linux/sound/pci/vx222/vx222_ops.c
Jesper Juhl 77933d7276 [PATCH] clean up inline static vs static inline
`gcc -W' likes to complain if the static keyword is not at the beginning of
the declaration.  This patch fixes all remaining occurrences of "inline
static" up with "static inline" in the entire kernel tree (140 occurrences in
47 files).

While making this change I came across a few lines with trailing whitespace
that I also fixed up, I have also added or removed a blank line or two here
and there, but there are no functional changes in the patch.

Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-27 16:26:20 -07:00

1005 lines
34 KiB
C

/*
* Driver for Digigram VX222 V2/Mic soundcards
*
* VX222-specific low-level routines
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <sound/core.h>
#include <sound/control.h>
#include <asm/io.h>
#include "vx222.h"
static int vx2_reg_offset[VX_REG_MAX] = {
[VX_ICR] = 0x00,
[VX_CVR] = 0x04,
[VX_ISR] = 0x08,
[VX_IVR] = 0x0c,
[VX_RXH] = 0x14,
[VX_RXM] = 0x18,
[VX_RXL] = 0x1c,
[VX_DMA] = 0x10,
[VX_CDSP] = 0x20,
[VX_CFG] = 0x24,
[VX_RUER] = 0x28,
[VX_DATA] = 0x2c,
[VX_STATUS] = 0x30,
[VX_LOFREQ] = 0x34,
[VX_HIFREQ] = 0x38,
[VX_CSUER] = 0x3c,
[VX_SELMIC] = 0x40,
[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
[VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
[VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
};
static int vx2_reg_index[VX_REG_MAX] = {
[VX_ICR] = 1,
[VX_CVR] = 1,
[VX_ISR] = 1,
[VX_IVR] = 1,
[VX_RXH] = 1,
[VX_RXM] = 1,
[VX_RXL] = 1,
[VX_DMA] = 1,
[VX_CDSP] = 1,
[VX_CFG] = 1,
[VX_RUER] = 1,
[VX_DATA] = 1,
[VX_STATUS] = 1,
[VX_LOFREQ] = 1,
[VX_HIFREQ] = 1,
[VX_CSUER] = 1,
[VX_SELMIC] = 1,
[VX_COMPOT] = 1,
[VX_SCOMPR] = 1,
[VX_GLIMIT] = 1,
[VX_INTCSR] = 0, /* on the PLX */
[VX_CNTRL] = 0, /* on the PLX */
[VX_GPIOC] = 0, /* on the PLX */
};
static inline unsigned long vx2_reg_addr(vx_core_t *_chip, int reg)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
}
/**
* snd_vx_inb - read a byte from the register
* @offset: register enum
*/
static unsigned char vx2_inb(vx_core_t *chip, int offset)
{
return inb(vx2_reg_addr(chip, offset));
}
/**
* snd_vx_outb - write a byte on the register
* @offset: the register offset
* @val: the value to write
*/
static void vx2_outb(vx_core_t *chip, int offset, unsigned char val)
{
outb(val, vx2_reg_addr(chip, offset));
//printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
}
/**
* snd_vx_inl - read a 32bit word from the register
* @offset: register enum
*/
static unsigned int vx2_inl(vx_core_t *chip, int offset)
{
return inl(vx2_reg_addr(chip, offset));
}
/**
* snd_vx_outl - write a 32bit word on the register
* @offset: the register enum
* @val: the value to write
*/
static void vx2_outl(vx_core_t *chip, int offset, unsigned int val)
{
// printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
outl(val, vx2_reg_addr(chip, offset));
}
/*
* redefine macros to call directly
*/
#undef vx_inb
#define vx_inb(chip,reg) vx2_inb((vx_core_t*)(chip), VX_##reg)
#undef vx_outb
#define vx_outb(chip,reg,val) vx2_outb((vx_core_t*)(chip), VX_##reg, val)
#undef vx_inl
#define vx_inl(chip,reg) vx2_inl((vx_core_t*)(chip), VX_##reg)
#undef vx_outl
