linux/drivers/media/video/marvell-ccic/mcam-core.c

1684 lines
40 KiB
C

/*
* The Marvell camera core. This device appears in a number of settings,
* so it needs platform-specific support outside of the core.
*
* Copyright 2011 Jonathan Corbet corbet@lwn.net
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/videodev2.h>
#include <linux/slab.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-chip-ident.h>
#include <media/ov7670.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include "mcam-core.h"
/*
* Internal DMA buffer management. Since the controller cannot do S/G I/O,
* we must have physically contiguous buffers to bring frames into.
* These parameters control how many buffers we use, whether we
* allocate them at load time (better chance of success, but nails down
* memory) or when somebody tries to use the camera (riskier), and,
* for load-time allocation, how big they should be.
*
* The controller can cycle through three buffers. We could use
* more by flipping pointers around, but it probably makes little
* sense.
*/
static int alloc_bufs_at_read;
module_param(alloc_bufs_at_read, bool, 0444);
MODULE_PARM_DESC(alloc_bufs_at_read,
"Non-zero value causes DMA buffers to be allocated when the "
"video capture device is read, rather than at module load "
"time. This saves memory, but decreases the chances of "
"successfully getting those buffers.");
static int n_dma_bufs = 3;
module_param(n_dma_bufs, uint, 0644);
MODULE_PARM_DESC(n_dma_bufs,
"The number of DMA buffers to allocate. Can be either two "
"(saves memory, makes timing tighter) or three.");
static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
module_param(dma_buf_size, uint, 0444);
MODULE_PARM_DESC(dma_buf_size,
"The size of the allocated DMA buffers. If actual operating "
"parameters require larger buffers, an attempt to reallocate "
"will be made.");
static int min_buffers = 1;
module_param(min_buffers, uint, 0644);
MODULE_PARM_DESC(min_buffers,
"The minimum number of streaming I/O buffers we are willing "
"to work with.");
static int max_buffers = 10;
module_param(max_buffers, uint, 0644);
MODULE_PARM_DESC(max_buffers,
"The maximum number of streaming I/O buffers an application "
"will be allowed to allocate. These buffers are big and live "
"in vmalloc space.");
static int flip;
module_param(flip, bool, 0444);
MODULE_PARM_DESC(flip,
"If set, the sensor will be instructed to flip the image "
"vertically.");
/*
* Status flags. Always manipulated with bit operations.
*/
#define CF_BUF0_VALID 0 /* Buffers valid - first three */
#define CF_BUF1_VALID 1
#define CF_BUF2_VALID 2
#define CF_DMA_ACTIVE 3 /* A frame is incoming */
#define CF_CONFIG_NEEDED 4 /* Must configure hardware */
#define sensor_call(cam, o, f, args...) \
v4l2_subdev_call(cam->sensor, o, f, ##args)
static struct mcam_format_struct {
__u8 *desc;
__u32 pixelformat;
int bpp; /* Bytes per pixel */
enum v4l2_mbus_pixelcode mbus_code;
} mcam_formats[] = {
{
.desc = "YUYV 4:2:2",
.pixelformat = V4L2_PIX_FMT_YUYV,
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
.bpp = 2,
},
{
.desc = "RGB 444",
.pixelformat = V4L2_PIX_FMT_RGB444,
.mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
.bpp = 2,
},
{
.desc = "RGB 565",
.pixelformat = V4L2_PIX_FMT_RGB565,
.mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
.bpp = 2,
},
{
.desc = "Raw RGB Bayer",
.pixelformat = V4L2_PIX_FMT_SBGGR8,
.mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
.bpp = 1
},
};
#define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
{
unsigned i;
for (i = 0; i < N_MCAM_FMTS; i++)
if (mcam_formats[i].pixelformat == pixelformat)
return mcam_formats + i;
/* Not found? Then return the first format. */
return mcam_formats;
}
/*
* Start over with DMA buffers - dev_lock needed.
*/
static void mcam_reset_buffers(struct mcam_camera *cam)
{
int i;
cam->next_buf = -1;
for (i = 0; i < cam->nbufs; i++)
clear_bit(i, &cam->flags);
cam->specframes = 0;
}
static inline int mcam_needs_config(struct mcam_camera *cam)
{
return test_bit(CF_CONFIG_NEEDED, &cam->flags);
}
static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
{
if (needed)
set_bit(CF_CONFIG_NEEDED, &cam->flags);
else
clear_bit(CF_CONFIG_NEEDED, &cam->flags);
}
/*
* Debugging and related.
*/
#define cam_err(cam, fmt, arg...) \
dev_err((cam)->dev, fmt, ##arg);
#define cam_warn(cam, fmt, arg...) \
dev_warn((cam)->dev, fmt, ##arg);
#define cam_dbg(cam, fmt, arg...) \
dev_dbg((cam)->dev, fmt, ##arg);
/* ------------------------------------------------------------------- */
/*
* Deal with the controller.
*/
/*
* Do everything we think we need to have the interface operating
* according to the desired format.
