linux/drivers/net/sky2.c
Stephen Hemminger 22e1170310 [PATCH] sky2: optimize receive restart
When the driver handles multiple packets per NAPI poll, it is
better to reload the receive ring, then tell the hardware. Otherwise,
under packet storm with flow control, the driver/hardware will degrade
down to one packet getting through per pause-exchange.

Likewise on transmit, don't wakeup until a little more than minimum
ring space is available.

Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-07-12 18:39:22 -04:00

3540 lines
93 KiB
C

/*
* New driver for Marvell Yukon 2 chipset.
* Based on earlier sk98lin, and skge driver.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/crc32.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <linux/mii.h>
#include <asm/irq.h>
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define SKY2_VLAN_TAG_USED 1
#endif
#include "sky2.h"
#define DRV_NAME "sky2"
#define DRV_VERSION "1.4"
#define PFX DRV_NAME " "
/*
* The Yukon II chipset takes 64 bit command blocks (called list elements)
* that are organized into three (receive, transmit, status) different rings
* similar to Tigon3. A transmit can require several elements;
* a receive requires one (or two if using 64 bit dma).
*/
#define RX_LE_SIZE 512
#define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
#define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
#define RX_DEF_PENDING RX_MAX_PENDING
#define RX_SKB_ALIGN 8
#define RX_BUF_WRITE 16
#define TX_RING_SIZE 512
#define TX_DEF_PENDING (TX_RING_SIZE - 1)
#define TX_MIN_PENDING 64
#define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
#define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
#define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
#define ETH_JUMBO_MTU 9000
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define PHY_RETRIES 1000
#define RING_NEXT(x,s) (((x)+1) & ((s)-1))
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
| NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
| NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int copybreak __read_mostly = 256;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
static int idle_timeout = 100;
module_param(idle_timeout, int, 0);
MODULE_PARM_DESC(idle_timeout, "Idle timeout workaround for lost interrupts (ms)");
static const struct pci_device_id sky2_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, sky2_id_table);
/* Avoid conditionals by using array */
static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
/* This driver supports yukon2 chipset only */
static const char *yukon2_name[] = {
"XL", /* 0xb3 */
"EC Ultra", /* 0xb4 */
"UNKNOWN", /* 0xb5 */
"EC", /* 0xb6 */
"FE", /* 0xb7 */
};
/* Access to external PHY */
static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
return 0;
udelay(1);
}
printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
return -ETIMEDOUT;
}
static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
udelay(1);
}
return -ETIMEDOUT;
}
static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
{
u16 v;
if (__gm_phy_read(hw, port, reg, &v) != 0)
printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
return v;
}
static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
{
u16 power_control;
u32 reg1;
int vaux;
pr_debug("sky2_set_power_state %d\n", state);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
(power_control & PCI_PM_CAP_PME_D3cold);
power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
power_control |= PCI_PM_CTRL_PME_STATUS;
power_control &= ~(PCI_PM_CTRL_STATE_MASK);
switch (state) {
case PCI_D0:
/* switch power to VCC (WA for VAUX problem) */
sky2_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* disable Core Clock Division, */
sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
else
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
/* Turn off phy power saving */
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
/* looks like this XL is back asswards .. */
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) {
reg1 |= PCI_Y2_PHY1_COMA;
if (hw->ports > 1)
reg1 |= PCI_Y2_PHY2_COMA;
}
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
reg1 &= P_ASPM_CONTROL_MSK;
sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
sky2_pci_write32(hw, PCI_DEV_REG5, 0);
}
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
udelay(100);
break;
case PCI_D3hot:
case PCI_D3cold:
/* Turn on phy power saving */
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
else
reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
udelay(100);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
else
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
/* switch power to VAUX */
if (vaux && state != PCI_D3cold)
sky2_write8(hw, B0_POWER_CTRL,
(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_ON | PC_VCC_OFF));
break;
default:
printk(KERN_ERR PFX "Unknown power state %d\n", state);
}
sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
{
u16 reg;
/* disable all GMAC IRQ's */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
/* disable PHY IRQs */
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
gma_write16(hw, port, GM_RX_CTRL, reg);
}
static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv, pg, ledctrl, ledover;
if (sky2->autoneg == AUTONEG_ENABLE &&
!(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
if (hw->chip_id == CHIP_ID_YUKON_EC)
ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
else
ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
if (hw->copper) {
if (hw->chip_id == CHIP_ID_YUKON_FE) {
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
} else {
/* disable energy detect */
ctrl &= ~PHY_M_PC_EN_DET_MSK;
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
if (sky2->autoneg == AUTONEG_ENABLE &&
(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
ctrl &= ~PHY_M_PC_DSC_MSK;
ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
}
}
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
} else {
/* workaround for deviation #4.88 (CRC errors) */
/* disable Automatic Crossover */
ctrl &= ~PHY_M_PC_MDIX_MSK;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
if (hw->chip_id == CHIP_ID_YUKON_XL) {
/* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl &= ~PHY_M_MAC_MD_MSK;
ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* select page 1 to access Fiber registers */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
}
}
ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
if (sky2->autoneg == AUTONEG_DISABLE)
ctrl &= ~PHY_CT_ANE;
else
ctrl |= PHY_CT_ANE;
ctrl |= PHY_CT_RESET;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
ctrl = 0;
ct1000 = 0;
adv = PHY_AN_CSMA;
if (sky2->autoneg == AUTONEG_ENABLE) {
if (hw->copper) {
if (sky2->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (sky2->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (sky2->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (sky2->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (sky2->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
} else /* special defines for FIBER (88E1011S only) */
adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
/* Set Flow-control capabilities */
if (sky2->tx_pause && sky2->rx_pause)
adv |= PHY_AN_PAUSE_CAP; /* symmetric */
else if (sky2->rx_pause && !sky2->tx_pause)
adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
else if (!sky2->rx_pause && sky2->tx_pause)
adv |= PHY_AN_PAUSE_ASYM; /* local */
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
if (sky2->duplex == DUPLEX_FULL)
ctrl |= PHY_CT_DUP_MD;
switch (sky2->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
break;
}
ctrl |= PHY_CT_RESET;
}
if (hw->chip_id != CHIP_ID_YUKON_FE)
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Setup Phy LED's */
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
ledover = 0;
switch (hw->chip_id) {
case CHIP_ID_YUKON_FE:
/* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
/* delete ACT LED control bits */
ctrl &= ~PHY_M_FELP_LED1_MSK;
/* change ACT LED control to blink mode */
ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
break;
case CHIP_ID_YUKON_XL:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
/* set Polarity Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
(PHY_M_POLC_LS1_P_MIX(4) |
PHY_M_POLC_IS0_P_MIX(4) |
PHY_M_POLC_LOS_CTRL(2) |
PHY_M_POLC_INIT_CTRL(2) |
PHY_M_POLC_STA1_CTRL(2) |
PHY_M_POLC_STA0_CTRL(2)));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
case CHIP_ID_YUKON_EC_U:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
/* set Blink Rate in LED Timer Control Register */
gm_phy_write(hw, port, PHY_MARV_INT_MASK,
ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* turn off the Rx LED (LED_RX) */
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
/* apply fixes in PHY AFE */
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
/* increase differential signal amplitude in 10BASE-T */
gm_phy_write(hw, port, 0x18, 0xaa99);
gm_phy_write(hw, port, 0x17, 0x2011);
/* fix for IEEE A/B Symmetry failure in 1000BASE-T */
gm_phy_write(hw, port, 0x18, 0xa204);
gm_phy_write(hw, port, 0x17, 0x2002);
/* set page register to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */
ledover |= PHY_M_LED_MO_100(MO_LED_ON);
}
if (ledover)
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
}
/* Enable phy interrupt on auto-negotiation complete (or link up) */
if (sky2->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
}
/* Force a renegotiation */
static void sky2_phy_reinit(struct sky2_port *sky2)
{
spin_lock_bh(&sky2->phy_lock);
sky2_phy_init(sky2->hw, sky2->port);
spin_unlock_bh(&sky2->phy_lock);
}
static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 reg;
int i;
const u8 *addr = hw->dev[port]->dev_addr;
sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
/* WA DEV_472 -- looks like crossed wires on port 2 */
/* clear GMAC 1 Control reset */
sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
do {
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
} while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
}
if (sky2->autoneg == AUTONEG_DISABLE) {
reg = gma_read16(hw, port, GM_GP_CTRL);
reg |= GM_GPCR_AU_ALL_DIS;
gma_write16(hw, port, GM_GP_CTRL, reg);
gma_read16(hw, port, GM_GP_CTRL);
switch (sky2->speed) {
case SPEED_1000:
reg &= ~GM_GPCR_SPEED_100;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
reg &= ~GM_GPCR_SPEED_1000;
reg |= GM_GPCR_SPEED_100;
break;
case SPEED_10:
reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
break;
}
if (sky2->duplex == DUPLEX_FULL)
reg |= GM_GPCR_DUP_FULL;
/* turn off pause in 10/100mbps half duplex */
else if (sky2->speed != SPEED_1000 &&
hw->chip_id != CHIP_ID_YUKON_EC_U)
sky2->tx_pause = sky2->rx_pause = 0;
} else
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
if (!sky2->tx_pause && !sky2->rx_pause) {
sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
reg |=
GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
} else if (sky2->tx_pause && !sky2->rx_pause) {
/* disable Rx flow-control */
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
}
gma_write16(hw, port, GM_GP_CTRL, reg);
sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
spin_lock_bh(&sky2->phy_lock);
sky2_phy_init(hw, port);
spin_unlock_bh(&sky2->phy_lock);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
gma_read16(hw, port, i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
/* serial mode register */
reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (hw->dev[port]->mtu > ETH_DATA_LEN)
reg |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* ignore counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO */
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
GMF_OPER_ON | GMF_RX_F_FL_ON);
/* Flush Rx MAC FIFO on any flow control or error */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
/* Set threshold to 0xa (64 bytes)
* ASF disabled so no need to do WA dev #4.30
*/
sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
/* Configure Tx MAC FIFO */
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
if (hw->dev[port]->mtu > ETH_DATA_LEN) {
/* set Tx GMAC FIFO Almost Empty Threshold */
sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
/* Disable Store & Forward mode for TX */
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
}
}
}
/* Assign Ram Buffer allocation.
