linux/include/net/sock.h
Michal Hocko e752eb6881 memcg: move memcg_proto_active from sock.h
The only user is sock_update_memcg which is living in memcontrol.c so it
doesn't make much sense to pollute sock.h by this inline helper.  Move it
to memcontrol.c and open code it into its only caller.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00

2221 lines
62 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the AF_INET socket handler.
*
* Version: @(#)sock.h 1.0.4 05/13/93
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche <flla@stud.uni-sb.de>
*
* Fixes:
* Alan Cox : Volatiles in skbuff pointers. See
* skbuff comments. May be overdone,
* better to prove they can be removed
* than the reverse.
* Alan Cox : Added a zapped field for tcp to note
* a socket is reset and must stay shut up
* Alan Cox : New fields for options
* Pauline Middelink : identd support
* Alan Cox : Eliminate low level recv/recvfrom
* David S. Miller : New socket lookup architecture.
* Steve Whitehouse: Default routines for sock_ops
* Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
* protinfo be just a void pointer, as the
* protocol specific parts were moved to
* respective headers and ipv4/v6, etc now
* use private slabcaches for its socks
* Pedro Hortas : New flags field for socket options
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _SOCK_H
#define _SOCK_H
#include <linux/hardirq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/list_nulls.h>
#include <linux/timer.h>
#include <linux/cache.h>
#include <linux/bitops.h>
#include <linux/lockdep.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h> /* struct sk_buff */
#include <linux/mm.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/static_key.h>
#include <linux/sched.h>
#include <linux/filter.h>
#include <linux/rculist_nulls.h>
#include <linux/poll.h>
#include <linux/atomic.h>
#include <net/dst.h>
#include <net/checksum.h>
#include <net/tcp_states.h>
#include <linux/net_tstamp.h>
struct cgroup;
struct cgroup_subsys;
#ifdef CONFIG_NET
int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
#else
static inline
int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
{
return 0;
}
static inline
void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
{
}
#endif
/*
* This structure really needs to be cleaned up.
* Most of it is for TCP, and not used by any of
* the other protocols.
*/
/* Define this to get the SOCK_DBG debugging facility. */
#define SOCK_DEBUGGING
#ifdef SOCK_DEBUGGING
#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
printk(KERN_DEBUG msg); } while (0)
#else
/* Validate arguments and do nothing */
static inline __printf(2, 3)
void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
{
}
#endif
/* This is the per-socket lock. The spinlock provides a synchronization
* between user contexts and software interrupt processing, whereas the
* mini-semaphore synchronizes multiple users amongst themselves.
*/
typedef struct {
spinlock_t slock;
int owned;
wait_queue_head_t wq;
/*
* We express the mutex-alike socket_lock semantics
* to the lock validator by explicitly managing
* the slock as a lock variant (in addition to
* the slock itself):
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
} socket_lock_t;
struct sock;
struct proto;
struct net;
typedef __u32 __bitwise __portpair;
typedef __u64 __bitwise __addrpair;
/**
* struct sock_common - minimal network layer representation of sockets
* @skc_daddr: Foreign IPv4 addr
* @skc_rcv_saddr: Bound local IPv4 addr
* @skc_hash: hash value used with various protocol lookup tables
* @skc_u16hashes: two u16 hash values used by UDP lookup tables
* @skc_dport: placeholder for inet_dport/tw_dport
* @skc_num: placeholder for inet_num/tw_num
* @skc_family: network address family
* @skc_state: Connection state
* @skc_reuse: %SO_REUSEADDR setting
* @skc_reuseport: %SO_REUSEPORT setting
* @skc_bound_dev_if: bound device index if != 0
* @skc_bind_node: bind hash linkage for various protocol lookup tables
* @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
* @skc_prot: protocol handlers inside a network family
* @skc_net: reference to the network namespace of this socket
* @skc_node: main hash linkage for various protocol lookup tables
* @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
* @skc_tx_queue_mapping: tx queue number for this connection
* @skc_refcnt: reference count
*
* This is the minimal network layer representation of sockets, the header
* for struct sock and struct inet_timewait_sock.
*/
struct sock_common {
/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
* address on 64bit arches : cf INET_MATCH()
*/
union {
__addrpair skc_addrpair;
struct {
__be32 skc_daddr;
__be32 skc_rcv_saddr;
};
};
union {
unsigned int skc_hash;
__u16 skc_u16hashes[2];
};
/* skc_dport && skc_num must be grouped as well */
union {
__portpair skc_portpair;
struct {
__be16 skc_dport;
__u16 skc_num;
};
};
unsigned short skc_family;
volatile unsigned char skc_state;
unsigned char skc_reuse:4;
unsigned char skc_reuseport:1;
unsigned char skc_ipv6only:1;
unsigned char skc_net_refcnt:1;
int skc_bound_dev_if;
union {
struct hlist_node skc_bind_node;
struct hlist_nulls_node skc_portaddr_node;
};
struct proto *skc_prot;
possible_net_t skc_net;
#if IS_ENABLED(CONFIG_IPV6)
struct in6_addr skc_v6_daddr;
struct in6_addr skc_v6_rcv_saddr;
#endif
atomic64_t skc_cookie;
/*
* fields between dontcopy_begin/dontcopy_end
* are not copied in sock_copy()
*/
/* private: */
int skc_dontcopy_begin[0];
/* public: */
union {
struct hlist_node skc_node;
struct hlist_nulls_node skc_nulls_node;
};
int skc_tx_queue_mapping;
atomic_t skc_refcnt;
/* private: */
int skc_dontcopy_end[0];
/* public: */
};
struct cg_proto;
/**
* struct sock - network layer representation of sockets
* @__sk_common: shared layout with inet_timewait_sock
* @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
* @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
* @sk_lock: synchronizer
* @sk_rcvbuf: size of receive buffer in bytes
* @sk_wq: sock wait queue and async head
* @sk_rx_dst: receive input route used by early demux
* @sk_dst_cache: destination cache
* @sk_dst_lock: destination cache lock
* @sk_policy: flow policy
* @sk_receive_queue: incoming packets
* @sk_wmem_alloc: transmit queue bytes committed
* @sk_write_queue: Packet sending queue
* @sk_omem_alloc: "o" is "option" or "other"
* @sk_wmem_queued: persistent queue size
* @sk_forward_alloc: space allocated forward
* @sk_napi_id: id of the last napi context to receive data for sk
* @sk_ll_usec: usecs to busypoll when there is no data
* @sk_allocation: allocation mode
* @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
* @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
* @sk_sndbuf: size of send buffer in bytes
* @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
* %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
