458e5ff13e
Module edac_core.ko uses call_rcu() callbacks in edac_device.c, edac_mc.c and edac_pci.c. They all use a wait_for_completion() scheme, but this scheme it not 100% safe on multiple CPUs. See the _rcu_barrier() implementation which explains why extra precausion is needed. The patch adds a comment about rcu_barrier() and as a precausion calls rcu_barrier(). A maintainer needs to look at removing the wait_for_completion code. [dougthompson@xmission.com: remove the wait_for_completion code] Signed-off-by Jesper Dangaard Brouer <hawk@comx.dk> Signed-off-by: Doug Thompson <dougthompson@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
887 lines
23 KiB
C
887 lines
23 KiB
C
/*
|
|
* edac_mc kernel module
|
|
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*
|
|
* Written by Thayne Harbaugh
|
|
* Based on work by Dan Hollis <goemon at anime dot net> and others.
|
|
* http://www.anime.net/~goemon/linux-ecc/
|
|
*
|
|
* Modified by Dave Peterson and Doug Thompson
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/edac.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/page.h>
|
|
#include <asm/edac.h>
|
|
#include "edac_core.h"
|
|
#include "edac_module.h"
|
|
|
|
/* lock to memory controller's control array */
|
|
static DEFINE_MUTEX(mem_ctls_mutex);
|
|
static LIST_HEAD(mc_devices);
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
|
|
static void edac_mc_dump_channel(struct channel_info *chan)
|
|
{
|
|
debugf4("\tchannel = %p\n", chan);
|
|
debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
|
|
debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
|
|
debugf4("\tchannel->label = '%s'\n", chan->label);
|
|
debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
|
|
}
|
|
|
|
static void edac_mc_dump_csrow(struct csrow_info *csrow)
|
|
{
|
|
debugf4("\tcsrow = %p\n", csrow);
|
|
debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
|
|
debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
|
|
debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
|
|
debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
|
|
debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
|
|
debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
|
|
debugf4("\tcsrow->channels = %p\n", csrow->channels);
|
|
debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
|
|
}
|
|
|
|
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
|
|
{
|
|
debugf3("\tmci = %p\n", mci);
|
|
debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
|
|
debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
|
|
debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
|
|
debugf4("\tmci->edac_check = %p\n", mci->edac_check);
|
|
debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
|
|
mci->nr_csrows, mci->csrows);
|
|
debugf3("\tdev = %p\n", mci->dev);
|
|
debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
|
|
debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
|
|
}
|
|
|
|
#endif /* CONFIG_EDAC_DEBUG */
|
|
|
|
/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
|
|
* Adjust 'ptr' so that its alignment is at least as stringent as what the
|
|
* compiler would provide for X and return the aligned result.
|
|
*
|
|
* If 'size' is a constant, the compiler will optimize this whole function
|
|
* down to either a no-op or the addition of a constant to the value of 'ptr'.
|
|
*/
|
|
void *edac_align_ptr(void *ptr, unsigned size)
|
|
{
|
|
unsigned align, r;
|
|
|
|
/* Here we assume that the alignment of a "long long" is the most
|
|
* stringent alignment that the compiler will ever provide by default.
|
|
* As far as I know, this is a reasonable assumption.
|
|
*/
|
|
if (size > sizeof(long))
|
|
align = sizeof(long long);
|
|
else if (size > sizeof(int))
|
|
align = sizeof(long);
|
|
else if (size > sizeof(short))
|
|
align = sizeof(int);
|
|
else if (size > sizeof(char))
|
|
align = sizeof(short);
|
|
else
|
|
return (char *)ptr;
|
|
|
|
r = size % align;
|
|
|
|
if (r == 0)
|
|
return (char *)ptr;
|
|
|
|
return (void *)(((unsigned long)ptr) + align - r);
|
|
}
|
|
|
|
/**
|
|
* edac_mc_alloc: Allocate a struct mem_ctl_info structure
|
|
* @size_pvt: size of private storage needed
|
|
* @nr_csrows: Number of CWROWS needed for this MC
|
|
* @nr_chans: Number of channels for the MC
|
|
*
|
|
* Everything is kmalloc'ed as one big chunk - more efficient.
|
|
* Only can be used if all structures have the same lifetime - otherwise
|
|
* you have to allocate and initialize your own structures.
|
|
*
|
|
* Use edac_mc_free() to free mc structures allocated by this function.
