linux/block/blk-throttle.c
Tejun Heo 73f0d49a96 blk-throttle: move bio_lists[] and friends to throtl_service_queue
throtl_service_queues will eventually form a tree which is anchored at
throtl_data->service_queue and queue bios will climb the tree to the
top service_queue to be executed.

This patch moves bio_lists[] and nr_queued[] from throtl_grp to its
service_queue to prepare for that.  As currently only the
throtl_data->service_queue is in use, this patch just ends up moving
throtl_grp->bio_lists[] and ->nr_queued[] to
throtl_grp->service_queue.bio_lists[] and ->nr_queued[] without making
any functional differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2013-05-14 13:52:35 -07:00

1224 lines
30 KiB
C

/*
* Interface for controlling IO bandwidth on a request queue
*
* Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
#include "blk.h"
/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;
/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;
/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10; /* 100 ms */
static struct blkcg_policy blkcg_policy_throtl;
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
struct throtl_service_queue {
/*
* Bios queued directly to this service_queue or dispatched from
* children throtl_grp's.
*/
struct bio_list bio_lists[2]; /* queued bios [READ/WRITE] */
unsigned int nr_queued[2]; /* number of queued bios */
/*
* RB tree of active children throtl_grp's, which are sorted by
* their ->disptime.
*/
struct rb_root pending_tree; /* RB tree of active tgs */
struct rb_node *first_pending; /* first node in the tree */
unsigned int nr_pending; /* # queued in the tree */
unsigned long first_pending_disptime; /* disptime of the first tg */
};
enum tg_state_flags {
THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
};
#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
/* Per-cpu group stats */
struct tg_stats_cpu {
/* total bytes transferred */
struct blkg_rwstat service_bytes;
/* total IOs serviced, post merge */
struct blkg_rwstat serviced;
};
struct throtl_grp {
/* must be the first member */
struct blkg_policy_data pd;
/* active throtl group service_queue member */
struct rb_node rb_node;
/* throtl_data this group belongs to */
struct throtl_data *td;
/* this group's service queue */
struct throtl_service_queue service_queue;
/*
* Dispatch time in jiffies. This is the estimated time when group
* will unthrottle and is ready to dispatch more bio. It is used as
* key to sort active groups in service tree.
*/
unsigned long disptime;
unsigned int flags;
/* bytes per second rate limits */
uint64_t bps[2];
/* IOPS limits */
unsigned int iops[2];
/* Number of bytes disptached in current slice */
uint64_t bytes_disp[2];
/* Number of bio's dispatched in current slice */
unsigned int io_disp[2];
/* When did we start a new slice */
unsigned long slice_start[2];
unsigned long slice_end[2];
/* Per cpu stats pointer */
struct tg_stats_cpu __percpu *stats_cpu;
/* List of tgs waiting for per cpu stats memory to be allocated */
struct list_head stats_alloc_node;
};
struct throtl_data
{
/* service tree for active throtl groups */
struct throtl_service_queue service_queue;
struct request_queue *queue;
/* Total Number of queued bios on READ and WRITE lists */
unsigned int nr_queued[2];
/*
* number of total undestroyed groups
*/
unsigned int nr_undestroyed_grps;
/* Work for dispatching throttled bios */
struct delayed_work dispatch_work;
};
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);
static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
{
return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
}
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
{
return pd_to_blkg(&tg->pd);
}
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
return blkg_to_tg(td->queue->root_blkg);
}
#define throtl_log_tg(tg, fmt, args...) do { \
char __pbuf[128]; \
\
blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \
blk_add_trace_msg((tg)->td->queue, "throtl %s " fmt, __pbuf, ##args); \
} while (0)
#define throtl_log(td, fmt, args...) \
blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
/*
* Worker for allocating per cpu stat for tgs. This is scheduled on the
* system_wq once there are some groups on the alloc_list waiting for
* allocation.
