt((u32)chdat->dma_addr),
chdat->transfer_len, DMA_FROM_DEVICE);
}
channel->actual_len += pio;
}
if (!tusb_dma->multichannel)
tusb_omap_free_shared_dmareq(chdat);
channel->status = MUSB_DMA_STATUS_FREE;
/* Handle only RX callbacks here. TX callbacks must be handled based
* on the TUSB DMA status interrupt.
* REVISIT: Use both TUSB DMA status interrupt and OMAP DMA callback
* interrupt for RX and TX.
*/
if (!chdat->tx)
musb_dma_completion(musb, chdat->epnum, chdat->tx);
/* We must terminate short tx transfers manually by setting TXPKTRDY.
* REVISIT: This same problem may occur with other MUSB dma as well.
* Easy to test with g_ether by pinging the MUSB board with ping -s54.
*/
if ((chdat->transfer_len < chdat->packet_sz)
|| (chdat->transfer_len % chdat->packet_sz != 0)) {
u16 csr;
if (chdat->tx) {
DBG(3, "terminating short tx packet\n");
musb_ep_select(mbase, chdat->epnum);
csr = musb_readw(hw_ep->regs, MUSB_TXCSR);
csr |= MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY
| MUSB_TXCSR_P_WZC_BITS;
musb_writew(hw_ep->regs, MUSB_TXCSR, csr);
}
}
spin_unlock_irqrestore(&musb->lock, flags);
}
static int tusb_omap_dma_program(struct dma_channel *channel, u16 packet_sz,
u8 rndis_mode, dma_addr_t dma_addr, u32 len)
{
struct tusb_omap_dma_ch *chdat = to_chdat(channel);
struct tusb_omap_dma *tusb_dma = chdat->tusb_dma;
struct musb *musb = chdat->musb;
struct musb_hw_ep *hw_ep = chdat->hw_ep;
void __iomem *mbase = musb->mregs;
void __iomem *ep_conf = hw_ep->conf;
dma_addr_t fifo = hw_ep->fifo_sync;
struct omap_dma_channel_params dma_params;
u32 dma_remaining;
int src_burst, dst_burst;
u16 csr;
int ch;
s8 dmareq;
s8 sync_dev;
if (unlikely(dma_addr & 0x1) || (len < 32) || (len > packet_sz))
return false;
/*
* HW issue #10: Async dma will eventually corrupt the XFR_SIZE
* register which will cause missed DMA interrupt. We could try to
* use a timer for the callback, but it is unsafe as the XFR_SIZE
* register is corrupt, and we won't know if the DMA worked.
*/
if (dma_addr & 0x2)
return false;
/*
* Because of HW issue #10, it seems like mixing sync DMA and async
* PIO access can confuse the DMA. Make sure XFR_SIZE is reset before
* using the channel for DMA.