#define vx_outl(chip,reg,val) vx2_outl((vx_core_t*)(chip), VX_##reg, val)
/*
* vx_reset_dsp - reset the DSP
*/
#define XX_DSP_RESET_WAIT_TIME 2 /* ms */
static void vx2_reset_dsp(vx_core_t *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* set the reset dsp bit to 0 */
vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
snd_vx_delay(_chip, XX_DSP_RESET_WAIT_TIME);
chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
/* set the reset dsp bit to 1 */
vx_outl(chip, CDSP, chip->regCDSP);
}
static int vx2_test_xilinx(vx_core_t *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
unsigned int data;
snd_printdd("testing xilinx...\n");
/* This test uses several write/read sequences on TEST0 and TEST1 bits
* to figure out whever or not the xilinx was correctly loaded
*/
/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
snd_printdd("bad!\n");
return -ENODEV;
}
/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
snd_printdd("bad! #2\n");
return -ENODEV;
}
if (_chip->type == VX_TYPE_BOARD) {
/* not implemented on VX_2_BOARDS */
/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
snd_printdd("bad! #3\n");
return -ENODEV;
}
/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
vx_inl(chip, ISR);
data = vx_inl(chip, STATUS);
if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
snd_printdd("bad! #4\n");
return -ENODEV;
}
}
snd_printdd("ok, xilinx fine.\n");
return 0;
}
/**
* vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
* @do_write: 0 = read, 1 = set up for DMA write
*/
static void vx2_setup_pseudo_dma(vx_core_t *chip, int do_write)
{
/* Interrupt mode and HREQ pin enabled for host transmit data transfers
* (in case of the use of the pseudo-dma facility).
*/
vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
/* Reset the pseudo-dma register (in case of the use of the
* pseudo-dma facility).
*/
vx_outl(chip, RESET_DMA, 0);
}
/*
* vx_release_pseudo_dma - disable the pseudo-DMA mode
*/
static inline void vx2_release_pseudo_dma(vx_core_t *chip)
{
/* HREQ pin disabled. */
vx_outl(chip, ICR, 0);
}
/* pseudo-dma write */
static void vx2_dma_write(vx_core_t *chip, snd_pcm_runtime_t *runtime,
vx_pipe_t *pipe, int count)
{
unsigned long port = vx2_reg_addr(chip, VX_DMA);
int offset = pipe->hw_ptr;
u32 *addr = (u32 *)(runtime->dma_area + offset);
snd_assert(count % 4 == 0, return);
vx2_setup_pseudo_dma(chip, 1);
/* Transfer using pseudo-dma.
*/
if (offset + count > pipe->buffer_bytes) {
int length = pipe->buffer_bytes - offset;
count -= length;
length >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (length-- > 0) {
outl(cpu_to_le32(*addr), port);
addr++;
}
addr = (u32 *)runtime->dma_area;
pipe->hw_ptr = 0;
}
pipe->hw_ptr += count;
count >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (count-- > 0) {
outl(cpu_to_le32(*addr), port);
addr++;
}
vx2_release_pseudo_dma(chip);
}
/* pseudo dma read */
static void vx2_dma_read(vx_core_t *chip, snd_pcm_runtime_t *runtime,
vx_pipe_t *pipe, int count)
{
int offset = pipe->hw_ptr;
u32 *addr = (u32 *)(runtime->dma_area + offset);
unsigned long port = vx2_reg_addr(chip, VX_DMA);
snd_assert(count % 4 == 0, return);
vx2_setup_pseudo_dma(chip, 0);
/* Transfer using pseudo-dma.
