e8c7c48234
It's more than the au1000 these days. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
979 lines
26 KiB
C
979 lines
26 KiB
C
/*
|
|
*
|
|
* BRIEF MODULE DESCRIPTION
|
|
* The Descriptor Based DMA channel manager that first appeared
|
|
* on the Au1550. I started with dma.c, but I think all that is
|
|
* left is this initial comment :-)
|
|
*
|
|
* Copyright 2004 Embedded Edge, LLC
|
|
* dan@embeddededge.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
|
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
#include <asm/mach-au1x00/au1xxx_dbdma.h>
|
|
|
|
#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
|
|
|
|
/*
|
|
* The Descriptor Based DMA supports up to 16 channels.
|
|
*
|
|
* There are 32 devices defined. We keep an internal structure
|
|
* of devices using these channels, along with additional
|
|
* information.
|
|
*
|
|
* We allocate the descriptors and allow access to them through various
|
|
* functions. The drivers allocate the data buffers and assign them
|
|
* to the descriptors.
|
|
*/
|
|
static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
|
|
|
|
/* I couldn't find a macro that did this... */
|
|
#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
|
|
|
|
static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
|
|
static int dbdma_initialized;
|
|
static void au1xxx_dbdma_init(void);
|
|
|
|
static dbdev_tab_t dbdev_tab[] = {
|
|
#ifdef CONFIG_SOC_AU1550
|
|
/* UARTS */
|
|
{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
|
|
{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
|
|
{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
|
|
{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
|
|
|
|
/* EXT DMA */
|
|
{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
/* USB DEV */
|
|
{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
|
|
{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
|
|
{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
|
|
{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
|
|
{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
|
|
{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
|
|
|
|
/* PSC 0 */
|
|
{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
|
|
|
|
/* PSC 1 */
|
|
{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
|
|
|
|
/* PSC 2 */
|
|
{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
|
|
|
|
/* PSC 3 */
|
|
{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
|
|
|
|
{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
|
|
{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
|
|
|
|
/* MAC 0 */
|
|
{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
/* MAC 1 */
|
|
{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
#endif /* CONFIG_SOC_AU1550 */
|
|
|
|
#ifdef CONFIG_SOC_AU1200
|
|
{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
|
|
{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
|
|
{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
|
|
{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
|
|
|
|
{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
|
|
{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
|
|
{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
|
|
{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
|
|
|
|
{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
|
|
{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
|
|
|
|
{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
|
|
{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
|
|
{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
|
|
{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
|
|
{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
#endif /* CONFIG_SOC_AU1200 */
|
|
|
|
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
|
|
|
|
/* Provide 16 user definable device types */
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
{ ~0, 0, 0, 0, 0, 0, 0 },
|
|
};
|
|
|
|
#define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
|
|
|
|
static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
|
|
|
|
static dbdev_tab_t *find_dbdev_id(u32 id)
|
|
{
|
|
int i;
|
|
dbdev_tab_t *p;
|
|
for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
|
|
p = &dbdev_tab[i];
|
|
if (p->dev_id == id)
|
|
return p;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
|
|
{
|
|
return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
|
|
|
|
u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
|
|
{
|
|
u32 ret = 0;
|
|
dbdev_tab_t *p;
|
|
static u16 new_id = 0x1000;
|
|
|
|
p = find_dbdev_id(~0);
|
|
if (NULL != p) {
|
|
memcpy(p, dev, sizeof(dbdev_tab_t));
|
|
p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
|
|
ret = p->dev_id;
|
|
new_id++;
|
|
#if 0
|
|
printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
|
|
p->dev_id, p->dev_flags, p->dev_physaddr);
|
|
#endif
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_ddma_add_device);
|
|
|
|
void au1xxx_ddma_del_device(u32 devid)
|
|
{
|
|
dbdev_tab_t *p = find_dbdev_id(devid);
|
|
|
|
if (p != NULL) {
|
|
memset(p, 0, sizeof(dbdev_tab_t));
|
|
p->dev_id = ~0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_ddma_del_device);
|
|
|
|
/* Allocate a channel and return a non-zero descriptor if successful. */
|
|
u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
|
|
void (*callback)(int, void *), void *callparam)
|
|
{
|
|
unsigned long flags;
|
|
u32 used, chan, rv;
|
|
u32 dcp;
|
|
int i;
|
|
dbdev_tab_t *stp, *dtp;
|
|
chan_tab_t *ctp;
|
|
au1x_dma_chan_t *cp;
|
|
|
|
/*
|
|
* We do the intialization on the first channel allocation.
|
|
* We have to wait because of the interrupt handler initialization
|
|
* which can't be done successfully during board set up.