* @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
* @sk_no_check_rx: allow zero checksum in RX packets
* @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
* @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
* @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
* @sk_gso_max_size: Maximum GSO segment size to build
* @sk_gso_max_segs: Maximum number of GSO segments
* @sk_lingertime: %SO_LINGER l_linger setting
* @sk_backlog: always used with the per-socket spinlock held
* @sk_callback_lock: used with the callbacks in the end of this struct
* @sk_error_queue: rarely used
* @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
* IPV6_ADDRFORM for instance)
* @sk_err: last error
* @sk_err_soft: errors that don't cause failure but are the cause of a
* persistent failure not just 'timed out'
* @sk_drops: raw/udp drops counter
* @sk_ack_backlog: current listen backlog
* @sk_max_ack_backlog: listen backlog set in listen()
* @sk_priority: %SO_PRIORITY setting
* @sk_cgrp_prioidx: socket group's priority map index
* @sk_type: socket type (%SOCK_STREAM, etc)
* @sk_protocol: which protocol this socket belongs in this network family
* @sk_peer_pid: &struct pid for this socket's peer
* @sk_peer_cred: %SO_PEERCRED setting
* @sk_rcvlowat: %SO_RCVLOWAT setting
* @sk_rcvtimeo: %SO_RCVTIMEO setting
* @sk_sndtimeo: %SO_SNDTIMEO setting
* @sk_rxhash: flow hash received from netif layer
* @sk_incoming_cpu: record cpu processing incoming packets
* @sk_txhash: computed flow hash for use on transmit
* @sk_filter: socket filtering instructions
* @sk_timer: sock cleanup timer
* @sk_stamp: time stamp of last packet received
* @sk_tsflags: SO_TIMESTAMPING socket options
* @sk_tskey: counter to disambiguate concurrent tstamp requests
* @sk_socket: Identd and reporting IO signals
* @sk_user_data: RPC layer private data
* @sk_frag: cached page frag
* @sk_peek_off: current peek_offset value
* @sk_send_head: front of stuff to transmit
* @sk_security: used by security modules
* @sk_mark: generic packet mark
* @sk_classid: this socket's cgroup classid
* @sk_cgrp: this socket's cgroup-specific proto data
* @sk_write_pending: a write to stream socket waits to start
* @sk_state_change: callback to indicate change in the state of the sock
* @sk_data_ready: callback to indicate there is data to be processed
* @sk_write_space: callback to indicate there is bf sending space available
* @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
* @sk_backlog_rcv: callback to process the backlog
* @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
*/
struct sock {
/*
* Now struct inet_timewait_sock also uses sock_common, so please just
* don't add nothing before this first member (__sk_common) --acme
*/
struct sock_common __sk_common;
#define sk_node __sk_common.skc_node
#define sk_nulls_node __sk_common.skc_nulls_node
#define sk_refcnt __sk_common.skc_refcnt
#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
#define sk_dontcopy_end __sk_common.skc_dontcopy_end
#define sk_hash __sk_common.skc_hash
#define sk_portpair __sk_common.skc_portpair
#define sk_num __sk_common.skc_num
#define sk_dport __sk_common.skc_dport
#define sk_addrpair __sk_common.skc_addrpair
#define sk_daddr __sk_common.skc_daddr
#define sk_rcv_saddr __sk_common.skc_rcv_saddr
#define sk_family __sk_common.skc_family
#define sk_state __sk_common.skc_state
#define sk_reuse __sk_common.skc_reuse
#define sk_reuseport __sk_common.skc_reuseport
#define sk_ipv6only __sk_common.skc_ipv6only
#define sk_net_refcnt __sk_common.skc_net_refcnt
#define sk_bound_dev_if __sk_common.skc_bound_dev_if
#define sk_bind_node __sk_common.skc_bind_node
#define sk_prot __sk_common.skc_prot
#define sk_net __sk_common.skc_net
#define sk_v6_daddr __sk_common.skc_v6_daddr
#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
#define sk_cookie __sk_common.skc_cookie
socket_lock_t sk_lock;
struct sk_buff_head sk_receive_queue;
/*
* The backlog queue is special, it is always used with
* the per-socket spinlock held and requires low latency
* access. Therefore we special case it's implementation.
* Note : rmem_alloc is in this structure to fill a hole
* on 64bit arches, not because its logically part of
* backlog.
*/
struct {
atomic_t rmem_alloc;
int len;
struct sk_buff *head;
struct sk_buff *tail;
} sk_backlog;
#define sk_rmem_alloc sk_backlog.rmem_alloc
int sk_forward_alloc;
#ifdef CONFIG_RPS
__u32 sk_rxhash;
#endif
u16 sk_incoming_cpu;
/* 16bit hole
* Warned : sk_incoming_cpu can be set from softirq,
* Do not use this hole without fully understanding possible issues.
*/
__u32 sk_txhash;
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int sk_napi_id;
unsigned int sk_ll_usec;
#endif
atomic_t sk_drops;
int sk_rcvbuf;
struct sk_filter __rcu *sk_filter;
struct socket_wq __rcu *sk_wq;
#ifdef CONFIG_XFRM
struct xfrm_policy *sk_policy[2];
#endif
unsigned long sk_flags;
struct dst_entry *sk_rx_dst;
struct dst_entry __rcu *sk_dst_cache;
spinlock_t sk_dst_lock;
atomic_t sk_wmem_alloc;
atomic_t sk_omem_alloc;
int sk_sndbuf;
struct sk_buff_head sk_write_queue;
kmemcheck_bitfield_begin(flags);
unsigned int sk_shutdown : 2,
sk_no_check_tx : 1,
sk_no_check_rx : 1,
sk_userlocks : 4,
sk_protocol : 8,
sk_type : 16;
kmemcheck_bitfield_end(flags);
int sk_wmem_queued;
gfp_t sk_allocation;
u32 sk_pacing_rate; /* bytes per second */
u32 sk_max_pacing_rate;
netdev_features_t sk_route_caps;
netdev_features_t sk_route_nocaps;
int sk_gso_type;
unsigned int sk_gso_max_size;
u16 sk_gso_max_segs;
int sk_rcvlowat;
unsigned long sk_lingertime;
struct sk_buff_head sk_error_queue;
struct proto *sk_prot_creator;
rwlock_t sk_callback_lock;
int sk_err,
sk_err_soft;
u32 sk_ack_backlog;
u32 sk_max_ack_backlog;
__u32 sk_priority;
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
__u32 sk_cgrp_prioidx;
#endif
struct pid *sk_peer_pid;
const struct cred *sk_peer_cred;
long sk_rcvtimeo;
long sk_sndtimeo;
struct timer_list sk_timer;
ktime_t sk_stamp;
u16 sk_tsflags;
u32 sk_tskey;
struct socket *sk_socket;
void *sk_user_data;
struct page_frag sk_frag;
struct sk_buff *sk_send_head;
__s32 sk_peek_off;
int sk_write_pending;
#ifdef CONFIG_SECURITY
void *sk_security;
#endif
__u32 sk_mark;
#ifdef CONFIG_CGROUP_NET_CLASSID
u32 sk_classid;
#endif
struct cg_proto *sk_cgrp;
void (*sk_state_change)(struct sock *sk);
void (*sk_data_ready)(struct sock *sk);
void (*sk_write_space)(struct sock *sk);
void (*sk_error_report)(struct sock *sk);
int (*sk_backlog_rcv)(struct sock *sk,
struct sk_buff *skb);
void (*sk_destruct)(struct sock *sk);
};
#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
/*
* SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
* or not whether his port will be reused by someone else. SK_FORCE_REUSE
* on a socket means that the socket will reuse everybody else's port
* without looking at the other's sk_reuse value.