|
|
*
|
|
* Returns:
|
|
* NULL allocation failed
|
|
* struct mem_ctl_info pointer
|
|
*/
|
|
struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
|
|
unsigned nr_chans, int edac_index)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct csrow_info *csi, *csrow;
|
|
struct channel_info *chi, *chp, *chan;
|
|
void *pvt;
|
|
unsigned size;
|
|
int row, chn;
|
|
int err;
|
|
|
|
/* Figure out the offsets of the various items from the start of an mc
|
|
* structure. We want the alignment of each item to be at least as
|
|
* stringent as what the compiler would provide if we could simply
|
|
* hardcode everything into a single struct.
|
|
*/
|
|
mci = (struct mem_ctl_info *)0;
|
|
csi = edac_align_ptr(&mci[1], sizeof(*csi));
|
|
chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
|
|
pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
|
|
size = ((unsigned long)pvt) + sz_pvt;
|
|
|
|
mci = kzalloc(size, GFP_KERNEL);
|
|
if (mci == NULL)
|
|
return NULL;
|
|
|
|
/* Adjust pointers so they point within the memory we just allocated
|
|
* rather than an imaginary chunk of memory located at address 0.
|
|
*/
|
|
csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
|
|
chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
|
|
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
|
|
|
|
/* setup index and various internal pointers */
|
|
mci->mc_idx = edac_index;
|
|
mci->csrows = csi;
|
|
mci->pvt_info = pvt;
|
|
mci->nr_csrows = nr_csrows;
|
|
|
|
for (row = 0; row < nr_csrows; row++) {
|
|
csrow = &csi[row];
|
|
csrow->csrow_idx = row;
|
|
csrow->mci = mci;
|
|
csrow->nr_channels = nr_chans;
|
|
chp = &chi[row * nr_chans];
|
|
csrow->channels = chp;
|
|
|
|
for (chn = 0; chn < nr_chans; chn++) {
|
|
chan = &chp[chn];
|
|
chan->chan_idx = chn;
|
|
chan->csrow = csrow;
|
|
}
|
|
}
|
|
|
|
mci->op_state = OP_ALLOC;
|
|
|
|
/*
|
|
* Initialize the 'root' kobj for the edac_mc controller
|
|
*/
|
|
err = edac_mc_register_sysfs_main_kobj(mci);
|
|
if (err) {
|
|
kfree(mci);
|
|
return NULL;
|
|
}
|
|
|
|
/* at this point, the root kobj is valid, and in order to
|
|
* 'free' the object, then the function:
|
|
* edac_mc_unregister_sysfs_main_kobj() must be called
|
|
* which will perform kobj unregistration and the actual free
|
|
* will occur during the kobject callback operation
|
|
*/
|
|
return mci;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_alloc);
|
|
|
|
/**
|
|
* edac_mc_free
|
|
* 'Free' a previously allocated 'mci' structure
|
|
* @mci: pointer to a struct mem_ctl_info structure
|
|
*/
|
|
void edac_mc_free(struct mem_ctl_info *mci)
|
|
{
|
|
edac_mc_unregister_sysfs_main_kobj(mci);
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_free);
|
|
|
|
|
|
/*
|
|
* find_mci_by_dev
|
|
*
|
|
* scan list of controllers looking for the one that manages
|
|
* the 'dev' device
|
|
*/
|
|
static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
debugf3("%s()\n", __func__);
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->dev == dev)
|
|
return mci;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* handler for EDAC to check if NMI type handler has asserted interrupt
|
|
*/
|
|
static int edac_mc_assert_error_check_and_clear(void)
|
|
{
|
|
int old_state;
|
|
|
|
if (edac_op_state == EDAC_OPSTATE_POLL)
|
|
return 1;
|
|
|
|
old_state = edac_err_assert;
|
|
edac_err_assert = 0;
|
|
|
|
return old_state;
|
|
}
|
|
|
|
/*
|
|
* edac_mc_workq_function
|
|
* performs the operation scheduled by a workq request
|
|
*/
|
|
static void edac_mc_workq_function(struct work_struct *work_req)
|
|
{
|
|
struct delayed_work *d_work = to_delayed_work(work_req);
|
|
struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
/* if this control struct has movd to offline state, we are done */
|
|
if (mci->op_state == OP_OFFLINE) {
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return;
|
|
}
|
|
|
|
/* Only poll controllers that are running polled and have a check */
|
|