|
|
*/
|
|
if (!dbdma_initialized)
|
|
au1xxx_dbdma_init();
|
|
dbdma_initialized = 1;
|
|
|
|
stp = find_dbdev_id(srcid);
|
|
if (stp == NULL)
|
|
return 0;
|
|
dtp = find_dbdev_id(destid);
|
|
if (dtp == NULL)
|
|
return 0;
|
|
|
|
used = 0;
|
|
rv = 0;
|
|
|
|
/* Check to see if we can get both channels. */
|
|
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
|
|
if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
|
|
(stp->dev_flags & DEV_FLAGS_ANYUSE)) {
|
|
/* Got source */
|
|
stp->dev_flags |= DEV_FLAGS_INUSE;
|
|
if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
|
|
(dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
|
|
/* Got destination */
|
|
dtp->dev_flags |= DEV_FLAGS_INUSE;
|
|
} else {
|
|
/* Can't get dest. Release src. */
|
|
stp->dev_flags &= ~DEV_FLAGS_INUSE;
|
|
used++;
|
|
}
|
|
} else
|
|
used++;
|
|
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
|
|
|
|
if (!used) {
|
|
/* Let's see if we can allocate a channel for it. */
|
|
ctp = NULL;
|
|
chan = 0;
|
|
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
|
|
for (i = 0; i < NUM_DBDMA_CHANS; i++)
|
|
if (chan_tab_ptr[i] == NULL) {
|
|
/*
|
|
* If kmalloc fails, it is caught below same
|
|
* as a channel not available.
|
|
*/
|
|
ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
|
|
chan_tab_ptr[i] = ctp;
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
|
|
|
|
if (ctp != NULL) {
|
|
memset(ctp, 0, sizeof(chan_tab_t));
|
|
ctp->chan_index = chan = i;
|
|
dcp = DDMA_CHANNEL_BASE;
|
|
dcp += (0x0100 * chan);
|
|
ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
|
|
cp = (au1x_dma_chan_t *)dcp;
|
|
ctp->chan_src = stp;
|
|
ctp->chan_dest = dtp;
|
|
ctp->chan_callback = callback;
|
|
ctp->chan_callparam = callparam;
|
|
|
|
/* Initialize channel configuration. */
|
|
i = 0;
|
|
if (stp->dev_intlevel)
|
|
i |= DDMA_CFG_SED;
|
|
if (stp->dev_intpolarity)
|
|
i |= DDMA_CFG_SP;
|
|
if (dtp->dev_intlevel)
|
|
i |= DDMA_CFG_DED;
|
|
if (dtp->dev_intpolarity)
|
|
i |= DDMA_CFG_DP;
|
|
if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
|
|
(dtp->dev_flags & DEV_FLAGS_SYNC))
|
|
i |= DDMA_CFG_SYNC;
|
|
cp->ddma_cfg = i;
|
|
au_sync();
|
|
|
|
/* Return a non-zero value that can be used to
|
|
* find the channel information in subsequent
|
|
* operations.
|
|
*/
|
|
rv = (u32)(&chan_tab_ptr[chan]);
|
|
} else {
|
|
/* Release devices */
|
|
stp->dev_flags &= ~DEV_FLAGS_INUSE;
|
|
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
|
|
|
|
/*
|
|
* Set the device width if source or destination is a FIFO.
|
|
* Should be 8, 16, or 32 bits.
|
|
*/
|
|
u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
|
|
{
|
|
u32 rv;
|
|
chan_tab_t *ctp;
|
|
dbdev_tab_t *stp, *dtp;
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
stp = ctp->chan_src;
|
|
dtp = ctp->chan_dest;
|
|
rv = 0;
|
|
|
|
if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
|
|
rv = stp->dev_devwidth;
|
|
stp->dev_devwidth = bits;
|
|
}
|
|
if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
|
|
rv = dtp->dev_devwidth;
|
|
dtp->dev_devwidth = bits;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
|
|
|
|
/* Allocate a descriptor ring, initializing as much as possible. */
|
|
u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
|
|
{
|
|
int i;
|
|
u32 desc_base, srcid, destid;
|
|
u32 cmd0, cmd1, src1, dest1;
|
|
u32 src0, dest0;
|
|
chan_tab_t *ctp;
|
|
dbdev_tab_t *stp, *dtp;
|
|
au1x_ddma_desc_t *dp;
|
|
|
|
/*
|
|
* I guess we could check this to be within the
|
|
* range of the table......
|
|
*/
|
|
ctp = *((chan_tab_t **)chanid);
|
|
stp = ctp->chan_src;
|
|
dtp = ctp->chan_dest;
|
|
|
|
/*
|
|
* The descriptors must be 32-byte aligned. There is a
|
|
* possibility the allocation will give us such an address,
|
|
* and if we try that first we are likely to not waste larger
|
|
* slabs of memory.
|
|
*/
|
|
desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
|
|
GFP_KERNEL|GFP_DMA);
|
|
if (desc_base == 0)
|
|
return 0;
|
|
|
|
if (desc_base & 0x1f) {
|
|
/*
|
|
* Lost....do it again, allocate extra, and round
|
|
* the address base.