*/
#define SK_NO_REUSE 0
#define SK_CAN_REUSE 1
#define SK_FORCE_REUSE 2
static inline int sk_peek_offset(struct sock *sk, int flags)
{
if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
return sk->sk_peek_off;
else
return 0;
}
static inline void sk_peek_offset_bwd(struct sock *sk, int val)
{
if (sk->sk_peek_off >= 0) {
if (sk->sk_peek_off >= val)
sk->sk_peek_off -= val;
else
sk->sk_peek_off = 0;
}
}
static inline void sk_peek_offset_fwd(struct sock *sk, int val)
{
if (sk->sk_peek_off >= 0)
sk->sk_peek_off += val;
}
/*
* Hashed lists helper routines
*/
static inline struct sock *sk_entry(const struct hlist_node *node)
{
return hlist_entry(node, struct sock, sk_node);
}
static inline struct sock *__sk_head(const struct hlist_head *head)
{
return hlist_entry(head->first, struct sock, sk_node);
}
static inline struct sock *sk_head(const struct hlist_head *head)
{
return hlist_empty(head) ? NULL : __sk_head(head);
}
static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
{
return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
}
static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
{
return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
}
static inline struct sock *sk_next(const struct sock *sk)
{
return sk->sk_node.next ?
hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
}
static inline struct sock *sk_nulls_next(const struct sock *sk)
{
return (!is_a_nulls(sk->sk_nulls_node.next)) ?
hlist_nulls_entry(sk->sk_nulls_node.next,
struct sock, sk_nulls_node) :
NULL;
}
static inline bool sk_unhashed(const struct sock *sk)
{
return hlist_unhashed(&sk->sk_node);
}
static inline bool sk_hashed(const struct sock *sk)
{
return !sk_unhashed(sk);
}
static inline void sk_node_init(struct hlist_node *node)
{
node->pprev = NULL;
}
static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
{
node->pprev = NULL;
}
static inline void __sk_del_node(struct sock *sk)
{
__hlist_del(&sk->sk_node);
}
/* NB: equivalent to hlist_del_init_rcu */
static inline bool __sk_del_node_init(struct sock *sk)
{
if (sk_hashed(sk)) {
__sk_del_node(sk);
sk_node_init(&sk->sk_node);
return true;
}
return false;
}
/* Grab socket reference count. This operation is valid only
when sk is ALREADY grabbed f.e. it is found in hash table
or a list and the lookup is made under lock preventing hash table
modifications.
*/
static inline void sock_hold(struct sock *sk)
{
atomic_inc(&sk->sk_refcnt);
}
/* Ungrab socket in the context, which assumes that socket refcnt
cannot hit zero, f.e. it is true in context of any socketcall.
*/
static inline void __sock_put(struct sock *sk)
{
atomic_dec(&sk->sk_refcnt);
}
static inline bool sk_del_node_init(struct sock *sk)
{
bool rc = __sk_del_node_init(sk);
if (rc) {
/* paranoid for a while -acme */
WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
__sock_put(sk);
}
return rc;
}
#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
{
if (sk_hashed(sk)) {
hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
return true;
}
return false;
}
static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
{
bool rc = __sk_nulls_del_node_init_rcu(sk);
if (rc) {
/* paranoid for a while -acme */
WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
__sock_put(sk);
}
return rc;
}
static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
{
hlist_add_head(&sk->sk_node, list);
}
static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
{
sock_hold(sk);
__sk_add_node(sk, list);
}
static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
{
sock_hold(sk);
hlist_add_head_rcu(&sk->sk_node, list);
}
static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
{
hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
}
static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
{
sock_hold(sk);
__sk_nulls_add_node_rcu(sk, list);
}
static inline void __sk_del_bind_node(struct sock *sk)
{
__hlist_del(&sk->sk_bind_node);
}
static inline void sk_add_bind_node(struct sock *sk,
struct hlist_head *list)
{
hlist_add_head(&sk->sk_bind_node, list);
}
#define sk_for_each(__sk, list) \
hlist_for_each_entry(__sk, list, sk_node)
#define sk_for_each_rcu(__sk, list) \
hlist_for_each_entry_rcu(__sk, list, sk_node)
#define sk_nulls_for_each(__sk, node, list) \
hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
#define sk_nulls_for_each_rcu(__sk, node, list) \
hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
#define sk_for_each_from(__sk) \
hlist_for_each_entry_from(__sk, sk_node)
#define sk_nulls_for_each_from(__sk, node) \
if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
#define sk_for_each_safe(__sk, tmp, list) \
hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
#define sk_for_each_bound(__sk, list) \
hlist_for_each_entry(__sk, list, sk_bind_node)
/**
* sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @head: the head for your list.
* @offset: offset of hlist_node within the struct.
*
*/
#define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
for (pos = (head)->first; \
(!is_a_nulls(pos)) && \
({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
pos = pos->next)
static inline struct user_namespace *sk_user_ns(struct sock *sk)
{
/* Careful only use this in a context where these parameters
* can not change and must all be valid, such as recvmsg from
* userspace.
*/
return sk->sk_socket->file->f_cred->user_ns;
}
/* Sock flags */
enum sock_flags {
SOCK_DEAD,
SOCK_DONE,
SOCK_URGINLINE,
SOCK_KEEPOPEN,
SOCK_LINGER,
SOCK_DESTROY,
SOCK_BROADCAST,
SOCK_TIMESTAMP,
SOCK_ZAPPED,
SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
SOCK_DBG, /* %SO_DEBUG setting */
SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
SOCK_MEMALLOC, /* VM depends on this socket for swapping */
SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
SOCK_FASYNC, /* fasync() active */
SOCK_RXQ_OVFL,
SOCK_ZEROCOPY, /* buffers from userspace */
SOCK_WIFI_STATUS, /* push wifi status to userspace */
SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
* Will use last 4 bytes of packet sent from
* user-space instead.