*/
static void mcam_ctlr_dma(struct mcam_camera *cam)
{
/*
* Store the first two Y buffers (we aren't supporting
* planar formats for now, so no UV bufs). Then either
* set the third if it exists, or tell the controller
* to just use two.
*/
mcam_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
mcam_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
if (cam->nbufs > 2) {
mcam_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
} else
mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
if (cam->chip_id == V4L2_IDENT_CAFE)
mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
}
static void mcam_ctlr_image(struct mcam_camera *cam)
{
int imgsz;
struct v4l2_pix_format *fmt = &cam->pix_format;
imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
(fmt->bytesperline & IMGSZ_H_MASK);
mcam_reg_write(cam, REG_IMGSIZE, imgsz);
mcam_reg_write(cam, REG_IMGOFFSET, 0);
/* YPITCH just drops the last two bits */
mcam_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
IMGP_YP_MASK);
/*
* Tell the controller about the image format we are using.
*/
switch (cam->pix_format.pixelformat) {
case V4L2_PIX_FMT_YUYV:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
C0_DF_MASK);
break;
case V4L2_PIX_FMT_RGB444:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
C0_DF_MASK);
/* Alpha value? */
break;
case V4L2_PIX_FMT_RGB565:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
C0_DF_MASK);
break;
default:
cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
break;
}
/*
* Make sure it knows we want to use hsync/vsync.
*/
mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
C0_SIFM_MASK);
}
/*
* Configure the controller for operation; caller holds the
* device mutex.
*/
static int mcam_ctlr_configure(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
mcam_ctlr_dma(cam);
mcam_ctlr_image(cam);
mcam_set_config_needed(cam, 0);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return 0;
}
static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
{
/*
* Clear any pending interrupts, since we do not
* expect to have I/O active prior to enabling.
*/
mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
}
static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
{
mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
}
/*
* Make the controller start grabbing images. Everything must
* be set up before doing this.
*/
static void mcam_ctlr_start(struct mcam_camera *cam)
{
/* set_bit performs a read, so no other barrier should be
needed here */
mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
}
static void mcam_ctlr_stop(struct mcam_camera *cam)
{
mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
}
static void mcam_ctlr_init(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
/*
* Make sure it's not powered down.
*/
mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
/*
* Turn off the enable bit. It sure should be off anyway,
* but it's good to be sure.
*/
mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
/*
* Clock the sensor appropriately. Controller clock should
* be 48MHz, sensor "typical" value is half that.
*/
mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Stop the controller, and don't return until we're really sure that no
* further DMA is going on.
*/
static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
{
unsigned long flags;
/*
* Theory: stop the camera controller (whether it is operating
* or not). Delay briefly just in case we race with the SOF
* interrupt, then wait until no DMA is active.
*/
spin_lock_irqsave(&cam->dev_lock, flags);
mcam_ctlr_stop(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
mdelay(1);
wait_event_timeout(cam->iowait,
!test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
if (test_bit(CF_DMA_ACTIVE, &cam->flags))
cam_err(cam, "Timeout waiting for DMA to end\n");
/* This would be bad news - what now? */
spin_lock_irqsave(&cam->dev_lock, flags);
cam->state = S_IDLE;
mcam_ctlr_irq_disable(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Power up and down.
*/
static void mcam_ctlr_power_up(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
cam->plat_power_up(cam);
mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
spin_unlock_irqrestore(&cam->dev_lock, flags);
msleep(5); /* Just to be sure */
}
static void mcam_ctlr_power_down(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
/*
* School of hard knocks department: be sure we do any register
* twiddling on the controller *before* calling the platform
* power down routine.
*/
mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
cam->plat_power_down(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/* -------------------------------------------------------------------- */
/*
* Communications with the sensor.
*/
static int __mcam_cam_reset(struct mcam_camera *cam)
{
return sensor_call(cam, core, reset, 0);
}
/*
* We have found the sensor on the i2c. Let's try to have a
* conversation.
*/
static int mcam_cam_init(struct mcam_camera *cam)
{
struct v4l2_dbg_chip_ident chip;
int ret;
mutex_lock(&cam->s_mutex);
if (cam->state != S_NOTREADY)
cam_warn(cam, "Cam init with device in funky state %d",
cam->state);
ret = __mcam_cam_reset(cam);
if (ret)
goto out;
chip.ident = V4L2_IDENT_NONE;
chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
chip.match.addr = cam->sensor_addr;
ret = sensor_call(cam, core, g_chip_ident, &chip);
if (ret)
goto out;
cam->sensor_type = chip.ident;
if (cam->sensor_type != V4L2_IDENT_OV7670) {
cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
ret = -EINVAL;
goto out;
}
/* Get/set parameters? */
ret = 0;
cam->state = S_IDLE;
out:
mcam_ctlr_power_down(cam);
mutex_unlock(&cam->s_mutex);
return ret;
}
/*
* Configure the sensor to match the parameters we have. Caller should
* hold s_mutex
*/
static int mcam_cam_set_flip(struct mcam_camera *cam)
{
struct v4l2_control ctrl;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_VFLIP;
ctrl.value = flip;
return sensor_call(cam, core, s_ctrl, &ctrl);
}
static int mcam_cam_configure(struct mcam_camera *cam)
{
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
ret = sensor_call(cam, core, init, 0);
if (ret == 0)
ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
/*
* OV7670 does weird things if flip is set *before* format...