* start and end are in units of 4k bytes
* ram registers are in units of 64bit words
*/
static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
{
u32 start, end;
start = startk * 4096/8;
end = (endk * 4096/8) - 1;
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
sky2_write32(hw, RB_ADDR(q, RB_START), start);
sky2_write32(hw, RB_ADDR(q, RB_END), end);
sky2_write32(hw, RB_ADDR(q, RB_WP), start);
sky2_write32(hw, RB_ADDR(q, RB_RP), start);
if (q == Q_R1 || q == Q_R2) {
u32 space = (endk - startk) * 4096/8;
u32 tp = space - space/4;
/* On receive queue's set the thresholds
* give receiver priority when > 3/4 full
* send pause when down to 2K
*/
sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
tp = space - 2048/8;
sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 1K on Yukon
*/
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
sky2_read8(hw, RB_ADDR(q, RB_CTRL));
}
/* Setup Bus Memory Interface */
static void sky2_qset(struct sky2_hw *hw, u16 q)
{
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
}
/* Setup prefetch unit registers. This is the interface between
* hardware and driver list elements
*/
static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
u64 addr, u32 last)
{
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
}
static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
{
struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
return le;
}
/* Update chip's next pointer */
static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
{
wmb();
sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
mmiowb();
}
static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
{
struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
return le;
}
/* Return high part of DMA address (could be 32 or 64 bit) */
static inline u32 high32(dma_addr_t a)
{
return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
}
/* Build description to hardware about buffer */
static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map)
{
struct sky2_rx_le *le;
u32 hi = high32(map);
u16 len = sky2->rx_bufsize;
if (sky2->rx_addr64 != hi) {
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32(hi);
le->ctrl = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->rx_addr64 = high32(map + len);
}
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32((u32) map);
le->length = cpu_to_le16(len);
le->ctrl = 0;
le->opcode = OP_PACKET | HW_OWNER;
}
/* Tell chip where to start receive checksum.
* Actually has two checksums, but set both same to avoid possible byte
* order problems.
*/
static void rx_set_checksum(struct sky2_port *sky2)
{
struct sky2_rx_le *le;
le = sky2_next_rx(sky2);
le->addr = (ETH_HLEN << 16) | ETH_HLEN;
le->ctrl = 0;
le->opcode = OP_TCPSTART | HW_OWNER;
sky2_write32(sky2->hw,
Q_ADDR(rxqaddr[sky2->port], Q_CSR),
sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
}
/*
* The RX Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not doing a DMA
* transfer. Since it is possible that the RX path is still active,
* the RX RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
static void sky2_rx_stop(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned rxq = rxqaddr[sky2->port];
int i;
/* disable the RAM Buffer receive queue */
sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < 0xffff; i++)
if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
== sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
goto stopped;
printk(KERN_WARNING PFX "%s: receiver stop failed\n",
sky2->netdev->name);
stopped:
sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
/* reset the Rx prefetch unit */
sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
}
/* Clean out receive buffer area, assumes receiver hardware stopped */
static void sky2_rx_clean(struct sky2_port *sky2)
{
unsigned i;
memset(sky2->rx_le, 0, RX_LE_BYTES);
for (i = 0; i < sky2->rx_pending; i++) {
struct ring_info *re = sky2->rx_ring + i;
if (re->skb) {
pci_unmap_single(sky2->hw->pdev,
re->mapaddr, sky2->rx_bufsize,
PCI_DMA_FROMDEVICE);
kfree_skb(re->skb);
re->skb = NULL;
}
}
}
/* Basic MII support */
static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = PHY_ADDR_MARV;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
spin_lock_bh(&sky2->phy_lock);
err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
spin_unlock_bh(&sky2->phy_lock);
data->val_out = val;
break;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_bh(&sky2->phy_lock);
err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
data->val_in);
spin_unlock_bh(&sky2->phy_lock);
break;
}
return err;
}
#ifdef SKY2_VLAN_TAG_USED
static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 port = sky2->port;
spin_lock_bh(&sky2->tx_lock);
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
sky2->vlgrp = grp;
spin_unlock_bh(&sky2->tx_lock);
}
static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 port = sky2->port;
spin_lock_bh(&sky2->tx_lock);
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
if (sky2->vlgrp)
sky2->vlgrp->vlan_devices[vid] = NULL;
spin_unlock_bh(&sky2->tx_lock);
}
#endif
/*
* It appears the hardware has a bug in the FIFO logic that
* cause it to hang if the FIFO gets overrun and the receive buffer
* is not aligned. ALso alloc_skb() won't align properly if slab
* debugging is enabled.
*/
static inline struct sk_buff *sky2_alloc_skb(unsigned int size, gfp_t gfp_mask)
{
struct sk_buff *skb;
skb = alloc_skb(size + RX_SKB_ALIGN, gfp_mask);
if (likely(skb)) {
unsigned long p = (unsigned long) skb->data;
skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
}
return skb;
}
/*
* Allocate and setup receiver buffer pool.
* In case of 64 bit dma, there are 2X as many list elements
* available as ring entries
* and need to reserve one list element so we don't wrap around.
*/
static int sky2_rx_start(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned rxq = rxqaddr[sky2->port];
int i;
unsigned thresh;
sky2->rx_put = sky2->rx_next = 0;
sky2_qset(hw, rxq);
if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
/* MAC Rx RAM Read is controlled by hardware */
sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
}
sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
rx_set_checksum(sky2);
for (i = 0; i < sky2->rx_pending; i++) {
struct ring_info *re = sky2->rx_ring + i;
re->skb = sky2_alloc_skb(sky2->rx_bufsize, GFP_KERNEL);
if (!re->skb)
goto nomem;
re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
sky2_rx_add(sky2, re->mapaddr);
}
/*
* The receiver hangs if it receives frames larger than the
* packet buffer. As a workaround, truncate oversize frames, but
* the register is limited to 9 bits, so if you do frames > 2052
* you better get the MTU right!