*/
if (chdat->tx)
dma_remaining = musb_readl(ep_conf, TUSB_EP_TX_OFFSET);
else
dma_remaining = musb_readl(ep_conf, TUSB_EP_RX_OFFSET);
dma_remaining = TUSB_EP_CONFIG_XFR_SIZE(dma_remaining);
if (dma_remaining) {
DBG(2, "Busy %s dma ch%i, not using: %08x\n",
chdat->tx ? "tx" : "rx", chdat->ch,
dma_remaining);
return false;
}
chdat->transfer_len = len & ~0x1f;
if (len < packet_sz)
chdat->transfer_packet_sz = chdat->transfer_len;
else
chdat->transfer_packet_sz = packet_sz;
if (tusb_dma->multichannel) {
ch = chdat->ch;
dmareq = chdat->dmareq;
sync_dev = chdat->sync_dev;
} else {
if (tusb_omap_use_shared_dmareq(chdat) != 0) {
DBG(3, "could not get dma for ep%i\n", chdat->epnum);
return false;
}
if (tusb_dma->ch < 0) {
/* REVISIT: This should get blocked earlier, happens
* with MSC ErrorRecoveryTest
*/
WARN_ON(1);
return false;
}
ch = tusb_dma->ch;
dmareq = tusb_dma->dmareq;
sync_dev = tusb_dma->sync_dev;
omap_set_dma_callback(ch, tusb_omap_dma_cb, channel);
}
chdat->packet_sz = packet_sz;
chdat->len = len;
channel->actual_len = 0;
chdat->dma_addr = (void __iomem *)dma_addr;
channel->status = MUSB_DMA_STATUS_BUSY;
/* Since we're recycling dma areas, we need to clean or invalidate */
if (chdat->tx)
dma_cache_maint(phys_to_virt(dma_addr), len, DMA_TO_DEVICE);
else
dma_cache_maint(phys_to_virt(dma_addr), len, DMA_FROM_DEVICE);
/* Use 16-bit transfer if dma_addr is not 32-bit aligned */
if ((dma_addr & 0x3) == 0) {
dma_params.data_type = OMAP_DMA_DATA_TYPE_S32;
dma_params.elem_count = 8; /* Elements in frame */
} else {
dma_params.data_type = OMAP_DMA_DATA_TYPE_S16;
dma_params.elem_count = 16; /* Elements in frame */
fifo = hw_ep->fifo_async;
}
dma_params.frame_count = chdat->transfer_len / 32; /* Burst sz frame */
DBG(3, "ep%i %s dma ch%i dma: %08x len: %u(%u) packet_sz: %i(%i)\n",
chdat->epnum, chdat->tx ? "tx" : "rx",
ch, dma_addr, chdat->transfer_len, len,
chdat->transfer_packet_sz, packet_sz);
/*
* Prepare omap DMA for transfer
*/
if (chdat->tx) {
dma_params.src_amode = OMAP_DMA_AMODE_POST_INC;
dma_params.src_start = (unsigned long)dma_addr;
dma_params.src_ei = 0;
dma_params.src_fi = 0;
dma_params.dst_amode = OMAP_DMA_AMODE_DOUBLE_IDX;
dma_params.dst_start = (unsigned long)fifo;
dma_params.dst_ei = 1;
dma_params.dst_fi = -31; /* Loop 32 byte window */
dma_params.trigger = sync_dev;
dma_params.sync_mode = OMAP_DMA_SYNC_FRAME;
dma_params.src_or_dst_synch = 0; /* Dest sync */
src_burst = OMAP_DMA_DATA_BURST_16; /* 16x32 read */
dst_burst = OMAP_DMA_DATA_BURST_8; /* 8x32 write */
} else {
dma_params.src_amode = OMAP_DMA_AMODE_DOUBLE_IDX;
dma_params.src_start = (unsigned long)fifo;
dma_params.src_ei = 1;
dma_params.src_fi = -31; /* Loop 32 byte window */
dma_params.dst_amode = OMAP_DMA_AMODE_POST_INC;
dma_params.dst_start = (unsigned long)dma_addr;
dma_params.dst_ei = 0;