*/
ret += mcam_cam_set_flip(cam);
return ret;
}
/* -------------------------------------------------------------------- */
/*
* DMA buffer management. These functions need s_mutex held.
*/
/* FIXME: this is inefficient as hell, since dma_alloc_coherent just
* does a get_free_pages() call, and we waste a good chunk of an orderN
* allocation. Should try to allocate the whole set in one chunk.
*/
static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
int i;
mcam_set_config_needed(cam, 1);
if (loadtime)
cam->dma_buf_size = dma_buf_size;
else
cam->dma_buf_size = cam->pix_format.sizeimage;
if (n_dma_bufs > 3)
n_dma_bufs = 3;
cam->nbufs = 0;
for (i = 0; i < n_dma_bufs; i++) {
cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
cam->dma_buf_size, cam->dma_handles + i,
GFP_KERNEL);
if (cam->dma_bufs[i] == NULL) {
cam_warn(cam, "Failed to allocate DMA buffer\n");
break;
}
/* For debug, remove eventually */
memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
(cam->nbufs)++;
}
switch (cam->nbufs) {
case 1:
dma_free_coherent(cam->dev, cam->dma_buf_size,
cam->dma_bufs[0], cam->dma_handles[0]);
cam->nbufs = 0;
case 0:
cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
return -ENOMEM;
case 2:
if (n_dma_bufs > 2)
cam_warn(cam, "Will limp along with only 2 buffers\n");
break;
}
return 0;
}
static void mcam_free_dma_bufs(struct mcam_camera *cam)
{
int i;
for (i = 0; i < cam->nbufs; i++) {
dma_free_coherent(cam->dev, cam->dma_buf_size,
cam->dma_bufs[i], cam->dma_handles[i]);
cam->dma_bufs[i] = NULL;
}
cam->nbufs = 0;
}
/* ----------------------------------------------------------------------- */
/*
* Here starts the V4L2 interface code.
*/
/*
* Read an image from the device.
*/
static ssize_t mcam_deliver_buffer(struct mcam_camera *cam,
char __user *buffer, size_t len, loff_t *pos)
{
int bufno;
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
if (cam->next_buf < 0) {
cam_err(cam, "deliver_buffer: No next buffer\n");
spin_unlock_irqrestore(&cam->dev_lock, flags);
return -EIO;
}
bufno = cam->next_buf;
clear_bit(bufno, &cam->flags);
if (++(cam->next_buf) >= cam->nbufs)
cam->next_buf = 0;
if (!test_bit(cam->next_buf, &cam->flags))
cam->next_buf = -1;
cam->specframes = 0;
spin_unlock_irqrestore(&cam->dev_lock, flags);
if (len > cam->pix_format.sizeimage)
len = cam->pix_format.sizeimage;
if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
return -EFAULT;
(*pos) += len;
return len;
}
/*
* Get everything ready, and start grabbing frames.
*/
static int mcam_read_setup(struct mcam_camera *cam, enum mcam_state state)
{
int ret;
unsigned long flags;
/*
* Configuration. If we still don't have DMA buffers,
* make one last, desperate attempt.
*/
if (cam->nbufs == 0)
if (mcam_alloc_dma_bufs(cam, 0))
return -ENOMEM;
if (mcam_needs_config(cam)) {
mcam_cam_configure(cam);
ret = mcam_ctlr_configure(cam);
if (ret)
return ret;
}
/*
* Turn it loose.
*/
spin_lock_irqsave(&cam->dev_lock, flags);
mcam_reset_buffers(cam);
mcam_ctlr_irq_enable(cam);
cam->state = state;
mcam_ctlr_start(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return 0;
}
static ssize_t mcam_v4l_read(struct file *filp,
char __user *buffer, size_t len, loff_t *pos)
{
struct mcam_camera *cam = filp->private_data;
int ret = 0;
/*
* Perhaps we're in speculative read mode and already
* have data?
*/
mutex_lock(&cam->s_mutex);
if (cam->state == S_SPECREAD) {
if (cam->next_buf >= 0) {
ret = mcam_deliver_buffer(cam, buffer, len, pos);
if (ret != 0)
goto out_unlock;
}
} else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
ret = -EIO;
goto out_unlock;
} else if (cam->state != S_IDLE) {
ret = -EBUSY;
goto out_unlock;
}
/*
* v4l2: multiple processes can open the device, but only
* one gets to grab data from it.
*/
if (cam->owner && cam->owner != filp) {
ret = -EBUSY;
goto out_unlock;
}
cam->owner = filp;
/*
* Do setup if need be.
*/
if (cam->state != S_SPECREAD) {
ret = mcam_read_setup(cam, S_SINGLEREAD);
if (ret)
goto out_unlock;
}
/*
* Wait for something to happen. This should probably
* be interruptible (FIXME).