*/
SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
};
static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
{
nsk->sk_flags = osk->sk_flags;
}
static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
{
__set_bit(flag, &sk->sk_flags);
}
static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
{
__clear_bit(flag, &sk->sk_flags);
}
static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
{
return test_bit(flag, &sk->sk_flags);
}
#ifdef CONFIG_NET
extern struct static_key memalloc_socks;
static inline int sk_memalloc_socks(void)
{
return static_key_false(&memalloc_socks);
}
#else
static inline int sk_memalloc_socks(void)
{
return 0;
}
#endif
static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
{
return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
}
static inline void sk_acceptq_removed(struct sock *sk)
{
sk->sk_ack_backlog--;
}
static inline void sk_acceptq_added(struct sock *sk)
{
sk->sk_ack_backlog++;
}
static inline bool sk_acceptq_is_full(const struct sock *sk)
{
return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
}
/*
* Compute minimal free write space needed to queue new packets.
*/
static inline int sk_stream_min_wspace(const struct sock *sk)
{
return sk->sk_wmem_queued >> 1;
}
static inline int sk_stream_wspace(const struct sock *sk)
{
return sk->sk_sndbuf - sk->sk_wmem_queued;
}
void sk_stream_write_space(struct sock *sk);
/* OOB backlog add */
static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
{
/* dont let skb dst not refcounted, we are going to leave rcu lock */
skb_dst_force(skb);
if (!sk->sk_backlog.tail)
sk->sk_backlog.head = skb;
else
sk->sk_backlog.tail->next = skb;
sk->sk_backlog.tail = skb;
skb->next = NULL;
}
/*
* Take into account size of receive queue and backlog queue
* Do not take into account this skb truesize,
* to allow even a single big packet to come.
*/
static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
{
unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
return qsize > limit;
}
/* The per-socket spinlock must be held here. */
static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
unsigned int limit)
{
if (sk_rcvqueues_full(sk, limit))
return -ENOBUFS;
__sk_add_backlog(sk, skb);
sk->sk_backlog.len += skb->truesize;
return 0;
}
int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
if (sk_memalloc_socks() && skb_pfmemalloc(skb))
return __sk_backlog_rcv(sk, skb);
return sk->sk_backlog_rcv(sk, skb);
}
static inline void sk_incoming_cpu_update(struct sock *sk)
{
sk->sk_incoming_cpu = raw_smp_processor_id();
}
static inline void sock_rps_record_flow_hash(__u32 hash)
{
#ifdef CONFIG_RPS
struct rps_sock_flow_table *sock_flow_table;
rcu_read_lock();
sock_flow_table = rcu_dereference(rps_sock_flow_table);
rps_record_sock_flow(sock_flow_table, hash);
rcu_read_unlock();
#endif
}
static inline void sock_rps_record_flow(const struct sock *sk)
{
#ifdef CONFIG_RPS
sock_rps_record_flow_hash(sk->sk_rxhash);
#endif
}
static inline void sock_rps_save_rxhash(struct sock *sk,
const struct sk_buff *skb)
{
#ifdef CONFIG_RPS
if (unlikely(sk->sk_rxhash != skb->hash))
sk->sk_rxhash = skb->hash;
#endif
}
static inline void sock_rps_reset_rxhash(struct sock *sk)
{
#ifdef CONFIG_RPS
sk->sk_rxhash = 0;
#endif
}
#define sk_wait_event(__sk, __timeo, __condition) \
({ int __rc; \
release_sock(__sk); \
__rc = __condition; \
if (!__rc) { \
*(__timeo) = schedule_timeout(*(__timeo)); \
} \
sched_annotate_sleep(); \
lock_sock(__sk); \
__rc = __condition; \
__rc; \
})
int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
void sk_stream_wait_close(struct sock *sk, long timeo_p);
int sk_stream_error(struct sock *sk, int flags, int err);
void sk_stream_kill_queues(struct sock *sk);
void sk_set_memalloc(struct sock *sk);
void sk_clear_memalloc(struct sock *sk);
int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
struct request_sock_ops;
struct timewait_sock_ops;
struct inet_hashinfo;
struct raw_hashinfo;
struct module;
/*
* caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
* un-modified. Special care is taken when initializing object to zero.
*/
static inline void sk_prot_clear_nulls(struct sock *sk, int size)
{
if (offsetof(struct sock, sk_node.next) != 0)
memset(sk, 0, offsetof(struct sock, sk_node.next));
memset(&sk->sk_node.pprev, 0,
size - offsetof(struct sock, sk_node.pprev));
}
/* Networking protocol blocks we attach to sockets.
* socket layer -> transport layer interface
*/
struct proto {
void (*close)(struct sock *sk,
long timeout);
int (*connect)(struct sock *sk,
struct sockaddr *uaddr,
int addr_len);
int (*disconnect)(struct sock *sk, int flags);
struct sock * (*accept)(struct sock *sk, int flags, int *err);
int (*ioctl)(struct sock *sk, int cmd,
unsigned long arg);
int (*init)(struct sock *sk);
void (*destroy)(struct sock *sk);
void (*shutdown)(struct sock *sk, int how);
int (*setsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
unsigned int optlen);
int (*getsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
int __user *option);
#ifdef CONFIG_COMPAT
int (*compat_setsockopt)(struct sock *sk,
int level,
int optname, char __user *optval,
unsigned int optlen);
int (*compat_getsockopt)(struct sock *sk,
int level,
int optname, char __user *optval,
int __user *option);
int (*compat_ioctl)(struct sock *sk,
unsigned int cmd, unsigned long arg);
#endif
int (*sendmsg)(struct sock *sk, struct msghdr *msg,
size_t len);
int (*recvmsg)(struct sock *sk, struct msghdr *msg,
size_t len, int noblock, int flags,
int *addr_len);
int (*sendpage)(struct sock *sk, struct page *page,
int offset, size_t size, int flags);
int (*bind)(struct sock *sk,
struct sockaddr *uaddr, int addr_len);
int (*backlog_rcv) (struct sock *sk,
struct sk_buff *skb);
void (*release_cb)(struct sock *sk);
/* Keeping track of sk's, looking them up, and port selection methods. */
void (*hash)(struct sock *sk);
void (*unhash)(struct sock *sk);
void (*rehash)(struct sock *sk);
int (*get_port)(struct sock *sk, unsigned short snum);
void (*clear_sk)(struct sock *sk, int size);
/* Keeping track of sockets in use */
#ifdef CONFIG_PROC_FS
unsigned int inuse_idx;
#endif
bool (*stream_memory_free)(const struct sock *sk);
/* Memory pressure */
void (*enter_memory_pressure)(struct sock *sk);
atomic_long_t *memory_allocated; /* Current allocated memory. */
struct percpu_counter *sockets_allocated; /* Current number of sockets. */
/*
* Pressure flag: try to collapse.
* Technical note: it is used by multiple contexts non atomically.