*/
static void tg_stats_alloc_fn(struct work_struct *work)
{
static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
struct delayed_work *dwork = to_delayed_work(work);
bool empty = false;
alloc_stats:
if (!stats_cpu) {
stats_cpu = alloc_percpu(struct tg_stats_cpu);
if (!stats_cpu) {
/* allocation failed, try again after some time */
schedule_delayed_work(dwork, msecs_to_jiffies(10));
return;
}
}
spin_lock_irq(&tg_stats_alloc_lock);
if (!list_empty(&tg_stats_alloc_list)) {
struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
struct throtl_grp,
stats_alloc_node);
swap(tg->stats_cpu, stats_cpu);
list_del_init(&tg->stats_alloc_node);
}
empty = list_empty(&tg_stats_alloc_list);
spin_unlock_irq(&tg_stats_alloc_lock);
if (!empty)
goto alloc_stats;
}
/* init a service_queue, assumes the caller zeroed it */
static void throtl_service_queue_init(struct throtl_service_queue *sq)
{
bio_list_init(&sq->bio_lists[0]);
bio_list_init(&sq->bio_lists[1]);
sq->pending_tree = RB_ROOT;
}
static void throtl_pd_init(struct blkcg_gq *blkg)
{
struct throtl_grp *tg = blkg_to_tg(blkg);
unsigned long flags;
throtl_service_queue_init(&tg->service_queue);
RB_CLEAR_NODE(&tg->rb_node);
tg->td = blkg->q->td;
tg->bps[READ] = -1;
tg->bps[WRITE] = -1;
tg->iops[READ] = -1;
tg->iops[WRITE] = -1;
/*
* Ugh... We need to perform per-cpu allocation for tg->stats_cpu
* but percpu allocator can't be called from IO path. Queue tg on
* tg_stats_alloc_list and allocate from work item.
*/
spin_lock_irqsave(&tg_stats_alloc_lock, flags);
list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
schedule_delayed_work(&tg_stats_alloc_work, 0);
spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
}
static void throtl_pd_exit(struct blkcg_gq *blkg)
{
struct throtl_grp *tg = blkg_to_tg(blkg);
unsigned long flags;
spin_lock_irqsave(&tg_stats_alloc_lock, flags);
list_del_init(&tg->stats_alloc_node);
spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
free_percpu(tg->stats_cpu);
}
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
{
struct throtl_grp *tg = blkg_to_tg(blkg);
int cpu;
if (tg->stats_cpu == NULL)
return;
for_each_possible_cpu(cpu) {
struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
blkg_rwstat_reset(&sc->service_bytes);
blkg_rwstat_reset(&sc->serviced);
}
}
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
struct blkcg *blkcg)
{
/*
* This is the common case when there are no blkcgs. Avoid lookup
* in this case
*/
if (blkcg == &blkcg_root)
return td_root_tg(td);
return blkg_to_tg(blkg_lookup(blkcg, td->queue));
}
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
struct blkcg *blkcg)
{
struct request_queue *q = td->queue;
struct throtl_grp *tg = NULL;
/*
* This is the common case when there are no blkcgs. Avoid lookup
* in this case
*/
if (blkcg == &blkcg_root) {
tg = td_root_tg(td);
} else {
struct blkcg_gq *blkg;
blkg = blkg_lookup_create(blkcg, q);
/* if %NULL and @q is alive, fall back to root_tg */
if (!IS_ERR(blkg))
tg = blkg_to_tg(blkg);
else if (!blk_queue_dying(q))
tg = td_root_tg(td);
}
return tg;
}
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
{
/* Service tree is empty */
if (!parent_sq->nr_pending)
return NULL;
if (!parent_sq->first_pending)
parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
if (parent_sq->first_pending)
return rb_entry_tg(parent_sq->first_pending);
return NULL;
}
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
rb_erase(n, root);
RB_CLEAR_NODE(n);
}
static void throtl_rb_erase(struct rb_node *n,
struct throtl_service_queue *parent_sq)
{
if (parent_sq->first_pending == n)
parent_sq->first_pending = NULL;
rb_erase_init(n, &parent_sq->pending_tree);
--parent_sq->nr_pending;
}
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
{
struct throtl_grp *tg;
tg = throtl_rb_first(parent_sq);
if (!tg)
return;
parent_sq->first_pending_disptime = tg->disptime;
}
static void tg_service_queue_add(struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
struct rb_node **node = &parent_sq->pending_tree.rb_node;
struct rb_node *parent = NULL;
struct throtl_grp *__tg;
unsigned long key = tg->disptime;
int left = 1;
while (*node != NULL) {
parent = *node;
__tg = rb_entry_tg(parent);
if (time_before(key, __tg->disptime))
node = &parent->rb_left;
else {
node = &parent->rb_right;
left = 0;
}
}
if (left)
parent_sq->first_pending = &tg->rb_node;
rb_link_node(&tg->rb_node, parent, node);
rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
}