*/
wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
if (cam->next_buf < 0) {
cam_err(cam, "read() operation timed out\n");
mcam_ctlr_stop_dma(cam);
ret = -EIO;
goto out_unlock;
}
/*
* Give them their data and we should be done.
*/
ret = mcam_deliver_buffer(cam, buffer, len, pos);
out_unlock:
mutex_unlock(&cam->s_mutex);
return ret;
}
/*
* Streaming I/O support.
*/
static int mcam_vidioc_streamon(struct file *filp, void *priv,
enum v4l2_buf_type type)
{
struct mcam_camera *cam = filp->private_data;
int ret = -EINVAL;
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out;
mutex_lock(&cam->s_mutex);
if (cam->state != S_IDLE || cam->n_sbufs == 0)
goto out_unlock;
cam->sequence = 0;
ret = mcam_read_setup(cam, S_STREAMING);
out_unlock:
mutex_unlock(&cam->s_mutex);
out:
return ret;
}
static int mcam_vidioc_streamoff(struct file *filp, void *priv,
enum v4l2_buf_type type)
{
struct mcam_camera *cam = filp->private_data;
int ret = -EINVAL;
if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
goto out;
mutex_lock(&cam->s_mutex);
if (cam->state != S_STREAMING)
goto out_unlock;
mcam_ctlr_stop_dma(cam);
ret = 0;
out_unlock:
mutex_unlock(&cam->s_mutex);
out:
return ret;
}
static int mcam_setup_siobuf(struct mcam_camera *cam, int index)
{
struct mcam_sio_buffer *buf = cam->sb_bufs + index;
INIT_LIST_HEAD(&buf->list);
buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
buf->buffer = vmalloc_user(buf->v4lbuf.length);
if (buf->buffer == NULL)
return -ENOMEM;
buf->mapcount = 0;
buf->cam = cam;
buf->v4lbuf.index = index;
buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf->v4lbuf.field = V4L2_FIELD_NONE;
buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
/*
* Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
* just uses the length times the index, but the spec warns
* against doing just that - vma merging problems. So we
* leave a gap between each pair of buffers.
*/
buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
return 0;
}
static int mcam_free_sio_buffers(struct mcam_camera *cam)
{
int i;
/*
* If any buffers are mapped, we cannot free them at all.
*/
for (i = 0; i < cam->n_sbufs; i++)
if (cam->sb_bufs[i].mapcount > 0)
return -EBUSY;
/*
* OK, let's do it.
*/
for (i = 0; i < cam->n_sbufs; i++)
vfree(cam->sb_bufs[i].buffer);
cam->n_sbufs = 0;
kfree(cam->sb_bufs);
cam->sb_bufs = NULL;
INIT_LIST_HEAD(&cam->sb_avail);
INIT_LIST_HEAD(&cam->sb_full);
return 0;
}
static int mcam_vidioc_reqbufs(struct file *filp, void *priv,
struct v4l2_requestbuffers *req)
{
struct mcam_camera *cam = filp->private_data;
int ret = 0; /* Silence warning */
/*
* Make sure it's something we can do. User pointers could be
* implemented without great pain, but that's not been done yet.
*/
if (req->memory != V4L2_MEMORY_MMAP)
return -EINVAL;
/*
* If they ask for zero buffers, they really want us to stop streaming
* (if it's happening) and free everything. Should we check owner?
*/
mutex_lock(&cam->s_mutex);
if (req->count == 0) {
if (cam->state == S_STREAMING)
mcam_ctlr_stop_dma(cam);
ret = mcam_free_sio_buffers(cam);
goto out;
}
/*
* Device needs to be idle and working. We *could* try to do the
* right thing in S_SPECREAD by shutting things down, but it
* probably doesn't matter.