dma_params.dst_fi = 0;
dma_params.trigger = sync_dev;
dma_params.sync_mode = OMAP_DMA_SYNC_FRAME;
dma_params.src_or_dst_synch = 1; /* Source sync */
src_burst = OMAP_DMA_DATA_BURST_8; /* 8x32 read */
dst_burst = OMAP_DMA_DATA_BURST_16; /* 16x32 write */
}
DBG(3, "ep%i %s using %i-bit %s dma from 0x%08lx to 0x%08lx\n",
chdat->epnum, chdat->tx ? "tx" : "rx",
(dma_params.data_type == OMAP_DMA_DATA_TYPE_S32) ? 32 : 16,
((dma_addr & 0x3) == 0) ? "sync" : "async",
dma_params.src_start, dma_params.dst_start);
omap_set_dma_params(ch, &dma_params);
omap_set_dma_src_burst_mode(ch, src_burst);
omap_set_dma_dest_burst_mode(ch, dst_burst);
omap_set_dma_write_mode(ch, OMAP_DMA_WRITE_LAST_NON_POSTED);
/*
* Prepare MUSB for DMA transfer
*/
if (chdat->tx) {
musb_ep_select(mbase, chdat->epnum);
csr = musb_readw(hw_ep->regs, MUSB_TXCSR);
csr |= (MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_DMAMODE | MUSB_TXCSR_MODE);
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(hw_ep->regs, MUSB_TXCSR, csr);
} else {
musb_ep_select(mbase, chdat->epnum);
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
csr |= MUSB_RXCSR_DMAENAB;
csr &= ~(MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAMODE);
musb_writew(hw_ep->regs, MUSB_RXCSR,
csr | MUSB_RXCSR_P_WZC_BITS);
}
/*
* Start DMA transfer
*/
omap_start_dma(ch);
if (chdat->tx) {
/* Send transfer_packet_sz packets at a time */
musb_writel(ep_conf, TUSB_EP_MAX_PACKET_SIZE_OFFSET,
chdat->transfer_packet_sz);
musb_writel(ep_conf, TUSB_EP_TX_OFFSET,
TUSB_EP_CONFIG_XFR_SIZE(chdat->transfer_len));
} else {
/* Receive transfer_packet_sz packets at a time */
musb_writel(ep_conf, TUSB_EP_MAX_PACKET_SIZE_OFFSET,
chdat->transfer_packet_sz << 16);
musb_writel(ep_conf, TUSB_EP_RX_OFFSET,
TUSB_EP_CONFIG_XFR_SIZE(chdat->transfer_len));
}
return true;
}
static int tusb_omap_dma_abort(struct dma_channel *channel)
{
struct tusb_omap_dma_ch *chdat = to_chdat(channel);
struct tusb_omap_dma *tusb_dma = chdat->tusb_dma;
if (!tusb_dma->multichannel) {
if (tusb_dma->ch >= 0) {
omap_stop_dma(tusb_dma->ch);
omap_free_dma(tusb_dma->ch);
tusb_dma->ch = -1;
}
tusb_dma->dmareq = -1;
tusb_dma->sync_dev = -1;
}
channel->status = MUSB_DMA_STATUS_FREE;
return 0;
}
static inline int tusb_omap_dma_allocate_dmareq(struct tusb_omap_dma_ch *chdat)
{
u32 reg = musb_readl(chdat->tbase, TUSB_DMA_EP_MAP);
int i, dmareq_nr = -1;
const int sync_dev[6] = {
OMAP24XX_DMA_EXT_DMAREQ0,
OMAP24XX_DMA_EXT_DMAREQ1,
OMAP242X_DMA_EXT_DMAREQ2,
OMAP242X_DMA_EXT_DMAREQ3,
OMAP242X_DMA_EXT_DMAREQ4,
OMAP242X_DMA_EXT_DMAREQ5,
};
for (i = 0; i < MAX_DMAREQ; i++) {
int cur = (reg & (0xf << (i * 5))) >> (i * 5);
if (cur == 0) {
dmareq_nr = i;
break;
}
}
if (dmareq_nr == -1)
return -EAGAIN;
reg |= (chdat->epnum << (dmareq_nr * 5));
if (chdat->tx)
reg |= ((1 << 4) << (dmareq_nr * 5));