static void __throtl_enqueue_tg(struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
tg_service_queue_add(tg, parent_sq);
tg->flags |= THROTL_TG_PENDING;
parent_sq->nr_pending++;
}
static void throtl_enqueue_tg(struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
if (!(tg->flags & THROTL_TG_PENDING))
__throtl_enqueue_tg(tg, parent_sq);
}
static void __throtl_dequeue_tg(struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
throtl_rb_erase(&tg->rb_node, parent_sq);
tg->flags &= ~THROTL_TG_PENDING;
}
static void throtl_dequeue_tg(struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
if (tg->flags & THROTL_TG_PENDING)
__throtl_dequeue_tg(tg, parent_sq);
}
/* Call with queue lock held */
static void throtl_schedule_delayed_work(struct throtl_data *td,
unsigned long delay)
{
struct delayed_work *dwork = &td->dispatch_work;
mod_delayed_work(kthrotld_workqueue, dwork, delay);
throtl_log(td, "schedule work. delay=%lu jiffies=%lu", delay, jiffies);
}
static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
struct throtl_service_queue *sq = &td->service_queue;
/* any pending children left? */
if (!sq->nr_pending)
return;
update_min_dispatch_time(sq);
if (time_before_eq(sq->first_pending_disptime, jiffies))
throtl_schedule_delayed_work(td, 0);
else
throtl_schedule_delayed_work(td, sq->first_pending_disptime - jiffies);
}
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
{
tg->bytes_disp[rw] = 0;
tg->io_disp[rw] = 0;
tg->slice_start[rw] = jiffies;
tg->slice_end[rw] = jiffies + throtl_slice;
throtl_log_tg(tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
rw == READ ? 'R' : 'W', tg->slice_start[rw],
tg->slice_end[rw], jiffies);
}
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
unsigned long jiffy_end)
{
tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
unsigned long jiffy_end)
{
tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
throtl_log_tg(tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
rw == READ ? 'R' : 'W', tg->slice_start[rw],
tg->slice_end[rw], jiffies);
}
/* Determine if previously allocated or extended slice is complete or not */
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
{
if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
return 0;
return 1;
}
/* Trim the used slices and adjust slice start accordingly */
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
{
unsigned long nr_slices, time_elapsed, io_trim;
u64 bytes_trim, tmp;
BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
/*
* If bps are unlimited (-1), then time slice don't get
* renewed. Don't try to trim the slice if slice is used. A new
* slice will start when appropriate.
*/
if (throtl_slice_used(tg, rw))
return;
/*
* A bio has been dispatched. Also adjust slice_end. It might happen
* that initially cgroup limit was very low resulting in high
* slice_end, but later limit was bumped up and bio was dispached
* sooner, then we need to reduce slice_end. A high bogus slice_end
* is bad because it does not allow new slice to start.
*/
throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
time_elapsed = jiffies - tg->slice_start[rw];
nr_slices = time_elapsed / throtl_slice;
if (!nr_slices)
return;
tmp = tg->bps[rw] * throtl_slice * nr_slices;
do_div(tmp, HZ);
bytes_trim = tmp;
io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
if (!bytes_trim && !io_trim)
return;
if (tg->bytes_disp[rw] >= bytes_trim)
tg->bytes_disp[rw] -= bytes_trim;
else
tg->bytes_disp[rw] = 0;
if (tg->io_disp[rw] >= io_trim)
tg->io_disp[rw] -= io_trim;
else
tg->io_disp[rw] = 0;
tg->slice_start[rw] += nr_slices * throtl_slice;
throtl_log_tg(tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
" start=%lu end=%lu jiffies=%lu",
rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
tg->slice_start[rw], tg->slice_end[rw], jiffies);
}
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
unsigned long *wait)
{
bool rw = bio_data_dir(bio);
unsigned int io_allowed;
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
u64 tmp;
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
/* Slice has just started. Consider one slice interval */
if (!jiffy_elapsed)
jiffy_elapsed_rnd = throtl_slice;
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
/*
* jiffy_elapsed_rnd should not be a big value as minimum iops can be
* 1 then at max jiffy elapsed should be equivalent of 1 second as we
* will allow dispatch after 1 second and after that slice should
* have been trimmed.