*/
if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
ret = -EBUSY;
goto out;
}
cam->owner = filp;
if (req->count < min_buffers)
req->count = min_buffers;
else if (req->count > max_buffers)
req->count = max_buffers;
if (cam->n_sbufs > 0) {
ret = mcam_free_sio_buffers(cam);
if (ret)
goto out;
}
cam->sb_bufs = kzalloc(req->count*sizeof(struct mcam_sio_buffer),
GFP_KERNEL);
if (cam->sb_bufs == NULL) {
ret = -ENOMEM;
goto out;
}
for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
ret = mcam_setup_siobuf(cam, cam->n_sbufs);
if (ret)
break;
}
if (cam->n_sbufs == 0) /* no luck at all - ret already set */
kfree(cam->sb_bufs);
req->count = cam->n_sbufs; /* In case of partial success */
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_querybuf(struct file *filp, void *priv,
struct v4l2_buffer *buf)
{
struct mcam_camera *cam = filp->private_data;
int ret = -EINVAL;
mutex_lock(&cam->s_mutex);
if (buf->index >= cam->n_sbufs)
goto out;
*buf = cam->sb_bufs[buf->index].v4lbuf;
ret = 0;
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_qbuf(struct file *filp, void *priv,
struct v4l2_buffer *buf)
{
struct mcam_camera *cam = filp->private_data;
struct mcam_sio_buffer *sbuf;
int ret = -EINVAL;
unsigned long flags;
mutex_lock(&cam->s_mutex);
if (buf->index >= cam->n_sbufs)
goto out;
sbuf = cam->sb_bufs + buf->index;
if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
ret = 0; /* Already queued?? */
goto out;
}
if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
/* Spec doesn't say anything, seems appropriate tho */
ret = -EBUSY;
goto out;
}
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
spin_lock_irqsave(&cam->dev_lock, flags);
list_add(&sbuf->list, &cam->sb_avail);
spin_unlock_irqrestore(&cam->dev_lock, flags);
ret = 0;
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_dqbuf(struct file *filp, void *priv,
struct v4l2_buffer *buf)
{
struct mcam_camera *cam = filp->private_data;
struct mcam_sio_buffer *sbuf;
int ret = -EINVAL;
unsigned long flags;
mutex_lock(&cam->s_mutex);
if (cam->state != S_STREAMING)
goto out_unlock;
if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out_unlock;
}
while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
mutex_unlock(&cam->s_mutex);
if (wait_event_interruptible(cam->iowait,
!list_empty(&cam->sb_full))) {
ret = -ERESTARTSYS;
goto out;
}
mutex_lock(&cam->s_mutex);
}
if (cam->state != S_STREAMING)
ret = -EINTR;
else {
spin_lock_irqsave(&cam->dev_lock, flags);
/* Should probably recheck !list_empty() here */
sbuf = list_entry(cam->sb_full.next,
struct mcam_sio_buffer, list);
list_del_init(&sbuf->list);
spin_unlock_irqrestore(&cam->dev_lock, flags);
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
*buf = sbuf->v4lbuf;
ret = 0;
}
out_unlock:
mutex_unlock(&cam->s_mutex);
out:
return ret;
}
static void mcam_v4l_vm_open(struct vm_area_struct *vma)
{
struct mcam_sio_buffer *sbuf = vma->vm_private_data;
/*
* Locking: done under mmap_sem, so we don't need to
* go back to the camera lock here.
*/
sbuf->mapcount++;
}
static void mcam_v4l_vm_close(struct vm_area_struct *vma)
{
struct mcam_sio_buffer *sbuf = vma->vm_private_data;
mutex_lock(&sbuf->cam->s_mutex);
sbuf->mapcount--;
/* Docs say we should stop I/O too... */
if (sbuf->mapcount == 0)
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
mutex_unlock(&sbuf->cam->s_mutex);
}
static const struct vm_operations_struct mcam_v4l_vm_ops = {
.open = mcam_v4l_vm_open,
.close = mcam_v4l_vm_close
};
static int mcam_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct mcam_camera *cam = filp->private_data;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
int ret = -EINVAL;
int i;
struct mcam_sio_buffer *sbuf = NULL;
if (!(vma->vm_flags & VM_WRITE) || !(vma->vm_flags & VM_SHARED))
return -EINVAL;
/*
* Find the buffer they are looking for.
*/
mutex_lock(&cam->s_mutex);
for (i = 0; i < cam->n_sbufs; i++)
if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
sbuf = cam->sb_bufs + i;
break;
}
if (sbuf == NULL)
goto out;
ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
if (ret)
goto out;
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_private_data = sbuf;
vma->vm_ops = &mcam_v4l_vm_ops;
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
mcam_v4l_vm_open(vma);
ret = 0;
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_v4l_open(struct file *filp)
{
struct mcam_camera *cam = video_drvdata(filp);
filp->private_data = cam;
mutex_lock(&cam->s_mutex);
if (cam->users == 0) {
mcam_ctlr_power_up(cam);
__mcam_cam_reset(cam);
mcam_set_config_needed(cam, 1);
/* FIXME make sure this is complete */
}
(cam->users)++;
mutex_unlock(&cam->s_mutex);
return 0;
}
static int mcam_v4l_release(struct file *filp)
{
struct mcam_camera *cam = filp->private_data;
mutex_lock(&cam->s_mutex);
(cam->users)--;
if (filp == cam->owner) {
mcam_ctlr_stop_dma(cam);
mcam_free_sio_buffers(cam);
cam->owner = NULL;
}
if (cam->users == 0) {
mcam_ctlr_power_down(cam);
if (alloc_bufs_at_read)
mcam_free_dma_bufs(cam);
}
mutex_unlock(&cam->s_mutex);
return 0;
}
static unsigned int mcam_v4l_poll(struct file *filp,
struct poll_table_struct *pt)
{
struct mcam_camera *cam = filp->private_data;
poll_wait(filp, &cam->iowait, pt);
if (cam->next_buf >= 0)
return POLLIN | POLLRDNORM;
return 0;
}
static int mcam_vidioc_queryctrl(struct file *filp, void *priv,
struct v4l2_queryctrl *qc)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, core, queryctrl, qc);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_g_ctrl(struct file *filp, void *priv,
struct v4l2_control *ctrl)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, core, g_ctrl, ctrl);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_s_ctrl(struct file *filp, void *priv,
struct v4l2_control *ctrl)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, core, s_ctrl, ctrl);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strcpy(cap->driver, "marvell_ccic");
strcpy(cap->card, "marvell_ccic");
cap->version = 1;
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
return 0;
}
/*
* The default format we use until somebody says otherwise.