*/
thresh = (sky2->rx_bufsize - 8) / sizeof(u32);
if (thresh > 0x1ff)
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
else {
sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
}
/* Tell chip about available buffers */
sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
return 0;
nomem:
sky2_rx_clean(sky2);
return -ENOMEM;
}
/* Bring up network interface. */
static int sky2_up(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u32 ramsize, rxspace, imask;
int cap, err = -ENOMEM;
struct net_device *otherdev = hw->dev[sky2->port^1];
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions
*/
if (otherdev && netif_running(otherdev) &&
(cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
struct sky2_port *osky2 = netdev_priv(otherdev);
u16 cmd;
cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
cmd &= ~PCI_X_CMD_MAX_SPLIT;
sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
sky2->rx_csum = 0;
osky2->rx_csum = 0;
}
if (netif_msg_ifup(sky2))
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
/* must be power of 2 */
sky2->tx_le = pci_alloc_consistent(hw->pdev,
TX_RING_SIZE *
sizeof(struct sky2_tx_le),
&sky2->tx_le_map);
if (!sky2->tx_le)
goto err_out;
sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
GFP_KERNEL);
if (!sky2->tx_ring)
goto err_out;
sky2->tx_prod = sky2->tx_cons = 0;
sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
&sky2->rx_le_map);
if (!sky2->rx_le)
goto err_out;
memset(sky2->rx_le, 0, RX_LE_BYTES);
sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info),
GFP_KERNEL);
if (!sky2->rx_ring)
goto err_out;
sky2_mac_init(hw, port);
/* Determine available ram buffer space (in 4K blocks).
* Note: not sure about the FE setting below yet
*/
if (hw->chip_id == CHIP_ID_YUKON_FE)
ramsize = 4;
else
ramsize = sky2_read8(hw, B2_E_0);
/* Give transmitter one third (rounded up) */
rxspace = ramsize - (ramsize + 2) / 3;
sky2_ramset(hw, rxqaddr[port], 0, rxspace);
sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
/* Make sure SyncQ is disabled */
sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
RB_RST_SET);
sky2_qset(hw, txqaddr[port]);
/* Set almost empty threshold */
if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == 1)
sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
TX_RING_SIZE - 1);
err = sky2_rx_start(sky2);
if (err)
goto err_out;
/* Enable interrupts from phy/mac for port */
imask = sky2_read32(hw, B0_IMSK);
imask |= portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
return 0;
err_out:
if (sky2->rx_le) {
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
sky2->rx_le = NULL;
}
if (sky2->tx_le) {
pci_free_consistent(hw->pdev,
TX_RING_SIZE * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
sky2->tx_le = NULL;
}
kfree(sky2->tx_ring);
kfree(sky2->rx_ring);
sky2->tx_ring = NULL;
sky2->rx_ring = NULL;
return err;
}
/* Modular subtraction in ring */
static inline int tx_dist(unsigned tail, unsigned head)
{
return (head - tail) & (TX_RING_SIZE - 1);
}
/* Number of list elements available for next tx */
static inline int tx_avail(const struct sky2_port *sky2)
{
return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
}
/* Estimate of number of transmit list elements required */
static unsigned tx_le_req(const struct sk_buff *skb)
{
unsigned count;
count = sizeof(dma_addr_t) / sizeof(u32);
count += skb_shinfo(skb)->nr_frags * count;
if (skb_is_gso(skb))
++count;
if (skb->ip_summed == CHECKSUM_HW)
++count;
return count;
}
/*
* Put one packet in ring for transmit.
* A single packet can generate multiple list elements, and
* the number of ring elements will probably be less than the number
* of list elements used.
*
* No BH disabling for tx_lock here (like tg3)
*/
static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
struct sky2_tx_le *le = NULL;
struct tx_ring_info *re;
unsigned i, len;
int avail;
dma_addr_t mapping;
u32 addr64;
u16 mss;
u8 ctrl;
/* No BH disabling for tx_lock here. We are running in BH disabled
* context and TX reclaim runs via poll inside of a software
* interrupt, and no related locks in IRQ processing.
*/
if (!spin_trylock(&sky2->tx_lock))
return NETDEV_TX_LOCKED;
if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
/* There is a known but harmless race with lockless tx
* and netif_stop_queue.
*/
if (!netif_queue_stopped(dev)) {
netif_stop_queue(dev);
if (net_ratelimit())
printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
dev->name);
}
spin_unlock(&sky2->tx_lock);
return NETDEV_TX_BUSY;
}
if (unlikely(netif_msg_tx_queued(sky2)))
printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
dev->name, sky2->tx_prod, skb->len);
len = skb_headlen(skb);
mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
addr64 = high32(mapping);
re = sky2->tx_ring + sky2->tx_prod;
/* Send high bits if changed or crosses boundary */
if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
le = get_tx_le(sky2);
le->tx.addr = cpu_to_le32(addr64);
le->ctrl = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->tx_addr64 = high32(mapping + len);
}
/* Check for TCP Segmentation Offload */
mss = skb_shinfo(skb)->gso_size;
if (mss != 0) {
/* just drop the packet if non-linear expansion fails */
if (skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
goto out_unlock;
}
mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
mss += ETH_HLEN;
}
if (mss != sky2->tx_last_mss) {
le = get_tx_le(sky2);
le->tx.tso.size = cpu_to_le16(mss);
le->tx.tso.rsvd = 0;
le->opcode = OP_LRGLEN | HW_OWNER;
le->ctrl = 0;
sky2->tx_last_mss = mss;
}
ctrl = 0;
#ifdef SKY2_VLAN_TAG_USED
/* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
if (!le) {
le = get_tx_le(sky2);
le->tx.addr = 0;
le->opcode = OP_VLAN|HW_OWNER;
le->ctrl = 0;
} else
le->opcode |= OP_VLAN;
le->length = cpu_to_be16(vlan_tx_tag_get(skb));
ctrl |= INS_VLAN;
}
#endif
/* Handle TCP checksum offload */
if (skb->ip_summed == CHECKSUM_HW) {
u16 hdr = skb->h.raw - skb->data;
u16 offset = hdr + skb->csum;
ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
if (skb->nh.iph->protocol == IPPROTO_UDP)
ctrl |= UDPTCP;
le = get_tx_le(sky2);
le->tx.csum.start = cpu_to_le16(hdr);
le->tx.csum.offset = cpu_to_le16(offset);
le->length = 0; /* initial checksum value */
le->ctrl = 1; /* one packet */
le->opcode = OP_TCPLISW | HW_OWNER;
}
le = get_tx_le(sky2);
le->tx.addr = cpu_to_le32((u32) mapping);
le->length = cpu_to_le16(len);
le->ctrl = ctrl;
le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
/* Record the transmit mapping info */
re->skb = skb;
pci_unmap_addr_set(re, mapaddr, mapping);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
struct tx_ring_info *fre;
mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
addr64 = high32(mapping);
if (addr64 != sky2->tx_addr64) {
le = get_tx_le(sky2);
le->tx.addr = cpu_to_le32(addr64);
le->ctrl = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->tx_addr64 = addr64;
}
le = get_tx_le(sky2);
le->tx.addr = cpu_to_le32((u32) mapping);
le->length = cpu_to_le16(frag->size);
le->ctrl = ctrl;
le->opcode = OP_BUFFER | HW_OWNER;
fre = sky2->tx_ring
+ RING_NEXT((re - sky2->tx_ring) + i, TX_RING_SIZE);
pci_unmap_addr_set(fre, mapaddr, mapping);
}
re->idx = sky2->tx_prod;
le->ctrl |= EOP;
avail = tx_avail(sky2);
if (mss != 0 || avail < TX_MIN_PENDING) {
le->ctrl |= FRC_STAT;
if (avail <= MAX_SKB_TX_LE)
netif_stop_queue(dev);
}
sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
out_unlock:
spin_unlock(&sky2->tx_lock);
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
/*
* Free ring elements from starting at tx_cons until "done"
*
* NB: the hardware will tell us about partial completion of multi-part
* buffers; these are deferred until completion.