*/
tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
do_div(tmp, HZ);
if (tmp > UINT_MAX)
io_allowed = UINT_MAX;
else
io_allowed = tmp;
if (tg->io_disp[rw] + 1 <= io_allowed) {
if (wait)
*wait = 0;
return 1;
}
/* Calc approx time to dispatch */
jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
if (jiffy_wait > jiffy_elapsed)
jiffy_wait = jiffy_wait - jiffy_elapsed;
else
jiffy_wait = 1;
if (wait)
*wait = jiffy_wait;
return 0;
}
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
unsigned long *wait)
{
bool rw = bio_data_dir(bio);
u64 bytes_allowed, extra_bytes, tmp;
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
/* Slice has just started. Consider one slice interval */
if (!jiffy_elapsed)
jiffy_elapsed_rnd = throtl_slice;
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
tmp = tg->bps[rw] * jiffy_elapsed_rnd;
do_div(tmp, HZ);
bytes_allowed = tmp;
if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
if (wait)
*wait = 0;
return 1;
}
/* Calc approx time to dispatch */
extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
if (!jiffy_wait)
jiffy_wait = 1;
/*
* This wait time is without taking into consideration the rounding
* up we did. Add that time also.
*/
jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
if (wait)
*wait = jiffy_wait;
return 0;
}
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
return 1;
return 0;
}
/*
* Returns whether one can dispatch a bio or not. Also returns approx number
* of jiffies to wait before this bio is with-in IO rate and can be dispatched
*/
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
unsigned long *wait)
{
bool rw = bio_data_dir(bio);
unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
/*
* Currently whole state machine of group depends on first bio
* queued in the group bio list. So one should not be calling
* this function with a different bio if there are other bios
* queued.
*/
BUG_ON(tg->service_queue.nr_queued[rw] &&
bio != bio_list_peek(&tg->service_queue.bio_lists[rw]));
/* If tg->bps = -1, then BW is unlimited */
if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
if (wait)
*wait = 0;
return 1;
}
/*
* If previous slice expired, start a new one otherwise renew/extend
* existing slice to make sure it is at least throtl_slice interval
* long since now.
*/
if (throtl_slice_used(tg, rw))
throtl_start_new_slice(tg, rw);
else {
if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
throtl_extend_slice(tg, rw, jiffies + throtl_slice);
}
if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
tg_with_in_iops_limit(tg, bio, &iops_wait)) {
if (wait)
*wait = 0;
return 1;
}
max_wait = max(bps_wait, iops_wait);
if (wait)
*wait = max_wait;
if (time_before(tg->slice_end[rw], jiffies + max_wait))
throtl_extend_slice(tg, rw, jiffies + max_wait);
return 0;
}
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
int rw)
{
struct throtl_grp *tg = blkg_to_tg(blkg);
struct tg_stats_cpu *stats_cpu;
unsigned long flags;
/* If per cpu stats are not allocated yet, don't do any accounting. */
if (tg->stats_cpu == NULL)
return;
/*
* Disabling interrupts to provide mutual exclusion between two
* writes on same cpu. It probably is not needed for 64bit. Not
* optimizing that case yet.