*/
static const struct v4l2_pix_format mcam_def_pix_format = {
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.pixelformat = V4L2_PIX_FMT_YUYV,
.field = V4L2_FIELD_NONE,
.bytesperline = VGA_WIDTH*2,
.sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
};
static const enum v4l2_mbus_pixelcode mcam_def_mbus_code =
V4L2_MBUS_FMT_YUYV8_2X8;
static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
void *priv, struct v4l2_fmtdesc *fmt)
{
if (fmt->index >= N_MCAM_FMTS)
return -EINVAL;
strlcpy(fmt->description, mcam_formats[fmt->index].desc,
sizeof(fmt->description));
fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
return 0;
}
static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
struct v4l2_format *fmt)
{
struct mcam_camera *cam = priv;
struct mcam_format_struct *f;
struct v4l2_pix_format *pix = &fmt->fmt.pix;
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
f = mcam_find_format(pix->pixelformat);
pix->pixelformat = f->pixelformat;
v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
mutex_unlock(&cam->s_mutex);
v4l2_fill_pix_format(pix, &mbus_fmt);
pix->bytesperline = pix->width * f->bpp;
pix->sizeimage = pix->height * pix->bytesperline;
return ret;
}
static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
struct v4l2_format *fmt)
{
struct mcam_camera *cam = priv;
struct mcam_format_struct *f;
int ret;
/*
* Can't do anything if the device is not idle
* Also can't if there are streaming buffers in place.
*/
if (cam->state != S_IDLE || cam->n_sbufs > 0)
return -EBUSY;
f = mcam_find_format(fmt->fmt.pix.pixelformat);
/*
* See if the formatting works in principle.
*/
ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
if (ret)
return ret;
/*
* Now we start to change things for real, so let's do it
* under lock.
*/
mutex_lock(&cam->s_mutex);
cam->pix_format = fmt->fmt.pix;
cam->mbus_code = f->mbus_code;
/*
* Make sure we have appropriate DMA buffers.
*/
ret = -ENOMEM;
if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
mcam_free_dma_bufs(cam);
if (cam->nbufs == 0) {
if (mcam_alloc_dma_bufs(cam, 0))
goto out;
}
/*
* It looks like this might work, so let's program the sensor.
*/
ret = mcam_cam_configure(cam);
if (!ret)
ret = mcam_ctlr_configure(cam);
out:
mutex_unlock(&cam->s_mutex);
return ret;
}
/*
* Return our stored notion of how the camera is/should be configured.
* The V4l2 spec wants us to be smarter, and actually get this from
* the camera (and not mess with it at open time). Someday.
*/
static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
struct v4l2_format *f)
{
struct mcam_camera *cam = priv;
f->fmt.pix = cam->pix_format;
return 0;
}
/*
* We only have one input - the sensor - so minimize the nonsense here.
*/
static int mcam_vidioc_enum_input(struct file *filp, void *priv,
struct v4l2_input *input)
{
if (input->index != 0)
return -EINVAL;
input->type = V4L2_INPUT_TYPE_CAMERA;
input->std = V4L2_STD_ALL; /* Not sure what should go here */
strcpy(input->name, "Camera");
return 0;
}
static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
{
if (i != 0)
return -EINVAL;
return 0;
}
/* from vivi.c */
static int mcam_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
{
return 0;
}
/*
* G/S_PARM. Most of this is done by the sensor, but we are
* the level which controls the number of read buffers.
*/
static int mcam_vidioc_g_parm(struct file *filp, void *priv,
struct v4l2_streamparm *parms)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, video, g_parm, parms);
mutex_unlock(&cam->s_mutex);
parms->parm.capture.readbuffers = n_dma_bufs;
return ret;
}
static int mcam_vidioc_s_parm(struct file *filp, void *priv,
struct v4l2_streamparm *parms)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, video, s_parm, parms);
mutex_unlock(&cam->s_mutex);
parms->parm.capture.readbuffers = n_dma_bufs;
return ret;
}
static int mcam_vidioc_g_chip_ident(struct file *file, void *priv,
struct v4l2_dbg_chip_ident *chip)
{
struct mcam_camera *cam = priv;
chip->ident = V4L2_IDENT_NONE;
chip->revision = 0;
if (v4l2_chip_match_host(&chip->match)) {
chip->ident = cam->chip_id;
return 0;
}
return sensor_call(cam, core, g_chip_ident, chip);
}
static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
struct v4l2_frmsizeenum *sizes)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, video, enum_framesizes, sizes);
mutex_unlock(&cam->s_mutex);
return ret;
}
static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
struct v4l2_frmivalenum *interval)
{
struct mcam_camera *cam = priv;
int ret;
mutex_lock(&cam->s_mutex);
ret = sensor_call(cam, video, enum_frameintervals, interval);
mutex_unlock(&cam->s_mutex);
return ret;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mcam_vidioc_g_register(struct file *file, void *priv,
struct v4l2_dbg_register *reg)
{
struct mcam_camera *cam = priv;
if (v4l2_chip_match_host(&reg->match)) {
reg->val = mcam_reg_read(cam, reg->reg);
reg->size = 4;
return 0;
}
return sensor_call(cam, core, g_register, reg);
}
static int mcam_vidioc_s_register(struct file *file, void *priv,
struct v4l2_dbg_register *reg)
{
struct mcam_camera *cam = priv;
if (v4l2_chip_match_host(&reg->match)) {
mcam_reg_write(cam, reg->reg, reg->val);
return 0;
}
return sensor_call(cam, core, s_register, reg);
}
#endif
/*
* This template device holds all of those v4l2 methods; we
* clone it for specific real devices.