*/
static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
{
struct net_device *dev = sky2->netdev;
struct pci_dev *pdev = sky2->hw->pdev;
u16 nxt, put;
unsigned i;
BUG_ON(done >= TX_RING_SIZE);
if (unlikely(netif_msg_tx_done(sky2)))
printk(KERN_DEBUG "%s: tx done, up to %u\n",
dev->name, done);
for (put = sky2->tx_cons; put != done; put = nxt) {
struct tx_ring_info *re = sky2->tx_ring + put;
struct sk_buff *skb = re->skb;
nxt = re->idx;
BUG_ON(nxt >= TX_RING_SIZE);
prefetch(sky2->tx_ring + nxt);
/* Check for partial status */
if (tx_dist(put, done) < tx_dist(put, nxt))
break;
skb = re->skb;
pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr),
skb_headlen(skb), PCI_DMA_TODEVICE);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
struct tx_ring_info *fre;
fre = sky2->tx_ring + RING_NEXT(put + i, TX_RING_SIZE);
pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr),
skb_shinfo(skb)->frags[i].size,
PCI_DMA_TODEVICE);
}
dev_kfree_skb(skb);
}
sky2->tx_cons = put;
if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
netif_wake_queue(dev);
}
/* Cleanup all untransmitted buffers, assume transmitter not running */
static void sky2_tx_clean(struct sky2_port *sky2)
{
spin_lock_bh(&sky2->tx_lock);
sky2_tx_complete(sky2, sky2->tx_prod);
spin_unlock_bh(&sky2->tx_lock);
}
/* Network shutdown */
static int sky2_down(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ctrl;
u32 imask;
/* Never really got started! */
if (!sky2->tx_le)
return 0;
if (netif_msg_ifdown(sky2))
printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
/* Stop more packets from being queued */
netif_stop_queue(dev);
sky2_phy_reset(hw, port);
/* Stop transmitter */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET | RB_DIS_OP_MD);
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
/* Workaround shared GMAC reset */
if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
&& port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* Disable Force Sync bit and Enable Alloc bit */
sky2_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset the PCI FIFO of the async Tx queue */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units */
sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
PREF_UNIT_RST_SET);
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
sky2_rx_stop(sky2);
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
/* Disable port IRQ */
imask = sky2_read32(hw, B0_IMSK);
imask &= ~portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
/* turn off LED's */
sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
synchronize_irq(hw->pdev->irq);
sky2_tx_clean(sky2);
sky2_rx_clean(sky2);
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
kfree(sky2->rx_ring);
pci_free_consistent(hw->pdev,
TX_RING_SIZE * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
kfree(sky2->tx_ring);
sky2->tx_le = NULL;
sky2->rx_le = NULL;
sky2->rx_ring = NULL;
sky2->tx_ring = NULL;
return 0;
}
static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
{
if (!hw->copper)
return SPEED_1000;
if (hw->chip_id == CHIP_ID_YUKON_FE)
return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void sky2_link_up(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
/* Enable Transmit FIFO Underrun */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
reg = gma_read16(hw, port, GM_GP_CTRL);
if (sky2->autoneg == AUTONEG_DISABLE) {
reg |= GM_GPCR_AU_ALL_DIS;
/* Is write/read necessary? Copied from sky2_mac_init */
gma_write16(hw, port, GM_GP_CTRL, reg);
gma_read16(hw, port, GM_GP_CTRL);
switch (sky2->speed) {
case SPEED_1000:
reg &= ~GM_GPCR_SPEED_100;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
reg &= ~GM_GPCR_SPEED_1000;
reg |= GM_GPCR_SPEED_100;
break;
case SPEED_10:
reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
break;
}
} else
reg &= ~GM_GPCR_AU_ALL_DIS;
if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE)
reg |= GM_GPCR_DUP_FULL;
/* enable Rx/Tx */
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gma_read16(hw, port, GM_GP_CTRL);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
netif_carrier_on(sky2->netdev);
netif_wake_queue(sky2->netdev);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG),
LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
switch(sky2->speed) {
case SPEED_10:
led |= PHY_M_LEDC_INIT_CTRL(7);
break;
case SPEED_100:
led |= PHY_M_LEDC_STA1_CTRL(7);
break;
case SPEED_1000:
led |= PHY_M_LEDC_STA0_CTRL(7);
break;
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
}
if (netif_msg_link(sky2))
printk(KERN_INFO PFX
"%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
sky2->netdev->name, sky2->speed,
sky2->duplex == DUPLEX_FULL ? "full" : "half",
(sky2->tx_pause && sky2->rx_pause) ? "both" :
sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
}
static void sky2_link_down(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
reg = gma_read16(hw, port, GM_GP_CTRL);
reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, reg);
gma_read16(hw, port, GM_GP_CTRL); /* PCI post */
if (sky2->rx_pause && !sky2->tx_pause) {
/* restore Asymmetric Pause bit */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
| PHY_M_AN_ASP);
}
netif_carrier_off(sky2->netdev);
netif_stop_queue(sky2->netdev);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
if (netif_msg_link(sky2))
printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
sky2_phy_init(hw, port);
}
static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 lpa;
lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
if (lpa & PHY_M_AN_RF) {
printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
return -1;
}
if (hw->chip_id != CHIP_ID_YUKON_FE &&
gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
printk(KERN_ERR PFX "%s: master/slave fault",
sky2->netdev->name);
return -1;
}
if (!(aux & PHY_M_PS_SPDUP_RES)) {
printk(KERN_ERR PFX "%s: speed/duplex mismatch",
sky2->netdev->name);
return -1;
}
sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
sky2->speed = sky2_phy_speed(hw, aux);
/* Pause bits are offset (9..8) */
if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
aux >>= 6;
sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
if ((sky2->tx_pause || sky2->rx_pause)
&& !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF))
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
return 0;
}
/* Interrupt from PHY */
static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u16 istatus, phystat;
spin_lock(&sky2->phy_lock);
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
if (!netif_running(dev))
goto out;
if (netif_msg_intr(sky2))
printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
sky2->netdev->name, istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) {
if (sky2_autoneg_done(sky2, phystat) == 0)
sky2_link_up(sky2);
goto out;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
sky2->speed = sky2_phy_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
sky2->duplex =
(phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
sky2_link_up(sky2);
else
sky2_link_down(sky2);
}
out:
spin_unlock(&sky2->phy_lock);
}
/* Transmit timeout is only called if we are running, carries is up
* and tx queue is full (stopped).
*/
static void sky2_tx_timeout(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned txq = txqaddr[sky2->port];
u16 report, done;
if (netif_msg_timer(sky2))
printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
dev->name,
sky2->tx_cons, sky2->tx_prod, report, done);
if (report != done) {
printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
} else if (report != sky2->tx_cons) {
printk(KERN_INFO PFX "status report lost?\n");
spin_lock_bh(&sky2->tx_lock);
sky2_tx_complete(sky2, report);
spin_unlock_bh(&sky2->tx_lock);
} else {
printk(KERN_INFO PFX "hardware hung? flushing\n");
sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
sky2_tx_clean(sky2);
sky2_qset(hw, txq);
sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
}
}
/* Want receive buffer size to be multiple of 64 bits
* and incl room for vlan and truncation
*/
static inline unsigned sky2_buf_size(int mtu)
{
return ALIGN(mtu + ETH_HLEN + VLAN_HLEN, 8) + 8;
}
static int sky2_change_mtu(struct net_device *dev, int new_mtu)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int err;
u16 ctl, mode;
u32 imask;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
imask = sky2_read32(hw, B0_IMSK);
sky2_write32(hw, B0_IMSK, 0);
dev->trans_start = jiffies; /* prevent tx timeout */
netif_stop_queue(dev);
netif_poll_disable(hw->dev[0]);
synchronize_irq(hw->pdev->irq);
ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
sky2_rx_stop(sky2);
sky2_rx_clean(sky2);
dev->mtu = new_mtu;
sky2->rx_bufsize = sky2_buf_size(new_mtu);
mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (dev->mtu > ETH_DATA_LEN)
mode |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
err = sky2_rx_start(sky2);
sky2_write32(hw, B0_IMSK, imask);
if (err)
dev_close(dev);
else {
gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
netif_poll_enable(hw->dev[0]);
netif_wake_queue(dev);
}
return err;
}
/*
* Receive one packet.