*/
local_irq_save(flags);
stats_cpu = this_cpu_ptr(tg->stats_cpu);
blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
local_irq_restore(flags);
}
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
bool rw = bio_data_dir(bio);
/* Charge the bio to the group */
tg->bytes_disp[rw] += bio->bi_size;
tg->io_disp[rw]++;
throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
}
static void throtl_add_bio_tg(struct bio *bio, struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
struct throtl_service_queue *sq = &tg->service_queue;
bool rw = bio_data_dir(bio);
bio_list_add(&sq->bio_lists[rw], bio);
/* Take a bio reference on tg */
blkg_get(tg_to_blkg(tg));
sq->nr_queued[rw]++;
tg->td->nr_queued[rw]++;
throtl_enqueue_tg(tg, parent_sq);
}
static void tg_update_disptime(struct throtl_grp *tg,
struct throtl_service_queue *parent_sq)
{
struct throtl_service_queue *sq = &tg->service_queue;
unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
struct bio *bio;
if ((bio = bio_list_peek(&sq->bio_lists[READ])))
tg_may_dispatch(tg, bio, &read_wait);
if ((bio = bio_list_peek(&sq->bio_lists[WRITE])))
tg_may_dispatch(tg, bio, &write_wait);
min_wait = min(read_wait, write_wait);
disptime = jiffies + min_wait;
/* Update dispatch time */
throtl_dequeue_tg(tg, parent_sq);
tg->disptime = disptime;
throtl_enqueue_tg(tg, parent_sq);
}
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw,
struct bio_list *bl)
{
struct throtl_service_queue *sq = &tg->service_queue;
struct bio *bio;
bio = bio_list_pop(&sq->bio_lists[rw]);
sq->nr_queued[rw]--;
/* Drop bio reference on blkg */
blkg_put(tg_to_blkg(tg));
BUG_ON(tg->td->nr_queued[rw] <= 0);
tg->td->nr_queued[rw]--;
throtl_charge_bio(tg, bio);
bio_list_add(bl, bio);
bio->bi_rw |= REQ_THROTTLED;
throtl_trim_slice(tg, rw);
}
static int throtl_dispatch_tg(struct throtl_grp *tg, struct bio_list *bl)
{
struct throtl_service_queue *sq = &tg->service_queue;
unsigned int nr_reads = 0, nr_writes = 0;
unsigned int max_nr_reads = throtl_grp_quantum*3/4;
unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
struct bio *bio;
/* Try to dispatch 75% READS and 25% WRITES */
while ((bio = bio_list_peek(&sq->bio_lists[READ])) &&
tg_may_dispatch(tg, bio, NULL)) {
tg_dispatch_one_bio(tg, bio_data_dir(bio), bl);
nr_reads++;
if (nr_reads >= max_nr_reads)
break;
}
while ((bio = bio_list_peek(&sq->bio_lists[WRITE])) &&
tg_may_dispatch(tg, bio, NULL)) {
tg_dispatch_one_bio(tg, bio_data_dir(bio), bl);
nr_writes++;
if (nr_writes >= max_nr_writes)
break;
}
return nr_reads + nr_writes;
}
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq,
struct bio_list *bl)
{
unsigned int nr_disp = 0;
while (1) {
struct throtl_grp *tg = throtl_rb_first(parent_sq);
struct throtl_service_queue *sq = &tg->service_queue;
if (!tg)
break;
if (time_before(jiffies, tg->disptime))
break;
throtl_dequeue_tg(tg, parent_sq);
nr_disp += throtl_dispatch_tg(tg, bl);
if (sq->nr_queued[0] || sq->nr_queued[1])
tg_update_disptime(tg, parent_sq);
if (nr_disp >= throtl_quantum)
break;
}
return nr_disp;
}
/* work function to dispatch throttled bios */
void blk_throtl_dispatch_work_fn(struct work_struct *work)
{
struct throtl_data *td = container_of(to_delayed_work(work),
struct throtl_data, dispatch_work);
struct request_queue *q = td->queue;
unsigned int nr_disp = 0;
struct bio_list bio_list_on_stack;
struct bio *bio;
struct blk_plug plug;
spin_lock_irq(q->queue_lock);
bio_list_init(&bio_list_on_stack);
throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
td->nr_queued[READ] + td->nr_queued[WRITE],
td->nr_queued[READ], td->nr_queued[WRITE]);
nr_disp = throtl_select_dispatch(&td->service_queue, &bio_list_on_stack);
if (nr_disp)
throtl_log(td, "bios disp=%u", nr_disp);
throtl_schedule_next_dispatch(td);
spin_unlock_irq(q->queue_lock);
/*
* If we dispatched some requests, unplug the queue to make sure
* immediate dispatch
*/
if (nr_disp) {
blk_start_plug(&plug);
while((bio = bio_list_pop(&bio_list_on_stack)))
generic_make_request(bio);
blk_finish_plug(&plug);
}
}
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
struct blkg_policy_data *pd, int off)
{
struct throtl_grp *tg = pd_to_tg(pd);
struct blkg_rwstat rwstat = { }, tmp;
int i, cpu;
for_each_possible_cpu(cpu) {
struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
tmp = blkg_rwstat_read((void *)sc + off);
for (i = 0; i < BLKG_RWSTAT_NR; i++)