*/
static const struct v4l2_file_operations mcam_v4l_fops = {
.owner = THIS_MODULE,
.open = mcam_v4l_open,
.release = mcam_v4l_release,
.read = mcam_v4l_read,
.poll = mcam_v4l_poll,
.mmap = mcam_v4l_mmap,
.unlocked_ioctl = video_ioctl2,
};
static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
.vidioc_querycap = mcam_vidioc_querycap,
.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = mcam_vidioc_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = mcam_vidioc_s_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = mcam_vidioc_g_fmt_vid_cap,
.vidioc_enum_input = mcam_vidioc_enum_input,
.vidioc_g_input = mcam_vidioc_g_input,
.vidioc_s_input = mcam_vidioc_s_input,
.vidioc_s_std = mcam_vidioc_s_std,
.vidioc_reqbufs = mcam_vidioc_reqbufs,
.vidioc_querybuf = mcam_vidioc_querybuf,
.vidioc_qbuf = mcam_vidioc_qbuf,
.vidioc_dqbuf = mcam_vidioc_dqbuf,
.vidioc_streamon = mcam_vidioc_streamon,
.vidioc_streamoff = mcam_vidioc_streamoff,
.vidioc_queryctrl = mcam_vidioc_queryctrl,
.vidioc_g_ctrl = mcam_vidioc_g_ctrl,
.vidioc_s_ctrl = mcam_vidioc_s_ctrl,
.vidioc_g_parm = mcam_vidioc_g_parm,
.vidioc_s_parm = mcam_vidioc_s_parm,
.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
.vidioc_g_chip_ident = mcam_vidioc_g_chip_ident,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.vidioc_g_register = mcam_vidioc_g_register,
.vidioc_s_register = mcam_vidioc_s_register,
#endif
};
static struct video_device mcam_v4l_template = {
.name = "mcam",
.tvnorms = V4L2_STD_NTSC_M,
.current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
.fops = &mcam_v4l_fops,
.ioctl_ops = &mcam_v4l_ioctl_ops,
.release = video_device_release_empty,
};
/* ---------------------------------------------------------------------- */
/*
* Interrupt handler stuff
*/
static void mcam_frame_tasklet(unsigned long data)
{
struct mcam_camera *cam = (struct mcam_camera *) data;
int i;
unsigned long flags;
struct mcam_sio_buffer *sbuf;
spin_lock_irqsave(&cam->dev_lock, flags);
for (i = 0; i < cam->nbufs; i++) {
int bufno = cam->next_buf;
if (bufno < 0) { /* "will never happen" */
cam_err(cam, "No valid bufs in tasklet!\n");
break;
}
if (++(cam->next_buf) >= cam->nbufs)
cam->next_buf = 0;
if (!test_bit(bufno, &cam->flags))
continue;
if (list_empty(&cam->sb_avail))
break; /* Leave it valid, hope for better later */
clear_bit(bufno, &cam->flags);
sbuf = list_entry(cam->sb_avail.next,
struct mcam_sio_buffer, list);
/*
* Drop the lock during the big copy. This *should* be safe...
*/
spin_unlock_irqrestore(&cam->dev_lock, flags);
memcpy(sbuf->buffer, cam->dma_bufs[bufno],
cam->pix_format.sizeimage);
sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
spin_lock_irqsave(&cam->dev_lock, flags);
list_move_tail(&sbuf->list, &cam->sb_full);
}
if (!list_empty(&cam->sb_full))
wake_up(&cam->iowait);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
static void mcam_frame_complete(struct mcam_camera *cam, int frame)
{
/*
* Basic frame housekeeping.
*/
if (test_bit(frame, &cam->flags) && printk_ratelimit())
cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
set_bit(frame, &cam->flags);
clear_bit(CF_DMA_ACTIVE, &cam->flags);
if (cam->next_buf < 0)
cam->next_buf = frame;
cam->buf_seq[frame] = ++(cam->sequence);
switch (cam->state) {
/*
* If in single read mode, try going speculative.
*/
case S_SINGLEREAD:
cam->state = S_SPECREAD;
cam->specframes = 0;
wake_up(&cam->iowait);
break;
/*
* If we are already doing speculative reads, and nobody is
* reading them, just stop.