if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
|
|
mci->edac_check(mci);
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
/* Reschedule */
|
|
queue_delayed_work(edac_workqueue, &mci->work,
|
|
msecs_to_jiffies(edac_mc_get_poll_msec()));
|
|
}
|
|
|
|
/*
|
|
* edac_mc_workq_setup
|
|
* initialize a workq item for this mci
|
|
* passing in the new delay period in msec
|
|
*
|
|
* locking model:
|
|
*
|
|
* called with the mem_ctls_mutex held
|
|
*/
|
|
static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
|
|
{
|
|
debugf0("%s()\n", __func__);
|
|
|
|
/* if this instance is not in the POLL state, then simply return */
|
|
if (mci->op_state != OP_RUNNING_POLL)
|
|
return;
|
|
|
|
INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
|
|
queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
|
|
}
|
|
|
|
/*
|
|
* edac_mc_workq_teardown
|
|
* stop the workq processing on this mci
|
|
*
|
|
* locking model:
|
|
*
|
|
* called WITHOUT lock held
|
|
*/
|
|
static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
|
|
{
|
|
int status;
|
|
|
|
status = cancel_delayed_work(&mci->work);
|
|
if (status == 0) {
|
|
debugf0("%s() not canceled, flush the queue\n",
|
|
__func__);
|
|
|
|
/* workq instance might be running, wait for it */
|
|
flush_workqueue(edac_workqueue);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* edac_mc_reset_delay_period(unsigned long value)
|
|
*
|
|
* user space has updated our poll period value, need to
|
|
* reset our workq delays
|
|
*/
|
|
void edac_mc_reset_delay_period(int value)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct list_head *item;
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
/* scan the list and turn off all workq timers, doing so under lock
|
|
*/
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->op_state == OP_RUNNING_POLL)
|
|
cancel_delayed_work(&mci->work);
|
|
}
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
|
|
/* re-walk the list, and reset the poll delay */
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
edac_mc_workq_setup(mci, (unsigned long) value);
|
|
}
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
}
|
|
|
|
|
|
|
|
/* Return 0 on success, 1 on failure.
|
|
* Before calling this function, caller must
|
|
* assign a unique value to mci->mc_idx.
|
|
*
|
|
* locking model:
|
|
*
|
|
* called with the mem_ctls_mutex lock held
|
|
*/
|
|
static int add_mc_to_global_list(struct mem_ctl_info *mci)
|
|
{
|
|
struct list_head *item, *insert_before;
|
|
struct mem_ctl_info *p;
|
|
|
|
insert_before = &mc_devices;
|
|
|
|
p = find_mci_by_dev(mci->dev);
|
|
if (unlikely(p != NULL))
|
|
goto fail0;
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
p = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (p->mc_idx >= mci->mc_idx) {
|
|
if (unlikely(p->mc_idx == mci->mc_idx))
|
|
goto fail1;
|
|
|
|
insert_before = item;
|
|
break;
|
|
}
|
|
}
|
|
|
|
list_add_tail_rcu(&mci->link, insert_before);
|
|
atomic_inc(&edac_handlers);
|
|
return 0;
|
|
|
|
fail0:
|
|
edac_printk(KERN_WARNING, EDAC_MC,
|
|
"%s (%s) %s %s already assigned %d\n", dev_name(p->dev),
|
|
edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
|
|
return 1;
|
|
|
|
fail1:
|
|
edac_printk(KERN_WARNING, EDAC_MC,
|
|
"bug in low-level driver: attempt to assign\n"
|
|
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
|
|
return 1;
|
|
}
|
|
|
|
static void complete_mc_list_del(struct rcu_head *head)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
mci = container_of(head, struct mem_ctl_info, rcu);
|
|
INIT_LIST_HEAD(&mci->link);
|
|
}
|
|
|
|
static void del_mc_from_global_list(struct mem_ctl_info *mci)
|
|
{
|
|
atomic_dec(&edac_handlers);
|
|
list_del_rcu(&mci->link);
|
|
call_rcu(&mci->rcu, complete_mc_list_del);
|
|
rcu_barrier();
|
|
}
|
|
|
|
/**
|
|
* edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
|
|
*
|
|
* If found, return a pointer to the structure.
|
|
* Else return NULL.
|
|
*
|
|
* Caller must hold mem_ctls_mutex.