* All the __sk_mem_schedule() is of this nature: accounting
* is strict, actions are advisory and have some latency.
*/
int *memory_pressure;
long *sysctl_mem;
int *sysctl_wmem;
int *sysctl_rmem;
int max_header;
bool no_autobind;
struct kmem_cache *slab;
unsigned int obj_size;
int slab_flags;
struct percpu_counter *orphan_count;
struct request_sock_ops *rsk_prot;
struct timewait_sock_ops *twsk_prot;
union {
struct inet_hashinfo *hashinfo;
struct udp_table *udp_table;
struct raw_hashinfo *raw_hash;
} h;
struct module *owner;
char name[32];
struct list_head node;
#ifdef SOCK_REFCNT_DEBUG
atomic_t socks;
#endif
#ifdef CONFIG_MEMCG_KMEM
/*
* cgroup specific init/deinit functions. Called once for all
* protocols that implement it, from cgroups populate function.
* This function has to setup any files the protocol want to
* appear in the kmem cgroup filesystem.
*/
int (*init_cgroup)(struct mem_cgroup *memcg,
struct cgroup_subsys *ss);
void (*destroy_cgroup)(struct mem_cgroup *memcg);
struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
#endif
};
int proto_register(struct proto *prot, int alloc_slab);
void proto_unregister(struct proto *prot);
#ifdef SOCK_REFCNT_DEBUG
static inline void sk_refcnt_debug_inc(struct sock *sk)
{
atomic_inc(&sk->sk_prot->socks);
}
static inline void sk_refcnt_debug_dec(struct sock *sk)
{
atomic_dec(&sk->sk_prot->socks);
printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
}
static inline void sk_refcnt_debug_release(const struct sock *sk)
{
if (atomic_read(&sk->sk_refcnt) != 1)
printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
}
#else /* SOCK_REFCNT_DEBUG */
#define sk_refcnt_debug_inc(sk) do { } while (0)
#define sk_refcnt_debug_dec(sk) do { } while (0)
#define sk_refcnt_debug_release(sk) do { } while (0)
#endif /* SOCK_REFCNT_DEBUG */
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
extern struct static_key memcg_socket_limit_enabled;
static inline struct cg_proto *parent_cg_proto(struct proto *proto,
struct cg_proto *cg_proto)
{
return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
}
#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
#else
#define mem_cgroup_sockets_enabled 0
static inline struct cg_proto *parent_cg_proto(struct proto *proto,
struct cg_proto *cg_proto)
{
return NULL;
}
#endif
static inline bool sk_stream_memory_free(const struct sock *sk)
{
if (sk->sk_wmem_queued >= sk->sk_sndbuf)
return false;
return sk->sk_prot->stream_memory_free ?
sk->sk_prot->stream_memory_free(sk) : true;
}
static inline bool sk_stream_is_writeable(const struct sock *sk)
{
return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
sk_stream_memory_free(sk);
}
static inline bool sk_has_memory_pressure(const struct sock *sk)
{
return sk->sk_prot->memory_pressure != NULL;
}
static inline bool sk_under_memory_pressure(const struct sock *sk)
{
if (!sk->sk_prot->memory_pressure)
return false;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
return !!sk->sk_cgrp->memory_pressure;
return !!*sk->sk_prot->memory_pressure;
}
static inline void sk_leave_memory_pressure(struct sock *sk)
{
int *memory_pressure = sk->sk_prot->memory_pressure;
if (!memory_pressure)
return;
if (*memory_pressure)
*memory_pressure = 0;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
struct proto *prot = sk->sk_prot;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
cg_proto->memory_pressure = 0;
}
}
static inline void sk_enter_memory_pressure(struct sock *sk)
{
if (!sk->sk_prot->enter_memory_pressure)
return;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
struct proto *prot = sk->sk_prot;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
cg_proto->memory_pressure = 1;
}
sk->sk_prot->enter_memory_pressure(sk);
}
static inline long sk_prot_mem_limits(const struct sock *sk, int index)
{
long *prot = sk->sk_prot->sysctl_mem;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
prot = sk->sk_cgrp->sysctl_mem;
return prot[index];
}
static inline void memcg_memory_allocated_add(struct cg_proto *prot,
unsigned long amt,
int *parent_status)
{
page_counter_charge(&prot->memory_allocated, amt);
if (page_counter_read(&prot->memory_allocated) >
prot->memory_allocated.limit)
*parent_status = OVER_LIMIT;
}
static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
unsigned long amt)
{
page_counter_uncharge(&prot->memory_allocated, amt);
}
static inline long
sk_memory_allocated(const struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
return page_counter_read(&sk->sk_cgrp->memory_allocated);
return atomic_long_read(prot->memory_allocated);
}
static inline long
sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
/* update the root cgroup regardless */
atomic_long_add_return(amt, prot->memory_allocated);
return page_counter_read(&sk->sk_cgrp->memory_allocated);
}
return atomic_long_add_return(amt, prot->memory_allocated);
}
static inline void
sk_memory_allocated_sub(struct sock *sk, int amt)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
memcg_memory_allocated_sub(sk->sk_cgrp, amt);
atomic_long_sub(amt, prot->memory_allocated);
}
static inline void sk_sockets_allocated_dec(struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
percpu_counter_dec(&cg_proto->sockets_allocated);
}
percpu_counter_dec(prot->sockets_allocated);
}
static inline void sk_sockets_allocated_inc(struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
struct cg_proto *cg_proto = sk->sk_cgrp;
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
percpu_counter_inc(&cg_proto->sockets_allocated);
}
percpu_counter_inc(prot->sockets_allocated);
}
static inline int
sk_sockets_allocated_read_positive(struct sock *sk)
{
struct proto *prot = sk->sk_prot;
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
return percpu_counter_read_positive(prot->sockets_allocated);
}
static inline int
proto_sockets_allocated_sum_positive(struct proto *prot)
{
return percpu_counter_sum_positive(prot->sockets_allocated);
}
static inline long
proto_memory_allocated(struct proto *prot)
{
return atomic_long_read(prot->memory_allocated);
}
static inline bool
proto_memory_pressure(struct proto *prot)
{
if (!prot->memory_pressure)
return false;
return !!*prot->memory_pressure;
}
#ifdef CONFIG_PROC_FS
/* Called with local bh disabled */
void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
int sock_prot_inuse_get(struct net *net, struct proto *proto);
#else
static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
int inc)
{
}
#endif
/* With per-bucket locks this operation is not-atomic, so that
* this version is not worse.