rwstat.cnt[i] += tmp.cnt[i];
}
return __blkg_prfill_rwstat(sf, pd, &rwstat);
}
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
struct seq_file *sf)
{
struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
cft->private, true);
return 0;
}
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
int off)
{
struct throtl_grp *tg = pd_to_tg(pd);
u64 v = *(u64 *)((void *)tg + off);
if (v == -1)
return 0;
return __blkg_prfill_u64(sf, pd, v);
}
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
int off)
{
struct throtl_grp *tg = pd_to_tg(pd);
unsigned int v = *(unsigned int *)((void *)tg + off);
if (v == -1)
return 0;
return __blkg_prfill_u64(sf, pd, v);
}
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
struct seq_file *sf)
{
blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
&blkcg_policy_throtl, cft->private, false);
return 0;
}
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
struct seq_file *sf)
{
blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
&blkcg_policy_throtl, cft->private, false);
return 0;
}
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
bool is_u64)
{
struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
struct blkg_conf_ctx ctx;
struct throtl_grp *tg;
struct throtl_data *td;
int ret;
ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
if (ret)
return ret;
tg = blkg_to_tg(ctx.blkg);
td = ctx.blkg->q->td;
if (!ctx.v)
ctx.v = -1;
if (is_u64)
*(u64 *)((void *)tg + cft->private) = ctx.v;
else
*(unsigned int *)((void *)tg + cft->private) = ctx.v;
throtl_log_tg(tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
tg->bps[READ], tg->bps[WRITE],
tg->iops[READ], tg->iops[WRITE]);
/*
* We're already holding queue_lock and know @tg is valid. Let's
* apply the new config directly.
*
* Restart the slices for both READ and WRITES. It might happen
* that a group's limit are dropped suddenly and we don't want to
* account recently dispatched IO with new low rate.
*/
throtl_start_new_slice(tg, 0);
throtl_start_new_slice(tg, 1);
if (tg->flags & THROTL_TG_PENDING) {
tg_update_disptime(tg, &td->service_queue);
throtl_schedule_next_dispatch(td);
}
blkg_conf_finish(&ctx);
return 0;
}
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
const char *buf)
{
return tg_set_conf(cgrp, cft, buf, true);
}
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
const char *buf)
{
return tg_set_conf(cgrp, cft, buf, false);
}
static struct cftype throtl_files[] = {
{
.name = "throttle.read_bps_device",
.private = offsetof(struct throtl_grp, bps[READ]),
.read_seq_string = tg_print_conf_u64,
.write_string = tg_set_conf_u64,
.max_write_len = 256,
},
{
.name = "throttle.write_bps_device",
.private = offsetof(struct throtl_grp, bps[WRITE]),
.read_seq_string = tg_print_conf_u64,
.write_string = tg_set_conf_u64,
.max_write_len = 256,
},
{
.name = "throttle.read_iops_device",
.private = offsetof(struct throtl_grp, iops[READ]),
.read_seq_string = tg_print_conf_uint,
.write_string = tg_set_conf_uint,
.max_write_len = 256,
},
{
.name = "throttle.write_iops_device",
.private = offsetof(struct throtl_grp, iops[WRITE]),
.read_seq_string = tg_print_conf_uint,
.write_string = tg_set_conf_uint,
.max_write_len = 256,
},
{
.name = "throttle.io_service_bytes",
.private = offsetof(struct tg_stats_cpu, service_bytes),
.read_seq_string = tg_print_cpu_rwstat,
},
{
.name = "throttle.io_serviced",
.private = offsetof(struct tg_stats_cpu, serviced),
.read_seq_string = tg_print_cpu_rwstat,
},
{ } /* terminate */
};
static void throtl_shutdown_wq(struct request_queue *q)
{
struct throtl_data *td = q->td;
cancel_delayed_work_sync(&td->dispatch_work);
}
static struct blkcg_policy blkcg_policy_throtl = {
.pd_size = sizeof(struct throtl_grp),
.cftypes = throtl_files,
.pd_init_fn = throtl_pd_init,
.pd_exit_fn = throtl_pd_exit,
.pd_reset_stats_fn = throtl_pd_reset_stats,
};
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
{
struct throtl_data *td = q->td;
struct throtl_grp *tg;
struct throtl_service_queue *sq;
bool rw = bio_data_dir(bio), update_disptime = true;
struct blkcg *blkcg;
bool throttled = false;
if (bio->bi_rw & REQ_THROTTLED) {
bio->bi_rw &= ~REQ_THROTTLED;
goto out;
}
/*
* A throtl_grp pointer retrieved under rcu can be used to access
* basic fields like stats and io rates. If a group has no rules,
* just update the dispatch stats in lockless manner and return.