* For small packets or errors, just reuse existing skb.
* For larger packets, get new buffer.
*/
static struct sk_buff *sky2_receive(struct sky2_port *sky2,
u16 length, u32 status)
{
struct ring_info *re = sky2->rx_ring + sky2->rx_next;
struct sk_buff *skb = NULL;
if (unlikely(netif_msg_rx_status(sky2)))
printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
sky2->netdev->name, sky2->rx_next, status, length);
sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
prefetch(sky2->rx_ring + sky2->rx_next);
if (status & GMR_FS_ANY_ERR)
goto error;
if (!(status & GMR_FS_RX_OK))
goto resubmit;
if (length > sky2->netdev->mtu + ETH_HLEN)
goto oversize;
if (length < copybreak) {
skb = alloc_skb(length + 2, GFP_ATOMIC);
if (!skb)
goto resubmit;
skb_reserve(skb, 2);
pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
length, PCI_DMA_FROMDEVICE);
memcpy(skb->data, re->skb->data, length);
skb->ip_summed = re->skb->ip_summed;
skb->csum = re->skb->csum;
pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
length, PCI_DMA_FROMDEVICE);
} else {
struct sk_buff *nskb;
nskb = sky2_alloc_skb(sky2->rx_bufsize, GFP_ATOMIC);
if (!nskb)
goto resubmit;
skb = re->skb;
re->skb = nskb;
pci_unmap_single(sky2->hw->pdev, re->mapaddr,
sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
prefetch(skb->data);
re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
}
skb_put(skb, length);
resubmit:
re->skb->ip_summed = CHECKSUM_NONE;
sky2_rx_add(sky2, re->mapaddr);
return skb;
oversize:
++sky2->net_stats.rx_over_errors;
goto resubmit;
error:
++sky2->net_stats.rx_errors;
if (netif_msg_rx_err(sky2) && net_ratelimit())
printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
sky2->netdev->name, status, length);
if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
sky2->net_stats.rx_length_errors++;
if (status & GMR_FS_FRAGMENT)
sky2->net_stats.rx_frame_errors++;
if (status & GMR_FS_CRC_ERR)
sky2->net_stats.rx_crc_errors++;
if (status & GMR_FS_RX_FF_OV)
sky2->net_stats.rx_fifo_errors++;
goto resubmit;
}
/* Transmit complete */
static inline void sky2_tx_done(struct net_device *dev, u16 last)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (netif_running(dev)) {
spin_lock(&sky2->tx_lock);
sky2_tx_complete(sky2, last);
spin_unlock(&sky2->tx_lock);
}
}
/* Is status ring empty or is there more to do? */
static inline int sky2_more_work(const struct sky2_hw *hw)
{
return (hw->st_idx != sky2_read16(hw, STAT_PUT_IDX));
}
/* Process status response ring */
static int sky2_status_intr(struct sky2_hw *hw, int to_do)
{
struct sky2_port *sky2;
int work_done = 0;
unsigned buf_write[2] = { 0, 0 };
u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
rmb();
while (hw->st_idx != hwidx) {
struct sky2_status_le *le = hw->st_le + hw->st_idx;
struct net_device *dev;
struct sk_buff *skb;
u32 status;
u16 length;
hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
BUG_ON(le->link >= 2);
dev = hw->dev[le->link];
sky2 = netdev_priv(dev);
length = le->length;
status = le->status;
switch (le->opcode & ~HW_OWNER) {
case OP_RXSTAT:
skb = sky2_receive(sky2, length, status);
if (!skb)
break;
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
dev->last_rx = jiffies;
#ifdef SKY2_VLAN_TAG_USED
if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
vlan_hwaccel_receive_skb(skb,
sky2->vlgrp,
be16_to_cpu(sky2->rx_tag));
} else
#endif
netif_receive_skb(skb);
/* Update receiver after 16 frames */
if (++buf_write[le->link] == RX_BUF_WRITE) {
sky2_put_idx(hw, rxqaddr[le->link],
sky2->rx_put);
buf_write[le->link] = 0;
}
/* Stop after net poll weight */
if (++work_done >= to_do)
goto exit_loop;
break;
#ifdef SKY2_VLAN_TAG_USED
case OP_RXVLAN:
sky2->rx_tag = length;
break;
case OP_RXCHKSVLAN:
sky2->rx_tag = length;
/* fall through */
#endif
case OP_RXCHKS:
skb = sky2->rx_ring[sky2->rx_next].skb;
skb->ip_summed = CHECKSUM_HW;
skb->csum = le16_to_cpu(status);
break;
case OP_TXINDEXLE:
/* TX index reports status for both ports */
BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
sky2_tx_done(hw->dev[0], status & 0xfff);
if (hw->dev[1])
sky2_tx_done(hw->dev[1],
((status >> 24) & 0xff)
| (u16)(length & 0xf) << 8);
break;
default:
if (net_ratelimit())
printk(KERN_WARNING PFX
"unknown status opcode 0x%x\n", le->opcode);
goto exit_loop;
}
}
exit_loop:
if (buf_write[0]) {
sky2 = netdev_priv(hw->dev[0]);
sky2_put_idx(hw, Q_R1, sky2->rx_put);
}
if (buf_write[1]) {
sky2 = netdev_priv(hw->dev[1]);
sky2_put_idx(hw, Q_R2, sky2->rx_put);
}
return work_done;
}
static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
{
struct net_device *dev = hw->dev[port];
if (net_ratelimit())
printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
dev->name, status);
if (status & Y2_IS_PAR_RD1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: ram data read parity error\n",
dev->name);
/* Clear IRQ */
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
}
if (status & Y2_IS_PAR_WR1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: ram data write parity error\n",
dev->name);
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
}
if (status & Y2_IS_PAR_MAC1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
}
if (status & Y2_IS_PAR_RX1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
}
if (status & Y2_IS_TCP_TXA1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: TCP segmentation error\n",
dev->name);
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void sky2_hw_intr(struct sky2_hw *hw)
{
u32 status = sky2_read32(hw, B0_HWE_ISRC);
if (status & Y2_IS_TIST_OV)
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
u16 pci_err;
pci_err = sky2_pci_read16(hw, PCI_STATUS);
if (net_ratelimit())
printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
pci_name(hw->pdev), pci_err);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write16(hw, PCI_STATUS,
pci_err | PCI_STATUS_ERROR_BITS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if (status & Y2_IS_PCI_EXP) {
/* PCI-Express uncorrectable Error occurred */
u32 pex_err;
pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
if (net_ratelimit())
printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
pci_name(hw->pdev), pex_err);
/* clear the interrupt */
sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
0xffffffffUL);
sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
if (pex_err & PEX_FATAL_ERRORS) {
u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
hwmsk &= ~Y2_IS_PCI_EXP;
sky2_write32(hw, B0_HWE_IMSK, hwmsk);
}
}
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 0, status);
status >>= 8;
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 1, status);
}
static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
if (netif_msg_intr(sky2))
printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
dev->name, status);
if (status & GM_IS_RX_FF_OR) {
++sky2->net_stats.rx_fifo_errors;
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++sky2->net_stats.tx_fifo_errors;
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
/* This should never happen it is a fatal situation */
static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
const char *rxtx, u32 mask)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u32 imask;
printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
dev ? dev->name : "<not registered>", rxtx);
imask = sky2_read32(hw, B0_IMSK);
imask &= ~mask;
sky2_write32(hw, B0_IMSK, imask);
if (dev) {
spin_lock(&sky2->phy_lock);
sky2_link_down(sky2);
spin_unlock(&sky2->phy_lock);
}
}
/* If idle then force a fake soft NAPI poll once a second
* to work around cases where sharing an edge triggered interrupt.