*/
if (offset + count > pipe->buffer_bytes) {
int length = pipe->buffer_bytes - offset;
count -= length;
length >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (length-- > 0)
*addr++ = le32_to_cpu(inl(port));
addr = (u32 *)runtime->dma_area;
pipe->hw_ptr = 0;
}
pipe->hw_ptr += count;
count >>= 2; /* in 32bit words */
/* Transfer using pseudo-dma. */
while (count-- > 0)
*addr++ = le32_to_cpu(inl(port));
vx2_release_pseudo_dma(chip);
}
#define VX_XILINX_RESET_MASK 0x40000000
#define VX_USERBIT0_MASK 0x00000004
#define VX_USERBIT1_MASK 0x00000020
#define VX_CNTRL_REGISTER_VALUE 0x00172012
/*
* transfer counts bits to PLX
*/
static int put_xilinx_data(vx_core_t *chip, unsigned int port, unsigned int counts, unsigned char data)
{
unsigned int i;
for (i = 0; i < counts; i++) {
unsigned int val;
/* set the clock bit to 0. */
val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
vx2_outl(chip, port, val);
vx2_inl(chip, port);
udelay(1);
if (data & (1 << i))
val |= VX_USERBIT1_MASK;
else
val &= ~VX_USERBIT1_MASK;
vx2_outl(chip, port, val);
vx2_inl(chip, port);
/* set the clock bit to 1. */
val |= VX_USERBIT0_MASK;
vx2_outl(chip, port, val);
vx2_inl(chip, port);
udelay(1);
}
return 0;
}
/*
* load the xilinx image
*/
static int vx2_load_xilinx_binary(vx_core_t *chip, const struct firmware *xilinx)
{
unsigned int i;
unsigned int port;
unsigned char *image;
/* XILINX reset (wait at least 1 milisecond between reset on and off). */
vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
vx_inl(chip, CNTRL);
snd_vx_delay(chip, 10);
vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
vx_inl(chip, CNTRL);
snd_vx_delay(chip, 10);
if (chip->type == VX_TYPE_BOARD)
port = VX_CNTRL;
else
port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
image = xilinx->data;
for (i = 0; i < xilinx->size; i++, image++) {
if (put_xilinx_data(chip, port, 8, *image) < 0)
return -EINVAL;
/* don't take too much time in this loop... */
cond_resched();
}
put_xilinx_data(chip, port, 4, 0xff); /* end signature */
snd_vx_delay(chip, 200);
/* test after loading (is buggy with VX222) */
if (chip->type != VX_TYPE_BOARD) {
/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
i = vx_inl(chip, GPIOC);
if (i & 0x0100)
return 0;
snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
return -EINVAL;
}
return 0;
}
/*
* load the boot/dsp images
*/
static int vx2_load_dsp(vx_core_t *vx, int index, const struct firmware *dsp)
{
int err;
switch (index) {
case 1:
/* xilinx image */
if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
return err;
if ((err = vx2_test_xilinx(vx)) < 0)
return err;
return 0;
case 2:
/* DSP boot */
return snd_vx_dsp_boot(vx, dsp);
case 3:
/* DSP image */
return snd_vx_dsp_load(vx, dsp);
default:
snd_BUG();
return -EINVAL;
}
}
/*
* vx_test_and_ack - test and acknowledge interrupt
*
* called from irq hander, too
*
* spinlock held!