*/
case S_SPECREAD:
if (++(cam->specframes) >= cam->nbufs) {
mcam_ctlr_stop(cam);
mcam_ctlr_irq_disable(cam);
cam->state = S_IDLE;
}
wake_up(&cam->iowait);
break;
/*
* For the streaming case, we defer the real work to the
* camera tasklet.
*
* FIXME: if the application is not consuming the buffers,
* we should eventually put things on hold and restart in
* vidioc_dqbuf().
*/
case S_STREAMING:
tasklet_schedule(&cam->s_tasklet);
break;
default:
cam_err(cam, "Frame interrupt in non-operational state\n");
break;
}
}
int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
{
unsigned int frame, handled = 0;
mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
/*
* Handle any frame completions. There really should
* not be more than one of these, or we have fallen
* far behind.
*/
for (frame = 0; frame < cam->nbufs; frame++)
if (irqs & (IRQ_EOF0 << frame)) {
mcam_frame_complete(cam, frame);
handled = 1;
}
/*
* If a frame starts, note that we have DMA active. This
* code assumes that we won't get multiple frame interrupts
* at once; may want to rethink that.
*/
if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2)) {
set_bit(CF_DMA_ACTIVE, &cam->flags);
handled = 1;
}
return handled;
}
/*
* Registration and such.
*/
static struct ov7670_config sensor_cfg = {
/*
* Exclude QCIF mode, because it only captures a tiny portion
* of the sensor FOV
*/
.min_width = 320,
.min_height = 240,
};
int mccic_register(struct mcam_camera *cam)
{
struct i2c_board_info ov7670_info = {
.type = "ov7670",
.addr = 0x42 >> 1,
.platform_data = &sensor_cfg,
};
int ret;
/*
* Register with V4L
*/
ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
if (ret)
return ret;
mutex_init(&cam->s_mutex);
cam->state = S_NOTREADY;
mcam_set_config_needed(cam, 1);
init_waitqueue_head(&cam->iowait);
cam->pix_format = mcam_def_pix_format;
cam->mbus_code = mcam_def_mbus_code;
INIT_LIST_HEAD(&cam->dev_list);
INIT_LIST_HEAD(&cam->sb_avail);
INIT_LIST_HEAD(&cam->sb_full);
tasklet_init(&cam->s_tasklet, mcam_frame_tasklet, (unsigned long) cam);
mcam_ctlr_init(cam);
/*
* Try to find the sensor.
*/
sensor_cfg.clock_speed = cam->clock_speed;
sensor_cfg.use_smbus = cam->use_smbus;
cam->sensor_addr = ov7670_info.addr;
cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
cam->i2c_adapter, &ov7670_info, NULL);
if (cam->sensor == NULL) {
ret = -ENODEV;
goto out_unregister;
}
ret = mcam_cam_init(cam);
if (ret)
goto out_unregister;
/*
* Get the v4l2 setup done.
*/
mutex_lock(&cam->s_mutex);
cam->vdev = mcam_v4l_template;
cam->vdev.debug = 0;
cam->vdev.v4l2_dev = &cam->v4l2_dev;
ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
if (ret)
goto out;
video_set_drvdata(&cam->vdev, cam);
/*
* If so requested, try to get our DMA buffers now.
*/
if (!alloc_bufs_at_read) {
if (mcam_alloc_dma_bufs(cam, 1))
cam_warn(cam, "Unable to alloc DMA buffers at load"
" will try again later.");
}
out:
mutex_unlock(&cam->s_mutex);
return ret;
out_unregister:
v4l2_device_unregister(&cam->v4l2_dev);
return ret;
}
void mccic_shutdown(struct mcam_camera *cam)
{
/*
* If we have no users (and we really, really should have no
* users) the device will already be powered down. Trying to
* take it down again will wedge the machine, which is frowned
* upon.
*/
if (cam->users > 0) {
cam_warn(cam, "Removing a device with users!\n");
mcam_ctlr_power_down(cam);
}
mcam_free_dma_bufs(cam);
if (cam->n_sbufs > 0)
/* What if they are still mapped? Shouldn't be, but... */
mcam_free_sio_buffers(cam);
video_unregister_device(&cam->vdev);
v4l2_device_unregister(&cam->v4l2_dev);
}
/*
* Power management
*/
#ifdef CONFIG_PM
void mccic_suspend(struct mcam_camera *cam)
{
enum mcam_state cstate = cam->state;
mcam_ctlr_stop_dma(cam);
mcam_ctlr_power_down(cam);
cam->state = cstate;
}
int mccic_resume(struct mcam_camera *cam)
{
int ret = 0;
mutex_lock(&cam->s_mutex);
if (cam->users > 0) {
mcam_ctlr_power_up(cam);
__mcam_cam_reset(cam);
} else {
mcam_ctlr_power_down(cam);
}
mutex_unlock(&cam->s_mutex);
set_bit(CF_CONFIG_NEEDED, &cam->flags);
if (cam->state == S_SPECREAD)
cam->state = S_IDLE; /* Don't bother restarting */
else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
ret = mcam_read_setup(cam, cam->state);
return ret;
}
#endif /* CONFIG_PM */