*/
static inline void __sk_prot_rehash(struct sock *sk)
{
sk->sk_prot->unhash(sk);
sk->sk_prot->hash(sk);
}
void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)
/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK 1024
#define SHUTDOWN_MASK 3
#define RCV_SHUTDOWN 1
#define SEND_SHUTDOWN 2
#define SOCK_SNDBUF_LOCK 1
#define SOCK_RCVBUF_LOCK 2
#define SOCK_BINDADDR_LOCK 4
#define SOCK_BINDPORT_LOCK 8
struct socket_alloc {
struct socket socket;
struct inode vfs_inode;
};
static inline struct socket *SOCKET_I(struct inode *inode)
{
return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
}
static inline struct inode *SOCK_INODE(struct socket *socket)
{
return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
}
/*
* Functions for memory accounting
*/
int __sk_mem_schedule(struct sock *sk, int size, int kind);
void __sk_mem_reclaim(struct sock *sk, int amount);
#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
#define SK_MEM_SEND 0
#define SK_MEM_RECV 1
static inline int sk_mem_pages(int amt)
{
return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
}
static inline bool sk_has_account(struct sock *sk)
{
/* return true if protocol supports memory accounting */
return !!sk->sk_prot->memory_allocated;
}
static inline bool sk_wmem_schedule(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return true;
return size <= sk->sk_forward_alloc ||
__sk_mem_schedule(sk, size, SK_MEM_SEND);
}
static inline bool
sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
{
if (!sk_has_account(sk))
return true;
return size<= sk->sk_forward_alloc ||
__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
skb_pfmemalloc(skb);
}
static inline void sk_mem_reclaim(struct sock *sk)
{
if (!sk_has_account(sk))
return;
if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
__sk_mem_reclaim(sk, sk->sk_forward_alloc);
}
static inline void sk_mem_reclaim_partial(struct sock *sk)
{
if (!sk_has_account(sk))
return;
if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
}
static inline void sk_mem_charge(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return;
sk->sk_forward_alloc -= size;
}
static inline void sk_mem_uncharge(struct sock *sk, int size)
{
if (!sk_has_account(sk))
return;
sk->sk_forward_alloc += size;
}
static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
{
sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
sk->sk_wmem_queued -= skb->truesize;
sk_mem_uncharge(sk, skb->truesize);
__kfree_skb(skb);
}
/* Used by processes to "lock" a socket state, so that
* interrupts and bottom half handlers won't change it
* from under us. It essentially blocks any incoming
* packets, so that we won't get any new data or any
* packets that change the state of the socket.
*
* While locked, BH processing will add new packets to
* the backlog queue. This queue is processed by the
* owner of the socket lock right before it is released.
*
* Since ~2.3.5 it is also exclusive sleep lock serializing
* accesses from user process context.
*/
#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
static inline void sock_release_ownership(struct sock *sk)
{
sk->sk_lock.owned = 0;
}
/*
* Macro so as to not evaluate some arguments when
* lockdep is not enabled.
*
* Mark both the sk_lock and the sk_lock.slock as a
* per-address-family lock class.
*/
#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
do { \
sk->sk_lock.owned = 0; \
init_waitqueue_head(&sk->sk_lock.wq); \
spin_lock_init(&(sk)->sk_lock.slock); \
debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
sizeof((sk)->sk_lock)); \
lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
(skey), (sname)); \
lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
} while (0)
void lock_sock_nested(struct sock *sk, int subclass);
static inline void lock_sock(struct sock *sk)
{
lock_sock_nested(sk, 0);
}
void release_sock(struct sock *sk);
/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
#define bh_lock_sock_nested(__sk) \
spin_lock_nested(&((__sk)->sk_lock.slock), \
SINGLE_DEPTH_NESTING)
#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
bool lock_sock_fast(struct sock *sk);
/**
* unlock_sock_fast - complement of lock_sock_fast
* @sk: socket
* @slow: slow mode
*
* fast unlock socket for user context.
* If slow mode is on, we call regular release_sock()
*/
static inline void unlock_sock_fast(struct sock *sk, bool slow)
{
if (slow)
release_sock(sk);
else
spin_unlock_bh(&sk->sk_lock.slock);
}
struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
struct proto *prot, int kern);
void sk_free(struct sock *sk);
void sk_destruct(struct sock *sk);
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
gfp_t priority);
void sock_wfree(struct sk_buff *skb);
void skb_orphan_partial(struct sk_buff *skb);
void sock_rfree(struct sk_buff *skb);
void sock_efree(struct sk_buff *skb);
#ifdef CONFIG_INET
void sock_edemux(struct sk_buff *skb);
#else
#define sock_edemux(skb) sock_efree(skb)
#endif
int sock_setsockopt(struct socket *sock, int level, int op,
char __user *optval, unsigned int optlen);
int sock_getsockopt(struct socket *sock, int level, int op,
char __user *optval, int __user *optlen);
struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
int noblock, int *errcode);
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
unsigned long data_len, int noblock,
int *errcode, int max_page_order);
void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
void sock_kfree_s(struct sock *sk, void *mem, int size);
void sock_kzfree_s(struct sock *sk, void *mem, int size);
void sk_send_sigurg(struct sock *sk);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* does not implement a particular function.
*/
int sock_no_bind(struct socket *, struct sockaddr *, int);
int sock_no_connect(struct socket *, struct sockaddr *, int, int);
int sock_no_socketpair(struct socket *, struct socket *);
int sock_no_accept(struct socket *, struct socket *, int);
int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
unsigned int sock_no_poll(struct file *, struct socket *,
struct poll_table_struct *);
int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
int sock_no_listen(struct socket *, int);
int sock_no_shutdown(struct socket *, int);
int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
int sock_no_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma);
ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
size_t size, int flags);
/*
* Functions to fill in entries in struct proto_ops when a protocol
* uses the inet style.
*/
int sock_common_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen);
int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
int flags);
int sock_common_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen);
int compat_sock_common_getsockopt(struct socket *sock, int level,
int optname, char __user *optval, int __user *optlen);
int compat_sock_common_setsockopt(struct socket *sock, int level,
int optname, char __user *optval, unsigned int optlen);
void sk_common_release(struct sock *sk);
/*
* Default socket callbacks and setup code
*/
/* Initialise core socket variables */
void sock_init_data(struct socket *sock, struct sock *sk);
/*
* Socket reference counting postulates.
*
* * Each user of socket SHOULD hold a reference count.
* * Each access point to socket (an hash table bucket, reference from a list,
* running timer, skb in flight MUST hold a reference count.
* * When reference count hits 0, it means it will never increase back.
* * When reference count hits 0, it means that no references from
* outside exist to this socket and current process on current CPU
* is last user and may/should destroy this socket.
* * sk_free is called from any context: process, BH, IRQ. When
* it is called, socket has no references from outside -> sk_free
* may release descendant resources allocated by the socket, but
* to the time when it is called, socket is NOT referenced by any
* hash tables, lists etc.