musb_writel(chdat->tbase, TUSB_DMA_EP_MAP, reg);
chdat->dmareq = dmareq_nr;
chdat->sync_dev = sync_dev[chdat->dmareq];
return 0;
}
static inline void tusb_omap_dma_free_dmareq(struct tusb_omap_dma_ch *chdat)
{
u32 reg;
if (!chdat || chdat->dmareq < 0)
return;
reg = musb_readl(chdat->tbase, TUSB_DMA_EP_MAP);
reg &= ~(0x1f << (chdat->dmareq * 5));
musb_writel(chdat->tbase, TUSB_DMA_EP_MAP, reg);
chdat->dmareq = -1;
chdat->sync_dev = -1;
}
static struct dma_channel *dma_channel_pool[MAX_DMAREQ];
static struct dma_channel *
tusb_omap_dma_allocate(struct dma_controller *c,
struct musb_hw_ep *hw_ep,
u8 tx)
{
int ret, i;
const char *dev_name;
struct tusb_omap_dma *tusb_dma;
struct musb *musb;
void __iomem *tbase;
struct dma_channel *channel = NULL;
struct tusb_omap_dma_ch *chdat = NULL;
u32 reg;
tusb_dma = container_of(c, struct tusb_omap_dma, controller);
musb = tusb_dma->musb;
tbase = musb->ctrl_base;
reg = musb_readl(tbase, TUSB_DMA_INT_MASK);
if (tx)
reg &= ~(1 << hw_ep->epnum);
else
reg &= ~(1 << (hw_ep->epnum + 15));
musb_writel(tbase, TUSB_DMA_INT_MASK, reg);
/* REVISIT: Why does dmareq5 not work? */
if (hw_ep->epnum == 0) {
DBG(3, "Not allowing DMA for ep0 %s\n", tx ? "tx" : "rx");
return NULL;
}
for (i = 0; i < MAX_DMAREQ; i++) {
struct dma_channel *ch = dma_channel_pool[i];
if (ch->status == MUSB_DMA_STATUS_UNKNOWN) {
ch->status = MUSB_DMA_STATUS_FREE;
channel = ch;
chdat = ch->private_data;
break;
}
}
if (!channel)
return NULL;
if (tx) {
chdat->tx = 1;
dev_name = "TUSB transmit";
} else {
chdat->tx = 0;
dev_name = "TUSB receive";
}
chdat->musb = tusb_dma->musb;
chdat->tbase = tusb_dma->tbase;
chdat->hw_ep = hw_ep;
chdat->epnum = hw_ep->epnum;
chdat->dmareq = -1;
chdat->completed_len = 0;
chdat->tusb_dma = tusb_dma;
channel->max_len = 0x7fffffff;
channel->desired_mode = 0;
channel->actual_len = 0;
if (tusb_dma->multichannel) {
ret = tusb_omap_dma_allocate_dmareq(chdat);
if (ret != 0)
goto free_dmareq;
ret = omap_request_dma(chdat->sync_dev, dev_name,
tusb_omap_dma_cb, channel, &chdat->ch);
if (ret != 0)
goto free_dmareq;
} else if (tusb_dma->ch == -1) {
tusb_dma->dmareq = 0;
tusb_dma->sync_dev = OMAP24XX_DMA_EXT_DMAREQ0;
/* Callback data gets set later in the shared dmareq case */
ret = omap_request_dma(tusb_dma->sync_dev, "TUSB shared",
tusb_omap_dma_cb, NULL, &tusb_dma->ch);
if (ret != 0)
goto free_dmareq;
chdat->dmareq = -1;
chdat->ch = -1;
}
DBG(3, "ep%i %s dma: %s dma%i dmareq%i sync%i\n",
chdat->epnum,
chdat->tx ? "tx" : "rx",
chdat->ch >= 0 ? "dedicated" : "shared",
chdat->ch >= 0 ? chdat->ch : tusb_dma->ch,
chdat->dmareq >= 0 ? chdat->dmareq : tusb_dma->dmareq,
chdat->sync_dev >= 0 ? chdat->sync_dev : tusb_dma->sync_dev);
return channel;
free_dmareq:
tusb_omap_dma_free_dmareq(chdat);
DBG(3, "ep%i: Could not get a DMA channel\n", chdat->epnum);