*/
static int vx2_test_and_ack(vx_core_t *chip)
{
/* not booted yet? */
if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
return -ENXIO;
if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
return -EIO;
/* ok, interrupts generated, now ack it */
/* set ACQUIT bit up and down */
vx_outl(chip, STATUS, 0);
/* useless read just to spend some time and maintain
* the ACQUIT signal up for a while ( a bus cycle )
*/
vx_inl(chip, STATUS);
/* ack */
vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
/* useless read just to spend some time and maintain
* the ACQUIT signal up for a while ( a bus cycle ) */
vx_inl(chip, STATUS);
/* clear */
vx_outl(chip, STATUS, 0);
return 0;
}
/*
* vx_validate_irq - enable/disable IRQ
*/
static void vx2_validate_irq(vx_core_t *_chip, int enable)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* Set the interrupt enable bit to 1 in CDSP register */
if (enable) {
/* Set the PCI interrupt enable bit to 1.*/
vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
} else {
/* Set the PCI interrupt enable bit to 0. */
vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
}
vx_outl(chip, CDSP, chip->regCDSP);
}
/*
* write an AKM codec data (24bit)
*/
static void vx2_write_codec_reg(vx_core_t *chip, unsigned int data)
{
unsigned int i;
vx_inl(chip, HIFREQ);
/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
for (i = 0; i < 24; i++, data <<= 1)
vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
/* Terminate access to codec registers */
vx_inl(chip, RUER);
}
#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
#define AKM_CODEC_RESET_ON_CMD 0xA100
#define AKM_CODEC_RESET_OFF_CMD 0xA103
#define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
#define AKM_CODEC_MUTE_CMD 0xA38D
#define AKM_CODEC_UNMUTE_CMD 0xA30D
#define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
#define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
/*
* pseudo-codec write entry
*/
static void vx2_write_akm(vx_core_t *chip, int reg, unsigned int data)
{
unsigned int val;
if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
return;
}
/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
a look up table, as there is no linear matching between the driver codec values
and the real dBu value
*/
snd_assert(data < sizeof(vx2_akm_gains_lut), return);
switch (reg) {
case XX_CODEC_LEVEL_LEFT_REGISTER:
val = AKM_CODEC_LEFT_LEVEL_CMD;
break;
case XX_CODEC_LEVEL_RIGHT_REGISTER:
val = AKM_CODEC_RIGHT_LEVEL_CMD;
break;
default:
snd_BUG();
return;
}
val |= vx2_akm_gains_lut[data];
vx2_write_codec_reg(chip, val);
}
/*
* write codec bit for old VX222 board
*/
static void vx2_old_write_codec_bit(vx_core_t *chip, int codec, unsigned int data)
{
int i;
/* activate access to codec registers */
vx_inl(chip, HIFREQ);
for (i = 0; i < 24; i++, data <<= 1)
vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
/* Terminate access to codec registers */
vx_inl(chip, RUER);
}
/*
* reset codec bit
*/
static void vx2_reset_codec(vx_core_t *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* Set the reset CODEC bit to 0. */
vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
vx_inl(chip, CDSP);
snd_vx_delay(_chip, 10);
/* Set the reset CODEC bit to 1. */
chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
vx_outl(chip, CDSP, chip->regCDSP);
vx_inl(chip, CDSP);
if (_chip->type == VX_TYPE_BOARD) {
snd_vx_delay(_chip, 1);
return;
}
snd_vx_delay(_chip, 5); /* additionnel wait time for AKM's */
vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
if (_chip->type == VX_TYPE_MIC) {
/* set up the micro input selector */
chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
MICRO_SELECT_PREAMPLI_G_0 |
MICRO_SELECT_NOISE_T_52DB;
/* reset phantom power supply */
chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
vx_outl(_chip, SELMIC, chip->regSELMIC);
}
}
/*
* change the audio source
*/
static void vx2_change_audio_source(vx_core_t *_chip, int src)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
switch (src) {
case VX_AUDIO_SRC_DIGITAL:
chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
break;
default:
chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
break;
}
vx_outl(chip, CFG, chip->regCFG);
}
/*
* set the clock source
*/
static void vx2_set_clock_source(vx_core_t *_chip, int source)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
if (source == INTERNAL_QUARTZ)
chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
else
chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
vx_outl(chip, CFG, chip->regCFG);
}
/*
* reset the board
*/
static void vx2_reset_board(vx_core_t *_chip, int cold_reset)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