*/
rcu_read_lock();
blkcg = bio_blkcg(bio);
tg = throtl_lookup_tg(td, blkcg);
if (tg) {
if (tg_no_rule_group(tg, rw)) {
throtl_update_dispatch_stats(tg_to_blkg(tg),
bio->bi_size, bio->bi_rw);
goto out_unlock_rcu;
}
}
/*
* Either group has not been allocated yet or it is not an unlimited
* IO group
*/
spin_lock_irq(q->queue_lock);
tg = throtl_lookup_create_tg(td, blkcg);
if (unlikely(!tg))
goto out_unlock;
sq = &tg->service_queue;
if (sq->nr_queued[rw]) {
/*
* There is already another bio queued in same dir. No
* need to update dispatch time.
*/
update_disptime = false;
goto queue_bio;
}
/* Bio is with-in rate limit of group */
if (tg_may_dispatch(tg, bio, NULL)) {
throtl_charge_bio(tg, bio);
/*
* We need to trim slice even when bios are not being queued
* otherwise it might happen that a bio is not queued for
* a long time and slice keeps on extending and trim is not
* called for a long time. Now if limits are reduced suddenly
* we take into account all the IO dispatched so far at new
* low rate and * newly queued IO gets a really long dispatch
* time.
*
* So keep on trimming slice even if bio is not queued.
*/
throtl_trim_slice(tg, rw);
goto out_unlock;
}
queue_bio:
throtl_log_tg(tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
" iodisp=%u iops=%u queued=%d/%d",
rw == READ ? 'R' : 'W',
tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
tg->io_disp[rw], tg->iops[rw],
sq->nr_queued[READ], sq->nr_queued[WRITE]);
bio_associate_current(bio);
throtl_add_bio_tg(bio, tg, &q->td->service_queue);
throttled = true;
if (update_disptime) {
tg_update_disptime(tg, &td->service_queue);
throtl_schedule_next_dispatch(td);
}
out_unlock:
spin_unlock_irq(q->queue_lock);
out_unlock_rcu:
rcu_read_unlock();
out:
return throttled;
}
/**
* blk_throtl_drain - drain throttled bios
* @q: request_queue to drain throttled bios for
*
* Dispatch all currently throttled bios on @q through ->make_request_fn().
*/
void blk_throtl_drain(struct request_queue *q)
__releases(q->queue_lock) __acquires(q->queue_lock)
{
struct throtl_data *td = q->td;
struct throtl_service_queue *parent_sq = &td->service_queue;
struct throtl_grp *tg;
struct bio_list bl;
struct bio *bio;
queue_lockdep_assert_held(q);
bio_list_init(&bl);
while ((tg = throtl_rb_first(parent_sq))) {
struct throtl_service_queue *sq = &tg->service_queue;
throtl_dequeue_tg(tg, parent_sq);
while ((bio = bio_list_peek(&sq->bio_lists[READ])))
tg_dispatch_one_bio(tg, bio_data_dir(bio), &bl);
while ((bio = bio_list_peek(&sq->bio_lists[WRITE])))
tg_dispatch_one_bio(tg, bio_data_dir(bio), &bl);
}
spin_unlock_irq(q->queue_lock);
while ((bio = bio_list_pop(&bl)))
generic_make_request(bio);
spin_lock_irq(q->queue_lock);
}
int blk_throtl_init(struct request_queue *q)
{
struct throtl_data *td;
int ret;
td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
if (!td)
return -ENOMEM;
INIT_DELAYED_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
throtl_service_queue_init(&td->service_queue);
q->td = td;
td->queue = q;
/* activate policy */
ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
if (ret)
kfree(td);
return ret;
}
void blk_throtl_exit(struct request_queue *q)
{
BUG_ON(!q->td);
throtl_shutdown_wq(q);
blkcg_deactivate_policy(q, &blkcg_policy_throtl);
kfree(q->td);
}
static int __init throtl_init(void)
{
kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
if (!kthrotld_workqueue)
panic("Failed to create kthrotld\n");
return blkcg_policy_register(&blkcg_policy_throtl);
}
module_init(throtl_init);