channel->status = MUSB_DMA_STATUS_UNKNOWN;
return NULL;
}
static void tusb_omap_dma_release(struct dma_channel *channel)
{
struct tusb_omap_dma_ch *chdat = to_chdat(channel);
struct musb *musb = chdat->musb;
void __iomem *tbase = musb->ctrl_base;
u32 reg;
DBG(3, "ep%i ch%i\n", chdat->epnum, chdat->ch);
reg = musb_readl(tbase, TUSB_DMA_INT_MASK);
if (chdat->tx)
reg |= (1 << chdat->epnum);
else
reg |= (1 << (chdat->epnum + 15));
musb_writel(tbase, TUSB_DMA_INT_MASK, reg);
reg = musb_readl(tbase, TUSB_DMA_INT_CLEAR);
if (chdat->tx)
reg |= (1 << chdat->epnum);
else
reg |= (1 << (chdat->epnum + 15));
musb_writel(tbase, TUSB_DMA_INT_CLEAR, reg);
channel->status = MUSB_DMA_STATUS_UNKNOWN;
if (chdat->ch >= 0) {
omap_stop_dma(chdat->ch);
omap_free_dma(chdat->ch);
chdat->ch = -1;
}
if (chdat->dmareq >= 0)
tusb_omap_dma_free_dmareq(chdat);
channel = NULL;
}
void dma_controller_destroy(struct dma_controller *c)
{
struct tusb_omap_dma *tusb_dma;
int i;
tusb_dma = container_of(c, struct tusb_omap_dma, controller);
for (i = 0; i < MAX_DMAREQ; i++) {
struct dma_channel *ch = dma_channel_pool[i];
if (ch) {
kfree(ch->private_data);
kfree(ch);
}
}
if (tusb_dma && !tusb_dma->multichannel && tusb_dma->ch >= 0)
omap_free_dma(tusb_dma->ch);
kfree(tusb_dma);
}
struct dma_controller *__init
dma_controller_create(struct musb *musb, void __iomem *base)
{
void __iomem *tbase = musb->ctrl_base;
struct tusb_omap_dma *tusb_dma;
int i;
/* REVISIT: Get dmareq lines used from board-*.c */
musb_writel(musb->ctrl_base, TUSB_DMA_INT_MASK, 0x7fffffff);
musb_writel(musb->ctrl_base, TUSB_DMA_EP_MAP, 0);
musb_writel(tbase, TUSB_DMA_REQ_CONF,
TUSB_DMA_REQ_CONF_BURST_SIZE(2)
| TUSB_DMA_REQ_CONF_DMA_REQ_EN(0x3f)
| TUSB_DMA_REQ_CONF_DMA_REQ_ASSER(2));
tusb_dma = kzalloc(sizeof(struct tusb_omap_dma), GFP_KERNEL);
if (!tusb_dma)
goto cleanup;
tusb_dma->musb = musb;
tusb_dma->tbase = musb->ctrl_base;
tusb_dma->ch = -1;
tusb_dma->dmareq = -1;
tusb_dma->sync_dev = -1;
tusb_dma->controller.start = tusb_omap_dma_start;
tusb_dma->controller.stop = tusb_omap_dma_stop;
tusb_dma->controller.channel_alloc = tusb_omap_dma_allocate;
tusb_dma->controller.channel_release = tusb_omap_dma_release;
tusb_dma->controller.channel_program = tusb_omap_dma_program;
tusb_dma->controller.channel_abort = tusb_omap_dma_abort;
if (tusb_get_revision(musb) >= TUSB_REV_30)
tusb_dma->multichannel = 1;
for (i = 0; i < MAX_DMAREQ; i++) {
struct dma_channel *ch;
struct tusb_omap_dma_ch *chdat;
ch = kzalloc(sizeof(struct dma_channel), GFP_KERNEL);
if (!ch)
goto cleanup;
dma_channel_pool[i] = ch;
chdat = kzalloc(sizeof(struct tusb_omap_dma_ch), GFP_KERNEL);
if (!chdat)
goto cleanup;
ch->status = MUSB_DMA_STATUS_UNKNOWN;
ch->private_data = chdat;
}
return &tusb_dma->controller;
cleanup:
dma_controller_destroy(&tusb_dma->controller);
return NULL;
}