* * Packets, delivered from outside (from network or from another process)
* and enqueued on receive/error queues SHOULD NOT grab reference count,
* when they sit in queue. Otherwise, packets will leak to hole, when
* socket is looked up by one cpu and unhasing is made by another CPU.
* It is true for udp/raw, netlink (leak to receive and error queues), tcp
* (leak to backlog). Packet socket does all the processing inside
* BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
* use separate SMP lock, so that they are prone too.
*/
/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
if (atomic_dec_and_test(&sk->sk_refcnt))
sk_free(sk);
}
/* Generic version of sock_put(), dealing with all sockets
* (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
*/
void sock_gen_put(struct sock *sk);
int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
{
sk->sk_tx_queue_mapping = tx_queue;
}
static inline void sk_tx_queue_clear(struct sock *sk)
{
sk->sk_tx_queue_mapping = -1;
}
static inline int sk_tx_queue_get(const struct sock *sk)
{
return sk ? sk->sk_tx_queue_mapping : -1;
}
static inline void sk_set_socket(struct sock *sk, struct socket *sock)
{
sk_tx_queue_clear(sk);
sk->sk_socket = sock;
}
static inline wait_queue_head_t *sk_sleep(struct sock *sk)
{
BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
return &rcu_dereference_raw(sk->sk_wq)->wait;
}
/* Detach socket from process context.
* Announce socket dead, detach it from wait queue and inode.
* Note that parent inode held reference count on this struct sock,
* we do not release it in this function, because protocol
* probably wants some additional cleanups or even continuing
* to work with this socket (TCP).
*/
static inline void sock_orphan(struct sock *sk)
{
write_lock_bh(&sk->sk_callback_lock);
sock_set_flag(sk, SOCK_DEAD);
sk_set_socket(sk, NULL);
sk->sk_wq = NULL;
write_unlock_bh(&sk->sk_callback_lock);
}
static inline void sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->sk_callback_lock);
sk->sk_wq = parent->wq;
parent->sk = sk;
sk_set_socket(sk, parent);
security_sock_graft(sk, parent);
write_unlock_bh(&sk->sk_callback_lock);
}
kuid_t sock_i_uid(struct sock *sk);
unsigned long sock_i_ino(struct sock *sk);
static inline void sk_set_txhash(struct sock *sk)
{
sk->sk_txhash = prandom_u32();
if (unlikely(!sk->sk_txhash))
sk->sk_txhash = 1;
}
static inline void sk_rethink_txhash(struct sock *sk)
{
if (sk->sk_txhash)
sk_set_txhash(sk);
}
static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{
return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
lockdep_is_held(&sk->sk_lock.slock));
}
static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
struct dst_entry *dst;
rcu_read_lock();
dst = rcu_dereference(sk->sk_dst_cache);
if (dst && !atomic_inc_not_zero(&dst->__refcnt))
dst = NULL;
rcu_read_unlock();
return dst;
}
static inline void dst_negative_advice(struct sock *sk)
{
struct dst_entry *ndst, *dst = __sk_dst_get(sk);
sk_rethink_txhash(sk);
if (dst && dst->ops->negative_advice) {
ndst = dst->ops->negative_advice(dst);
if (ndst != dst) {
rcu_assign_pointer(sk->sk_dst_cache, ndst);
sk_tx_queue_clear(sk);
}
}
}
static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
struct dst_entry *old_dst;
sk_tx_queue_clear(sk);
/*
* This can be called while sk is owned by the caller only,
* with no state that can be checked in a rcu_dereference_check() cond
*/
old_dst = rcu_dereference_raw(sk->sk_dst_cache);
rcu_assign_pointer(sk->sk_dst_cache, dst);
dst_release(old_dst);
}
static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
struct dst_entry *old_dst;
sk_tx_queue_clear(sk);
old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
dst_release(old_dst);
}
static inline void
__sk_dst_reset(struct sock *sk)
{
__sk_dst_set(sk, NULL);
}
static inline void
sk_dst_reset(struct sock *sk)
{
sk_dst_set(sk, NULL);
}
struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
bool sk_mc_loop(struct sock *sk);
static inline bool sk_can_gso(const struct sock *sk)
{
return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
}
void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
{
sk->sk_route_nocaps |= flags;
sk->sk_route_caps &= ~flags;
}
static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
struct iov_iter *from, char *to,
int copy, int offset)
{
if (skb->ip_summed == CHECKSUM_NONE) {
__wsum csum = 0;
if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
return -EFAULT;
skb->csum = csum_block_add(skb->csum, csum, offset);
} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
if (copy_from_iter_nocache(to, copy, from) != copy)
return -EFAULT;
} else if (copy_from_iter(to, copy, from) != copy)
return -EFAULT;
return 0;
}
static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
struct iov_iter *from, int copy)
{
int err, offset = skb->len;
err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
copy, offset);
if (err)
__skb_trim(skb, offset);
return err;
}
static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
struct sk_buff *skb,
struct page *page,
int off, int copy)
{
int err;
err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
copy, skb->len);
if (err)
return err;
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
sk_mem_charge(sk, copy);
return 0;
}
/**
* sk_wmem_alloc_get - returns write allocations
* @sk: socket
*
* Returns sk_wmem_alloc minus initial offset of one
*/
static inline int sk_wmem_alloc_get(const struct sock *sk)
{
return atomic_read(&sk->sk_wmem_alloc) - 1;
}
/**
* sk_rmem_alloc_get - returns read allocations
* @sk: socket
*
* Returns sk_rmem_alloc
*/
static inline int sk_rmem_alloc_get(const struct sock *sk)
{
return atomic_read(&sk->sk_rmem_alloc);
}
/**
* sk_has_allocations - check if allocations are outstanding
* @sk: socket
*
* Returns true if socket has write or read allocations
*/
static inline bool sk_has_allocations(const struct sock *sk)
{
return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
}
/**
* wq_has_sleeper - check if there are any waiting processes
* @wq: struct socket_wq
*
* Returns true if socket_wq has waiting processes
*
* The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
* barrier call. They were added due to the race found within the tcp code.
*
* Consider following tcp code paths:
*
* CPU1 CPU2
*
* sys_select receive packet
* ... ...
* __add_wait_queue update tp->rcv_nxt
* ... ...
* tp->rcv_nxt check sock_def_readable
* ... {
* schedule rcu_read_lock();
* wq = rcu_dereference(sk->sk_wq);
* if (wq && waitqueue_active(&wq->wait))
* wake_up_interruptible(&wq->wait)
* ...
* }
*
* The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
* in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
* could then endup calling schedule and sleep forever if there are no more
* data on the socket.
*
*/
static inline bool wq_has_sleeper(struct socket_wq *wq)
{
/* We need to be sure we are in sync with the
* add_wait_queue modifications to the wait queue.