|
|
*/
|
|
struct mem_ctl_info *edac_mc_find(int idx)
|
|
{
|
|
struct list_head *item;
|
|
struct mem_ctl_info *mci;
|
|
|
|
list_for_each(item, &mc_devices) {
|
|
mci = list_entry(item, struct mem_ctl_info, link);
|
|
|
|
if (mci->mc_idx >= idx) {
|
|
if (mci->mc_idx == idx)
|
|
return mci;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(edac_mc_find);
|
|
|
|
/**
|
|
* edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
|
|
* create sysfs entries associated with mci structure
|
|
* @mci: pointer to the mci structure to be added to the list
|
|
* @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
|
|
*
|
|
* Return:
|
|
* 0 Success
|
|
* !0 Failure
|
|
*/
|
|
|
|
/* FIXME - should a warning be printed if no error detection? correction? */
|
|
int edac_mc_add_mc(struct mem_ctl_info *mci)
|
|
{
|
|
debugf0("%s()\n", __func__);
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
if (edac_debug_level >= 3)
|
|
edac_mc_dump_mci(mci);
|
|
|
|
if (edac_debug_level >= 4) {
|
|
int i;
|
|
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
int j;
|
|
|
|
edac_mc_dump_csrow(&mci->csrows[i]);
|
|
for (j = 0; j < mci->csrows[i].nr_channels; j++)
|
|
edac_mc_dump_channel(&mci->csrows[i].
|
|
channels[j]);
|
|
}
|
|
}
|
|
#endif
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
if (add_mc_to_global_list(mci))
|
|
goto fail0;
|
|
|
|
/* set load time so that error rate can be tracked */
|
|
mci->start_time = jiffies;
|
|
|
|
if (edac_create_sysfs_mci_device(mci)) {
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"failed to create sysfs device\n");
|
|
goto fail1;
|
|
}
|
|
|
|
/* If there IS a check routine, then we are running POLLED */
|
|
if (mci->edac_check != NULL) {
|
|
/* This instance is NOW RUNNING */
|
|
mci->op_state = OP_RUNNING_POLL;
|
|
|
|
edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
|
|
} else {
|
|
mci->op_state = OP_RUNNING_INTERRUPT;
|
|
}
|
|
|
|
/* Report action taken */
|
|
edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
|
|
" DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
|
|
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return 0;
|
|
|
|
fail1:
|
|
del_mc_from_global_list(mci);
|
|
|
|
fail0:
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_add_mc);
|
|
|
|
/**
|
|
* edac_mc_del_mc: Remove sysfs entries for specified mci structure and
|
|
* remove mci structure from global list
|
|
* @pdev: Pointer to 'struct device' representing mci structure to remove.
|
|
*
|
|
* Return pointer to removed mci structure, or NULL if device not found.
|
|
*/
|
|
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
debugf0("%s()\n", __func__);
|
|
|
|
mutex_lock(&mem_ctls_mutex);
|
|
|
|
/* find the requested mci struct in the global list */
|
|
mci = find_mci_by_dev(dev);
|
|
if (mci == NULL) {
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
/* marking MCI offline */
|
|
mci->op_state = OP_OFFLINE;
|
|
|
|
del_mc_from_global_list(mci);
|
|
mutex_unlock(&mem_ctls_mutex);
|
|
|
|
/* flush workq processes and remove sysfs */
|
|
edac_mc_workq_teardown(mci);
|
|
edac_remove_sysfs_mci_device(mci);
|
|
|
|
edac_printk(KERN_INFO, EDAC_MC,
|
|
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
|
|
mci->mod_name, mci->ctl_name, edac_dev_name(mci));
|
|
|
|
return mci;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
|
|
|
|
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
|
|
u32 size)
|
|
{
|
|
struct page *pg;
|
|
void *virt_addr;
|
|
unsigned long flags = 0;
|
|
|
|
debugf3("%s()\n", __func__);
|
|
|
|
/* ECC error page was not in our memory. Ignore it. */
|
|
if (!pfn_valid(page))
|
|
return;
|
|
|
|
/* Find the actual page structure then map it and fix */
|
|
pg = pfn_to_page(page);
|
|
|
|
if (PageHighMem(pg))
|
|
local_irq_save(flags);
|
|
|
|
virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
|
|
|
|
/* Perform architecture specific atomic scrub operation */
|
|
atomic_scrub(virt_addr + offset, size);
|
|
|
|
/* Unmap and complete */
|
|
kunmap_atomic(virt_addr, KM_BOUNCE_READ);
|
|
|
|
if (PageHighMem(pg))
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* FIXME - should return -1 */
|
|
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