*/
static inline void sky2_idle_start(struct sky2_hw *hw)
{
if (idle_timeout > 0)
mod_timer(&hw->idle_timer,
jiffies + msecs_to_jiffies(idle_timeout));
}
static void sky2_idle(unsigned long arg)
{
struct sky2_hw *hw = (struct sky2_hw *) arg;
struct net_device *dev = hw->dev[0];
if (__netif_rx_schedule_prep(dev))
__netif_rx_schedule(dev);
mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
}
static int sky2_poll(struct net_device *dev0, int *budget)
{
struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
int work_limit = min(dev0->quota, *budget);
int work_done = 0;
u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
if (!~status)
goto out;
if (status & Y2_IS_HW_ERR)
sky2_hw_intr(hw);
if (status & Y2_IS_IRQ_PHY1)
sky2_phy_intr(hw, 0);
if (status & Y2_IS_IRQ_PHY2)
sky2_phy_intr(hw, 1);
if (status & Y2_IS_IRQ_MAC1)
sky2_mac_intr(hw, 0);
if (status & Y2_IS_IRQ_MAC2)
sky2_mac_intr(hw, 1);
if (status & Y2_IS_CHK_RX1)
sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
if (status & Y2_IS_CHK_RX2)
sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
if (status & Y2_IS_CHK_TXA1)
sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
if (status & Y2_IS_CHK_TXA2)
sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
work_done = sky2_status_intr(hw, work_limit);
*budget -= work_done;
dev0->quota -= work_done;
if (status & Y2_IS_STAT_BMU)
sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
if (sky2_more_work(hw))
return 1;
out:
netif_rx_complete(dev0);
sky2_read32(hw, B0_Y2_SP_LISR);
return 0;
}
static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct sky2_hw *hw = dev_id;
struct net_device *dev0 = hw->dev[0];
u32 status;
/* Reading this mask interrupts as side effect */
status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0 || status == ~0)
return IRQ_NONE;
prefetch(&hw->st_le[hw->st_idx]);
if (likely(__netif_rx_schedule_prep(dev0)))
__netif_rx_schedule(dev0);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sky2_netpoll(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct net_device *dev0 = sky2->hw->dev[0];
if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
__netif_rx_schedule(dev0);
}
#endif
/* Chip internal frequency for clock calculations */
static inline u32 sky2_mhz(const struct sky2_hw *hw)
{
switch (hw->chip_id) {
case CHIP_ID_YUKON_EC:
case CHIP_ID_YUKON_EC_U:
return 125; /* 125 Mhz */
case CHIP_ID_YUKON_FE:
return 100; /* 100 Mhz */
default: /* YUKON_XL */
return 156; /* 156 Mhz */
}
}
static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
{
return sky2_mhz(hw) * us;
}
static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
{
return clk / sky2_mhz(hw);
}
static int sky2_reset(struct sky2_hw *hw)
{
u16 status;
u8 t8, pmd_type;
int i;
sky2_write8(hw, B0_CTST, CS_RST_CLR);
hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
pci_name(hw->pdev), hw->chip_id);
return -EOPNOTSUPP;
}
hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
/* This rev is really old, and requires untested workarounds */
if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
hw->chip_id, hw->chip_rev);
return -EOPNOTSUPP;
}
/* disable ASF */
if (hw->chip_id <= CHIP_ID_YUKON_EC) {
sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
}
/* do a SW reset */
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_write8(hw, B0_CTST, CS_RST_CLR);
/* clear PCI errors, if any */
status = sky2_pci_read16(hw, PCI_STATUS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
sky2_write8(hw, B0_CTST, CS_MRST_CLR);
/* clear any PEX errors */
if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
pmd_type = sky2_read8(hw, B2_PMD_TYP);
hw->copper = !(pmd_type == 'L' || pmd_type == 'S');
hw->ports = 1;
t8 = sky2_read8(hw, B2_Y2_HW_RES);
if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
++hw->ports;
}
sky2_set_power_state(hw, PCI_D0);
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* Clear I2C IRQ noise */
sky2_write32(hw, B2_I2C_IRQ, 1);
/* turn off hardware timer (unused) */
sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
/* Turn off descriptor polling */
sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
/* Turn off receive timestamp */
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
}
sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
for (i = 0; i < hw->ports; i++)
sky2_phy_reset(hw, i);
memset(hw->st_le, 0, STATUS_LE_BYTES);
hw->st_idx = 0;
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
/* Set the list last index */
sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
sky2_write16(hw, STAT_TX_IDX_TH, 10);
sky2_write8(hw, STAT_FIFO_WM, 16);
/* set Status-FIFO ISR watermark */
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
else
sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
/* enable status unit */
sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
return 0;
}
static u32 sky2_supported_modes(const struct sky2_hw *hw)
{
u32 modes;
if (hw->copper) {
modes = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_TP;
if (hw->chip_id != CHIP_ID_YUKON_FE)
modes |= SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full;
} else
modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
| SUPPORTED_Autoneg;
return modes;
}
static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = sky2_supported_modes(hw);
ecmd->phy_address = PHY_ADDR_MARV;
if (hw->copper) {
ecmd->supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_TP;
ecmd->port = PORT_TP;
} else
ecmd->port = PORT_FIBRE;
ecmd->advertising = sky2->advertising;
ecmd->autoneg = sky2->autoneg;
ecmd->speed = sky2->speed;
ecmd->duplex = sky2->duplex;
return 0;
}
static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
const struct sky2_hw *hw = sky2->hw;
u32 supported = sky2_supported_modes(hw);
if (ecmd->autoneg == AUTONEG_ENABLE) {
ecmd->advertising = supported;
sky2->duplex = -1;
sky2->speed = -1;
} else {
u32 setting;
switch (ecmd->speed) {
case SPEED_1000:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
sky2->speed = ecmd->speed;
sky2->duplex = ecmd->duplex;
}
sky2->autoneg = ecmd->autoneg;
sky2->advertising = ecmd->advertising;
if (netif_running(dev))
sky2_phy_reinit(sky2);
return 0;
}
static void sky2_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct sky2_port *sky2 = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, pci_name(sky2->hw->pdev));
}
static const struct sky2_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} sky2_stats[] = {
{ "tx_bytes", GM_TXO_OK_HI },
{ "rx_bytes", GM_RXO_OK_HI },
{ "tx_broadcast", GM_TXF_BC_OK },
{ "rx_broadcast", GM_RXF_BC_OK },
{ "tx_multicast", GM_TXF_MC_OK },
{ "rx_multicast", GM_RXF_MC_OK },
{ "tx_unicast", GM_TXF_UC_OK },
{ "rx_unicast", GM_RXF_UC_OK },
{ "tx_mac_pause", GM_TXF_MPAUSE },
{ "rx_mac_pause", GM_RXF_MPAUSE },
{ "collisions", GM_TXF_COL },
{ "late_collision",GM_TXF_LAT_COL },
{ "aborted", GM_TXF_ABO_COL },
{ "single_collisions", GM_TXF_SNG_COL },
{ "multi_collisions", GM_TXF_MUL_COL },
{ "rx_short", GM_RXF_SHT },
{ "rx_runt", GM_RXE_FRAG },
{ "rx_64_byte_packets", GM_RXF_64B },
{ "rx_65_to_127_byte_packets", GM_RXF_127B },
{ "rx_128_to_255_byte_packets", GM_RXF_255B },
{ "rx_256_to_511_byte_packets", GM_RXF_511B },
{ "rx_512_to_1023_byte_packets", GM_RXF_1023B },
{ "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
{ "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
{ "rx_too_long", GM_RXF_LNG_ERR },
{ "rx_fifo_overflow", GM_RXE_FIFO_OV },
{ "rx_jabber", GM_RXF_JAB_PKT },
{ "rx_fcs_error", GM_RXF_FCS_ERR },
{ "tx_64_byte_packets", GM_TXF_64B },
{ "tx_65_to_127_byte_packets", GM_TXF_127B },
{ "tx_128_to_255_byte_packets", GM_TXF_255B },
{ "tx_256_to_511_byte_packets", GM_TXF_511B },
{ "tx_512_to_1023_byte_packets", GM_TXF_1023B },
{ "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
{ "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
{ "tx_fifo_underrun", GM_TXE_FIFO_UR },
};
static u32 sky2_get_rx_csum(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
return sky2->rx_csum;
}
static int sky2_set_rx_csum(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2->rx_csum = data;
sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
return 0;
}
static u32 sky2_get_msglevel(struct net_device *netdev)
{
struct sky2_port *sky2 = netdev_priv(netdev);
return sky2->msg_enable;
}
static int sky2_nway_reset(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (sky2->autoneg != AUTONEG_ENABLE)
return -EINVAL;
sky2_phy_reinit(sky2);
return 0;
}
static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
int i;
data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| (u64) gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| (u64) gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < count; i++)
data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
}
static void sky2_set_msglevel(struct net_device *netdev, u32 value)
{
struct sky2_port *sky2 = netdev_priv(netdev);
sky2->msg_enable = value;
}
static int sky2_get_stats_count(struct net_device *dev)
{
return ARRAY_SIZE(sky2_stats);
}
static void sky2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 * data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
}
static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
sky2_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
/* Use hardware MIB variables for critical path statistics and
* transmit feedback not reported at interrupt.