*
* This memory barrier is paired in the sock_poll_wait.
*/
smp_mb();
return wq && waitqueue_active(&wq->wait);
}
/**
* sock_poll_wait - place memory barrier behind the poll_wait call.
* @filp: file
* @wait_address: socket wait queue
* @p: poll_table
*
* See the comments in the wq_has_sleeper function.
*/
static inline void sock_poll_wait(struct file *filp,
wait_queue_head_t *wait_address, poll_table *p)
{
if (!poll_does_not_wait(p) && wait_address) {
poll_wait(filp, wait_address, p);
/* We need to be sure we are in sync with the
* socket flags modification.
*
* This memory barrier is paired in the wq_has_sleeper.
*/
smp_mb();
}
}
static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
{
if (sk->sk_txhash) {
skb->l4_hash = 1;
skb->hash = sk->sk_txhash;
}
}
/*
* Queue a received datagram if it will fit. Stream and sequenced
* protocols can't normally use this as they need to fit buffers in
* and play with them.
*
* Inlined as it's very short and called for pretty much every
* packet ever received.
*/
static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
{
skb_orphan(skb);
skb->sk = sk;
skb->destructor = sock_wfree;
skb_set_hash_from_sk(skb, sk);
/*
* We used to take a refcount on sk, but following operation
* is enough to guarantee sk_free() wont free this sock until
* all in-flight packets are completed
*/
atomic_add(skb->truesize, &sk->sk_wmem_alloc);
}
static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
skb_orphan(skb);
skb->sk = sk;
skb->destructor = sock_rfree;
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
sk_mem_charge(sk, skb->truesize);
}
void sk_reset_timer(struct sock *sk, struct timer_list *timer,
unsigned long expires);
void sk_stop_timer(struct sock *sk, struct timer_list *timer);
int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
/*
* Recover an error report and clear atomically
*/
static inline int sock_error(struct sock *sk)
{
int err;
if (likely(!sk->sk_err))
return 0;
err = xchg(&sk->sk_err, 0);
return -err;
}
static inline unsigned long sock_wspace(struct sock *sk)
{
int amt = 0;
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
if (amt < 0)
amt = 0;
}
return amt;
}
static inline void sk_wake_async(struct sock *sk, int how, int band)
{
if (sock_flag(sk, SOCK_FASYNC))
sock_wake_async(sk->sk_socket, how, band);
}
/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
* need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
* Note: for send buffers, TCP works better if we can build two skbs at
* minimum.
*/
#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
static inline void sk_stream_moderate_sndbuf(struct sock *sk)
{
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
}
}
struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
bool force_schedule);
/**
* sk_page_frag - return an appropriate page_frag
* @sk: socket
*
* If socket allocation mode allows current thread to sleep, it means its
* safe to use the per task page_frag instead of the per socket one.
*/
static inline struct page_frag *sk_page_frag(struct sock *sk)
{
if (sk->sk_allocation & __GFP_WAIT)
return &current->task_frag;
return &sk->sk_frag;
}
bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
/*
* Default write policy as shown to user space via poll/select/SIGIO
*/
static inline bool sock_writeable(const struct sock *sk)
{
return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
}
static inline gfp_t gfp_any(void)
{
return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
}
static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
{
return noblock ? 0 : sk->sk_rcvtimeo;
}
static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
{
return noblock ? 0 : sk->sk_sndtimeo;
}
static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
{
return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
}
/* Alas, with timeout socket operations are not restartable.
* Compare this to poll().
*/
static inline int sock_intr_errno(long timeo)
{
return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
}
struct sock_skb_cb {
u32 dropcount;
};
/* Store sock_skb_cb at the end of skb->cb[] so protocol families
* using skb->cb[] would keep using it directly and utilize its
* alignement guarantee.
*/
#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
sizeof(struct sock_skb_cb)))
#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
SOCK_SKB_CB_OFFSET))
#define sock_skb_cb_check_size(size) \
BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
static inline void
sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
{
SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
}
void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb);
void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb);
static inline void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{
ktime_t kt = skb->tstamp;
struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
/*
* generate control messages if
* - receive time stamping in software requested
* - software time stamp available and wanted
* - hardware time stamps available and wanted
*/
if (sock_flag(sk, SOCK_RCVTSTAMP) ||
(sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
(kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
(hwtstamps->hwtstamp.tv64 &&
(sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
__sock_recv_timestamp(msg, sk, skb);
else
sk->sk_stamp = kt;
if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
__sock_recv_wifi_status(msg, sk, skb);
}
void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb);
static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
(1UL << SOCK_RCVTSTAMP))
#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
SOF_TIMESTAMPING_RAW_HARDWARE)
if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
__sock_recv_ts_and_drops(msg, sk, skb);
else
sk->sk_stamp = skb->tstamp;
}
void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
/**
* sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
* @sk: socket sending this packet
* @tx_flags: completed with instructions for time stamping
*
* Note : callers should take care of initial *tx_flags value (usually 0)
*/
static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
{
if (unlikely(sk->sk_tsflags))
__sock_tx_timestamp(sk, tx_flags);
if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
*tx_flags |= SKBTX_WIFI_STATUS;
}
/**
* sk_eat_skb - Release a skb if it is no longer needed
* @sk: socket to eat this skb from
* @skb: socket buffer to eat
*
* This routine must be called with interrupts disabled or with the socket
* locked so that the sk_buff queue operation is ok.
*/
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
{
__skb_unlink(skb, &sk->sk_receive_queue);
__kfree_skb(skb);
}
static inline
struct net *sock_net(const struct sock *sk)
{
return read_pnet(&sk->sk_net);
}
static inline
void sock_net_set(struct sock *sk, struct net *net)
{
write_pnet(&sk->sk_net, net);
}
static inline struct sock *skb_steal_sock(struct sk_buff *skb)
{
if (skb->sk) {
struct sock *sk = skb->sk;
skb->destructor = NULL;
skb->sk = NULL;
return sk;
}
return NULL;
}
/* This helper checks if a socket is a full socket,
* ie _not_ a timewait or request socket.
*/
static inline bool sk_fullsock(const struct sock *sk)
{
return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
}
void sock_enable_timestamp(struct sock *sk, int flag);
int sock_get_timestamp(struct sock *, struct timeval __user *);
int sock_get_timestampns(struct sock *, struct timespec __user *);
int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
int type);
bool sk_ns_capable(const struct sock *sk,
struct user_namespace *user_ns, int cap);
bool sk_capable(const struct sock *sk, int cap);
bool sk_net_capable(const struct sock *sk, int cap);
extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;
extern int sysctl_tstamp_allow_data;
extern int sysctl_optmem_max;
extern __u32 sysctl_wmem_default;
extern __u32 sysctl_rmem_default;
#endif /* _SOCK_H */