|
|
{
|
|
struct csrow_info *csrows = mci->csrows;
|
|
int row, i;
|
|
|
|
debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
|
|
row = -1;
|
|
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
struct csrow_info *csrow = &csrows[i];
|
|
|
|
if (csrow->nr_pages == 0)
|
|
continue;
|
|
|
|
debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
|
|
"mask(0x%lx)\n", mci->mc_idx, __func__,
|
|
csrow->first_page, page, csrow->last_page,
|
|
csrow->page_mask);
|
|
|
|
if ((page >= csrow->first_page) &&
|
|
(page <= csrow->last_page) &&
|
|
((page & csrow->page_mask) ==
|
|
(csrow->first_page & csrow->page_mask))) {
|
|
row = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (row == -1)
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"could not look up page error address %lx\n",
|
|
(unsigned long)page);
|
|
|
|
return row;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
|
|
|
|
/* FIXME - setable log (warning/emerg) levels */
|
|
/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
|
|
void edac_mc_handle_ce(struct mem_ctl_info *mci,
|
|
unsigned long page_frame_number,
|
|
unsigned long offset_in_page, unsigned long syndrome,
|
|
int row, int channel, const char *msg)
|
|
{
|
|
unsigned long remapped_page;
|
|
|
|
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
|
|
|
|
/* FIXME - maybe make panic on INTERNAL ERROR an option */
|
|
if (row >= mci->nr_csrows || row < 0) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: row out of range "
|
|
"(%d >= %d)\n", row, mci->nr_csrows);
|
|
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
if (channel >= mci->csrows[row].nr_channels || channel < 0) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: channel out of range "
|
|
"(%d >= %d)\n", channel,
|
|
mci->csrows[row].nr_channels);
|
|
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
if (edac_mc_get_log_ce())
|
|
/* FIXME - put in DIMM location */
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
|
|
"0x%lx, row %d, channel %d, label \"%s\": %s\n",
|
|
page_frame_number, offset_in_page,
|
|
mci->csrows[row].grain, syndrome, row, channel,
|
|
mci->csrows[row].channels[channel].label, msg);
|
|
|
|
mci->ce_count++;
|
|
mci->csrows[row].ce_count++;
|
|
mci->csrows[row].channels[channel].ce_count++;
|
|
|
|
if (mci->scrub_mode & SCRUB_SW_SRC) {
|
|
/*
|
|
* Some MC's can remap memory so that it is still available
|
|
* at a different address when PCI devices map into memory.
|
|
* MC's that can't do this lose the memory where PCI devices
|
|
* are mapped. This mapping is MC dependant and so we call
|
|
* back into the MC driver for it to map the MC page to
|
|
* a physical (CPU) page which can then be mapped to a virtual
|
|
* page - which can then be scrubbed.
|
|
*/
|
|
remapped_page = mci->ctl_page_to_phys ?
|
|
mci->ctl_page_to_phys(mci, page_frame_number) :
|
|
page_frame_number;
|
|
|
|
edac_mc_scrub_block(remapped_page, offset_in_page,
|
|
mci->csrows[row].grain);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
|
|
|
|
void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
|
|
{
|
|
if (edac_mc_get_log_ce())
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"CE - no information available: %s\n", msg);
|
|
|
|
mci->ce_noinfo_count++;
|
|
mci->ce_count++;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
|
|
|
|
void edac_mc_handle_ue(struct mem_ctl_info *mci,
|
|
unsigned long page_frame_number,
|
|
unsigned long offset_in_page, int row, const char *msg)
|
|
{
|
|
int len = EDAC_MC_LABEL_LEN * 4;
|
|
char labels[len + 1];
|
|
char *pos = labels;
|
|
int chan;
|
|
int chars;
|
|
|
|
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
|
|
|
|
/* FIXME - maybe make panic on INTERNAL ERROR an option */
|
|
if (row >= mci->nr_csrows || row < 0) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: row out of range "
|
|
"(%d >= %d)\n", row, mci->nr_csrows);
|
|
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
chars = snprintf(pos, len + 1, "%s",
|
|
mci->csrows[row].channels[0].label);
|
|
len -= chars;
|
|
pos += chars;
|
|
|
|
for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
|
|
chan++) {
|
|
chars = snprintf(pos, len + 1, ":%s",
|
|
mci->csrows[row].channels[chan].label);