* Other errors are accounted for in interrupt handler.
*/
static struct net_device_stats *sky2_get_stats(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
u64 data[13];
sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
sky2->net_stats.tx_bytes = data[0];
sky2->net_stats.rx_bytes = data[1];
sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
sky2->net_stats.multicast = data[3] + data[5];
sky2->net_stats.collisions = data[10];
sky2->net_stats.tx_aborted_errors = data[12];
return &sky2->net_stats;
}
static int sky2_set_mac_address(struct net_device *dev, void *p)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
const struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
dev->dev_addr, ETH_ALEN);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
return 0;
}
static void sky2_set_multicast(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
struct dev_mc_list *list = dev->mc_list;
u16 reg;
u8 filter[8];
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
memset(filter, 0xff, sizeof(filter));
else if (dev->mc_count == 0) /* no multicast */
reg &= ~GM_RXCR_MCF_ENA;
else {
int i;
reg |= GM_RXCR_MCF_ENA;
for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
filter[bit / 8] |= 1 << (bit % 8);
}
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16) filter[0] | ((u16) filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16) filter[2] | ((u16) filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16) filter[4] | ((u16) filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16) filter[6] | ((u16) filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
/* Can have one global because blinking is controlled by
* ethtool and that is always under RTNL mutex
*/
static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
{
u16 pg;
switch (hw->chip_id) {
case CHIP_ID_YUKON_XL:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
on ? (PHY_M_LEDC_LOS_CTRL(1) |
PHY_M_LEDC_INIT_CTRL(7) |
PHY_M_LEDC_STA1_CTRL(7) |
PHY_M_LEDC_STA0_CTRL(7))
: 0);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) |
PHY_M_LED_MO_1000(MO_LED_ON) |
PHY_M_LED_MO_RX(MO_LED_ON)
: PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) |
PHY_M_LED_MO_1000(MO_LED_OFF) |
PHY_M_LED_MO_RX(MO_LED_OFF));
}
}
/* blink LED's for finding board */
static int sky2_phys_id(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ledctrl, ledover = 0;
long ms;
int interrupted;
int onoff = 1;
if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
else
ms = data * 1000;
/* save initial values */
spin_lock_bh(&sky2->phy_lock);
if (hw->chip_id == CHIP_ID_YUKON_XL) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
}
interrupted = 0;
while (!interrupted && ms > 0) {
sky2_led(hw, port, onoff);
onoff = !onoff;
spin_unlock_bh(&sky2->phy_lock);
interrupted = msleep_interruptible(250);
spin_lock_bh(&sky2->phy_lock);
ms -= 250;
}
/* resume regularly scheduled programming */
if (hw->chip_id == CHIP_ID_YUKON_XL) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
}
spin_unlock_bh(&sky2->phy_lock);
return 0;
}
static void sky2_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
ecmd->tx_pause = sky2->tx_pause;
ecmd->rx_pause = sky2->rx_pause;
ecmd->autoneg = sky2->autoneg;
}
static int sky2_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
int err = 0;
sky2->autoneg = ecmd->autoneg;
sky2->tx_pause = ecmd->tx_pause != 0;
sky2->rx_pause = ecmd->rx_pause != 0;
sky2_phy_reinit(sky2);
return err;
}
static int sky2_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
ecmd->tx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs_irq = 0;
else {
u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
return 0;
}
/* Note: this affect both ports */
static int sky2_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
if (ecmd->tx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs_irq > tmax)
return -EINVAL;
if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
return -EINVAL;
if (ecmd->tx_coalesce_usecs == 0)
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_TX_TIMER_INI,
sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
}
sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs == 0)
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_LEV_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs_irq == 0)
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_ISR_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
return 0;
}
static void sky2_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
ering->rx_max_pending = RX_MAX_PENDING;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = 0;
ering->tx_max_pending = TX_RING_SIZE - 1;
ering->rx_pending = sky2->rx_pending;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = 0;
ering->tx_pending = sky2->tx_pending;
}
static int sky2_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
int err = 0;
if (ering->rx_pending > RX_MAX_PENDING ||
ering->rx_pending < 8 ||
ering->tx_pending < MAX_SKB_TX_LE ||
ering->tx_pending > TX_RING_SIZE - 1)
return -EINVAL;
if (netif_running(dev))
sky2_down(dev);
sky2->rx_pending = ering->rx_pending;
sky2->tx_pending = ering->tx_pending;
if (netif_running(dev)) {
err = sky2_up(dev);
if (err)
dev_close(dev);
else
sky2_set_multicast(dev);
}
return err;
}
static int sky2_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
/*
* Returns copy of control register region
* Note: access to the RAM address register set will cause timeouts.