/* initialize the register values */
chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
chip->regCFG = 0;
}
/*
* input level controls for VX222 Mic
*/
/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
* 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
* as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
*/
#define V2_MICRO_LEVEL_RANGE (318 - 255)
static void vx2_set_input_level(struct snd_vx222 *chip)
{
int i, miclevel, preamp;
unsigned int data;
miclevel = chip->mic_level;
miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
preamp = 0;
while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
preamp++; /* raise pre ampli + 18dB */
miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
}
snd_assert(preamp < 4, return);
/* set pre-amp level */
chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
vx_outl(chip, SELMIC, chip->regSELMIC);
data = (unsigned int)miclevel << 16 |
(unsigned int)chip->input_level[1] << 8 |
(unsigned int)chip->input_level[0];
vx_inl(chip, DATA); /* Activate input level programming */
/* We have to send 32 bits (4 x 8 bits) */
for (i = 0; i < 32; i++, data <<= 1)
vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
vx_inl(chip, RUER); /* Terminate input level programming */
}
#define MIC_LEVEL_MAX 0xff
/*
* controls API for input levels
*/
/* input levels */
static int vx_input_level_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = MIC_LEVEL_MAX;
return 0;
}
static int vx_input_level_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
down(&_chip->mixer_mutex);
ucontrol->value.integer.value[0] = chip->input_level[0];
ucontrol->value.integer.value[1] = chip->input_level[1];
up(&_chip->mixer_mutex);
return 0;
}
static int vx_input_level_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
down(&_chip->mixer_mutex);
if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
chip->input_level[1] != ucontrol->value.integer.value[1]) {
chip->input_level[0] = ucontrol->value.integer.value[0];
chip->input_level[1] = ucontrol->value.integer.value[1];
vx2_set_input_level(chip);
up(&_chip->mixer_mutex);
return 1;
}
up(&_chip->mixer_mutex);
return 0;
}
/* mic level */
static int vx_mic_level_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = MIC_LEVEL_MAX;
return 0;
}
static int vx_mic_level_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
ucontrol->value.integer.value[0] = chip->mic_level;
return 0;
}
static int vx_mic_level_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
down(&_chip->mixer_mutex);
if (chip->mic_level != ucontrol->value.integer.value[0]) {
chip->mic_level = ucontrol->value.integer.value[0];
vx2_set_input_level(chip);
up(&_chip->mixer_mutex);
return 1;
}
up(&_chip->mixer_mutex);
return 0;
}
static snd_kcontrol_new_t vx_control_input_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.info = vx_input_level_info,
.get = vx_input_level_get,
.put = vx_input_level_put,
};
static snd_kcontrol_new_t vx_control_mic_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Mic Capture Volume",
.info = vx_mic_level_info,
.get = vx_mic_level_get,
.put = vx_mic_level_put,
};
/*
* FIXME: compressor/limiter implementation is missing yet...
*/
static int vx2_add_mic_controls(vx_core_t *_chip)
{
struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
int err;
if (_chip->type != VX_TYPE_MIC)
return 0;
/* mute input levels */
chip->input_level[0] = chip->input_level[1] = 0;
chip->mic_level = 0;
vx2_set_input_level(chip);
/* controls */
if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
return err;
if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
return err;
return 0;
}
/*
* callbacks
*/
struct snd_vx_ops vx222_ops = {
.in8 = vx2_inb,
.in32 = vx2_inl,
.out8 = vx2_outb,
.out32 = vx2_outl,
.test_and_ack = vx2_test_and_ack,
.validate_irq = vx2_validate_irq,
.akm_write = vx2_write_akm,
.reset_codec = vx2_reset_codec,
.change_audio_source = vx2_change_audio_source,
.set_clock_source = vx2_set_clock_source,
.load_dsp = vx2_load_dsp,
.reset_dsp = vx2_reset_dsp,
.reset_board = vx2_reset_board,
.dma_write = vx2_dma_write,
.dma_read = vx2_dma_read,
.add_controls = vx2_add_mic_controls,
};
/* for old VX222 board */
struct snd_vx_ops vx222_old_ops = {
.in8 = vx2_inb,
.in32 = vx2_inl,
.out8 = vx2_outb,
.out32 = vx2_outl,
.test_and_ack = vx2_test_and_ack,
.validate_irq = vx2_validate_irq,
.write_codec = vx2_old_write_codec_bit,
.reset_codec = vx2_reset_codec,
.change_audio_source = vx2_change_audio_source,
.set_clock_source = vx2_set_clock_source,
.load_dsp = vx2_load_dsp,
.reset_dsp = vx2_reset_dsp,
.reset_board = vx2_reset_board,
.dma_write = vx2_dma_write,
.dma_read = vx2_dma_read,
};