|
|
len -= chars;
|
|
pos += chars;
|
|
}
|
|
|
|
if (edac_mc_get_log_ue())
|
|
edac_mc_printk(mci, KERN_EMERG,
|
|
"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
|
|
"labels \"%s\": %s\n", page_frame_number,
|
|
offset_in_page, mci->csrows[row].grain, row,
|
|
labels, msg);
|
|
|
|
if (edac_mc_get_panic_on_ue())
|
|
panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
|
|
"row %d, labels \"%s\": %s\n", mci->mc_idx,
|
|
page_frame_number, offset_in_page,
|
|
mci->csrows[row].grain, row, labels, msg);
|
|
|
|
mci->ue_count++;
|
|
mci->csrows[row].ue_count++;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
|
|
|
|
void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
|
|
{
|
|
if (edac_mc_get_panic_on_ue())
|
|
panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
|
|
|
|
if (edac_mc_get_log_ue())
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"UE - no information available: %s\n", msg);
|
|
mci->ue_noinfo_count++;
|
|
mci->ue_count++;
|
|
}
|
|
EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
|
|
|
|
/*************************************************************
|
|
* On Fully Buffered DIMM modules, this help function is
|
|
* called to process UE events
|
|
*/
|
|
void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
|
|
unsigned int csrow,
|
|
unsigned int channela,
|
|
unsigned int channelb, char *msg)
|
|
{
|
|
int len = EDAC_MC_LABEL_LEN * 4;
|
|
char labels[len + 1];
|
|
char *pos = labels;
|
|
int chars;
|
|
|
|
if (csrow >= mci->nr_csrows) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: row out of range (%d >= %d)\n",
|
|
csrow, mci->nr_csrows);
|
|
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
if (channela >= mci->csrows[csrow].nr_channels) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: channel-a out of range "
|
|
"(%d >= %d)\n",
|
|
channela, mci->csrows[csrow].nr_channels);
|
|
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
if (channelb >= mci->csrows[csrow].nr_channels) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: channel-b out of range "
|
|
"(%d >= %d)\n",
|
|
channelb, mci->csrows[csrow].nr_channels);
|
|
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
mci->ue_count++;
|
|
mci->csrows[csrow].ue_count++;
|
|
|
|
/* Generate the DIMM labels from the specified channels */
|
|
chars = snprintf(pos, len + 1, "%s",
|
|
mci->csrows[csrow].channels[channela].label);
|
|
len -= chars;
|
|
pos += chars;
|
|
chars = snprintf(pos, len + 1, "-%s",
|
|
mci->csrows[csrow].channels[channelb].label);
|
|
|
|
if (edac_mc_get_log_ue())
|
|
edac_mc_printk(mci, KERN_EMERG,
|
|
"UE row %d, channel-a= %d channel-b= %d "
|
|
"labels \"%s\": %s\n", csrow, channela, channelb,
|
|
labels, msg);
|
|
|
|
if (edac_mc_get_panic_on_ue())
|
|
panic("UE row %d, channel-a= %d channel-b= %d "
|
|
"labels \"%s\": %s\n", csrow, channela,
|
|
channelb, labels, msg);
|
|
}
|
|
EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
|
|
|
|
/*************************************************************
|
|
* On Fully Buffered DIMM modules, this help function is
|
|
* called to process CE events
|
|
*/
|
|
void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
|
|
unsigned int csrow, unsigned int channel, char *msg)
|
|
{
|
|
|
|
/* Ensure boundary values */
|
|
if (csrow >= mci->nr_csrows) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: row out of range (%d >= %d)\n",
|
|
csrow, mci->nr_csrows);
|
|
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
if (channel >= mci->csrows[csrow].nr_channels) {
|
|
/* something is wrong */
|
|
edac_mc_printk(mci, KERN_ERR,
|
|
"INTERNAL ERROR: channel out of range (%d >= %d)\n",
|
|
channel, mci->csrows[csrow].nr_channels);
|
|
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
|
|
return;
|
|
}
|
|
|
|
if (edac_mc_get_log_ce())
|
|
/* FIXME - put in DIMM location */
|
|
edac_mc_printk(mci, KERN_WARNING,
|
|
"CE row %d, channel %d, label \"%s\": %s\n",
|
|
csrow, channel,
|
|
mci->csrows[csrow].channels[channel].label, msg);
|
|
|
|
mci->ce_count++;
|
|
mci->csrows[csrow].ce_count++;
|
|
mci->csrows[csrow].channels[channel].ce_count++;
|
|
}
|
|
EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
|