*/
static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct sky2_port *sky2 = netdev_priv(dev);
const void __iomem *io = sky2->hw->regs;
BUG_ON(regs->len < B3_RI_WTO_R1);
regs->version = 1;
memset(p, 0, regs->len);
memcpy_fromio(p, io, B3_RAM_ADDR);
memcpy_fromio(p + B3_RI_WTO_R1,
io + B3_RI_WTO_R1,
regs->len - B3_RI_WTO_R1);
}
static struct ethtool_ops sky2_ethtool_ops = {
.get_settings = sky2_get_settings,
.set_settings = sky2_set_settings,
.get_drvinfo = sky2_get_drvinfo,
.get_msglevel = sky2_get_msglevel,
.set_msglevel = sky2_set_msglevel,
.nway_reset = sky2_nway_reset,
.get_regs_len = sky2_get_regs_len,
.get_regs = sky2_get_regs,
.get_link = ethtool_op_get_link,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum,
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
.get_rx_csum = sky2_get_rx_csum,
.set_rx_csum = sky2_set_rx_csum,
.get_strings = sky2_get_strings,
.get_coalesce = sky2_get_coalesce,
.set_coalesce = sky2_set_coalesce,
.get_ringparam = sky2_get_ringparam,
.set_ringparam = sky2_set_ringparam,
.get_pauseparam = sky2_get_pauseparam,
.set_pauseparam = sky2_set_pauseparam,
.phys_id = sky2_phys_id,
.get_stats_count = sky2_get_stats_count,
.get_ethtool_stats = sky2_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
/* Initialize network device */
static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
unsigned port, int highmem)
{
struct sky2_port *sky2;
struct net_device *dev = alloc_etherdev(sizeof(*sky2));
if (!dev) {
printk(KERN_ERR "sky2 etherdev alloc failed");
return NULL;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->irq = hw->pdev->irq;
dev->open = sky2_up;
dev->stop = sky2_down;
dev->do_ioctl = sky2_ioctl;
dev->hard_start_xmit = sky2_xmit_frame;
dev->get_stats = sky2_get_stats;
dev->set_multicast_list = sky2_set_multicast;
dev->set_mac_address = sky2_set_mac_address;
dev->change_mtu = sky2_change_mtu;
SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
dev->tx_timeout = sky2_tx_timeout;
dev->watchdog_timeo = TX_WATCHDOG;
if (port == 0)
dev->poll = sky2_poll;
dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = sky2_netpoll;
#endif
sky2 = netdev_priv(dev);
sky2->netdev = dev;
sky2->hw = hw;
sky2->msg_enable = netif_msg_init(debug, default_msg);
spin_lock_init(&sky2->tx_lock);
/* Auto speed and flow control */
sky2->autoneg = AUTONEG_ENABLE;
sky2->tx_pause = 1;
sky2->rx_pause = 1;
sky2->duplex = -1;
sky2->speed = -1;
sky2->advertising = sky2_supported_modes(hw);
sky2->rx_csum = 1;
spin_lock_init(&sky2->phy_lock);
sky2->tx_pending = TX_DEF_PENDING;
sky2->rx_pending = RX_DEF_PENDING;
sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN);
hw->dev[port] = dev;
sky2->port = port;
dev->features |= NETIF_F_LLTX;
if (hw->chip_id != CHIP_ID_YUKON_EC_U)
dev->features |= NETIF_F_TSO;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
#ifdef SKY2_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->vlan_rx_register = sky2_vlan_rx_register;
dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
#endif
/* read the mac address */
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
/* device is off until link detection */
netif_carrier_off(dev);
netif_stop_queue(dev);
return dev;
}
static void __devinit sky2_show_addr(struct net_device *dev)
{
const struct sky2_port *sky2 = netdev_priv(dev);
if (netif_msg_probe(sky2))
printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name,
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}
/* Handle software interrupt used during MSI test */
static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id,
struct pt_regs *regs)
{
struct sky2_hw *hw = dev_id;
u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0)
return IRQ_NONE;
if (status & Y2_IS_IRQ_SW) {
hw->msi_detected = 1;
wake_up(&hw->msi_wait);
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_Y2_SP_ICR, 2);
return IRQ_HANDLED;
}
/* Test interrupt path by forcing a a software IRQ */
static int __devinit sky2_test_msi(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
int err;
sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
err = request_irq(pdev->irq, sky2_test_intr, IRQF_SHARED, DRV_NAME, hw);
if (err) {
printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
pci_name(pdev), pdev->irq);
return err;
}
init_waitqueue_head (&hw->msi_wait);
sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
wmb();
wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
if (!hw->msi_detected) {
/* MSI test failed, go back to INTx mode */
printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
"switching to INTx mode. Please report this failure to "
"the PCI maintainer and include system chipset information.\n",
pci_name(pdev));
err = -EOPNOTSUPP;
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_IMSK, 0);
free_irq(pdev->irq, hw);
return err;
}
static int __devinit sky2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev, *dev1 = NULL;
struct sky2_hw *hw;
int err, pm_cap, using_dac = 0;
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX "%s cannot enable PCI device\n",
pci_name(pdev));
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
pci_name(pdev));
goto err_out;
}
pci_set_master(pdev);
/* Find power-management capability. */
pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pm_cap == 0) {
printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
"aborting.\n");
err = -EIO;
goto err_out_free_regions;
}
if (sizeof(dma_addr_t) > sizeof(u32) &&
!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (err < 0) {
printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
"for consistent allocations\n", pci_name(pdev));
goto err_out_free_regions;
}
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR PFX "%s no usable DMA configuration\n",
pci_name(pdev));
goto err_out_free_regions;
}
}
err = -ENOMEM;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw) {
printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
pci_name(pdev));
goto err_out_free_regions;
}
hw->pdev = pdev;
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
printk(KERN_ERR PFX "%s: cannot map device registers\n",
pci_name(pdev));
goto err_out_free_hw;
}
hw->pm_cap = pm_cap;
#ifdef __BIG_ENDIAN
/* byte swap descriptors in hardware */
{
u32 reg;
reg = sky2_pci_read32(hw, PCI_DEV_REG2);
reg |= PCI_REV_DESC;
sky2_pci_write32(hw, PCI_DEV_REG2, reg);
}
#endif
/* ring for status responses */
hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
&hw->st_dma);
if (!hw->st_le)
goto err_out_iounmap;
err = sky2_reset(hw);
if (err)
goto err_out_iounmap;
printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
hw->chip_id, hw->chip_rev);
dev = sky2_init_netdev(hw, 0, using_dac);
if (!dev)
goto err_out_free_pci;
err = register_netdev(dev);
if (err) {
printk(KERN_ERR PFX "%s: cannot register net device\n",
pci_name(pdev));
goto err_out_free_netdev;
}
sky2_show_addr(dev);
if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
if (register_netdev(dev1) == 0)
sky2_show_addr(dev1);
else {
/* Failure to register second port need not be fatal */
printk(KERN_WARNING PFX
"register of second port failed\n");
hw->dev[1] = NULL;
free_netdev(dev1);
}
}
if (!disable_msi && pci_enable_msi(pdev) == 0) {
err = sky2_test_msi(hw);
if (err == -EOPNOTSUPP)
pci_disable_msi(pdev);
else if (err)
goto err_out_unregister;
}
err = request_irq(pdev->irq, sky2_intr, IRQF_SHARED, DRV_NAME, hw);
if (err) {
printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
pci_name(pdev), pdev->irq);
goto err_out_unregister;
}
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
sky2_idle_start(hw);
pci_set_drvdata(pdev, hw);
return 0;
err_out_unregister:
pci_disable_msi(pdev);
if (dev1) {
unregister_netdev(dev1);
free_netdev(dev1);
}
unregister_netdev(dev);
err_out_free_netdev:
free_netdev(dev);
err_out_free_pci:
sky2_write8(hw, B0_CTST, CS_RST_SET);
pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
pci_disable_device(pdev);
err_out:
return err;
}
static void __devexit sky2_remove(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1;
if (!hw)
return;
del_timer_sync(&hw->idle_timer);
sky2_write32(hw, B0_IMSK, 0);
synchronize_irq(hw->pdev->irq);
dev0 = hw->dev[0];
dev1 = hw->dev[1];
if (dev1)
unregister_netdev(dev1);
unregister_netdev(dev0);
sky2_set_power_state(hw, PCI_D3hot);
sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_read8(hw, B0_CTST);
free_irq(pdev->irq, hw);
pci_disable_msi(pdev);
pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
pci_release_regions(pdev);
pci_disable_device(pdev);
if (dev1)
free_netdev(dev1);
free_netdev(dev0);
iounmap(hw->regs);
kfree(hw);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i;
pci_power_t pstate = pci_choose_state(pdev, state);
if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
return -EINVAL;
del_timer_sync(&hw->idle_timer);
netif_poll_disable(hw->dev[0]);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
sky2_down(dev);
netif_device_detach(dev);
}
}
sky2_write32(hw, B0_IMSK, 0);
pci_save_state(pdev);
sky2_set_power_state(hw, pstate);
return 0;
}
static int sky2_resume(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i, err;
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D0, 0);
sky2_set_power_state(hw, PCI_D0);
err = sky2_reset(hw);
if (err)
goto out;
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
netif_device_attach(dev);
err = sky2_up(dev);
if (err) {
printk(KERN_ERR PFX "%s: could not up: %d\n",
dev->name, err);
dev_close(dev);
goto out;
}
}
}
netif_poll_enable(hw->dev[0]);
sky2_idle_start(hw);
out:
return err;
}
#endif
static struct pci_driver sky2_driver = {
.name = DRV_NAME,
.id_table = sky2_id_table,
.probe = sky2_probe,
.remove = __devexit_p(sky2_remove),
#ifdef CONFIG_PM
.suspend = sky2_suspend,
.resume = sky2_resume,
#endif
};
static int __init sky2_init_module(void)
{
return pci_register_driver(&sky2_driver);
}
static void __exit sky2_cleanup_module(void)
{
pci_unregister_driver(&sky2_driver);
}
module_init(sky2_init_module);
module_exit(sky2_cleanup_module);
MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);