|
|
*/
|
|
kfree((const void *)desc_base);
|
|
i = entries * sizeof(au1x_ddma_desc_t);
|
|
i += (sizeof(au1x_ddma_desc_t) - 1);
|
|
desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
|
|
if (desc_base == 0)
|
|
return 0;
|
|
|
|
desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
|
|
}
|
|
dp = (au1x_ddma_desc_t *)desc_base;
|
|
|
|
/* Keep track of the base descriptor. */
|
|
ctp->chan_desc_base = dp;
|
|
|
|
/* Initialize the rings with as much information as we know. */
|
|
srcid = stp->dev_id;
|
|
destid = dtp->dev_id;
|
|
|
|
cmd0 = cmd1 = src1 = dest1 = 0;
|
|
src0 = dest0 = 0;
|
|
|
|
cmd0 |= DSCR_CMD0_SID(srcid);
|
|
cmd0 |= DSCR_CMD0_DID(destid);
|
|
cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
|
|
cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
|
|
|
|
/* Is it mem to mem transfer? */
|
|
if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
|
|
(DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
|
|
((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
|
|
(DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
|
|
cmd0 |= DSCR_CMD0_MEM;
|
|
|
|
switch (stp->dev_devwidth) {
|
|
case 8:
|
|
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
|
|
break;
|
|
case 16:
|
|
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
|
|
break;
|
|
case 32:
|
|
default:
|
|
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
|
|
break;
|
|
}
|
|
|
|
switch (dtp->dev_devwidth) {
|
|
case 8:
|
|
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
|
|
break;
|
|
case 16:
|
|
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
|
|
break;
|
|
case 32:
|
|
default:
|
|
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the device is marked as an in/out FIFO, ensure it is
|
|
* set non-coherent.
|
|
*/
|
|
if (stp->dev_flags & DEV_FLAGS_IN)
|
|
cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
|
|
if (dtp->dev_flags & DEV_FLAGS_OUT)
|
|
cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
|
|
|
|
/*
|
|
* Set up source1. For now, assume no stride and increment.
|
|
* A channel attribute update can change this later.
|
|
*/
|
|
switch (stp->dev_tsize) {
|
|
case 1:
|
|
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
|
|
break;
|
|
case 2:
|
|
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
|
|
break;
|
|
case 4:
|
|
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
|
|
break;
|
|
case 8:
|
|
default:
|
|
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
|
|
break;
|
|
}
|
|
|
|
/* If source input is FIFO, set static address. */
|
|
if (stp->dev_flags & DEV_FLAGS_IN) {
|
|
if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
|
|
src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
|
|
else
|
|
src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
|
|
}
|
|
|
|
if (stp->dev_physaddr)
|
|
src0 = stp->dev_physaddr;
|
|
|
|
/*
|
|
* Set up dest1. For now, assume no stride and increment.
|
|
* A channel attribute update can change this later.
|
|
*/
|
|
switch (dtp->dev_tsize) {
|
|
case 1:
|
|
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
|
|
break;
|
|
case 2:
|
|
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
|
|
break;
|
|
case 4:
|
|
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
|
|
break;
|
|
case 8:
|
|
default:
|
|
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
|
|
break;
|
|
}
|
|
|
|
/* If destination output is FIFO, set static address. */
|
|
if (dtp->dev_flags & DEV_FLAGS_OUT) {
|
|
if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
|
|
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
|
|
else
|
|
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
|
|
}
|
|
|
|
if (dtp->dev_physaddr)
|
|
dest0 = dtp->dev_physaddr;
|
|
|
|
#if 0
|
|
printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
|
|
"source1:%x dest0:%x dest1:%x\n",
|
|
dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
|
|
src1, dest0, dest1);
|
|
#endif
|
|
for (i = 0; i < entries; i++) {
|
|
dp->dscr_cmd0 = cmd0;
|
|
dp->dscr_cmd1 = cmd1;
|
|
dp->dscr_source0 = src0;
|
|
dp->dscr_source1 = src1;
|
|
dp->dscr_dest0 = dest0;
|
|
dp->dscr_dest1 = dest1;
|
|
dp->dscr_stat = 0;
|
|
dp->sw_context = 0;
|
|
dp->sw_status = 0;
|
|
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
|
|
dp++;
|
|
}
|
|
|
|
/* Make last descrptor point to the first. */
|
|
dp--;
|
|
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
|
|
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
|
|
|
|
return (u32)ctp->chan_desc_base;
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
|
|
|
|
/*
|
|
* Put a source buffer into the DMA ring.
|
|
* This updates the source pointer and byte count. Normally used
|
|
* for memory to fifo transfers.
|
|
*/
|
|
u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
|
|
/*
|
|
* I guess we could check this to be within the
|
|
* range of the table......
|
|
*/
|
|
ctp = *(chan_tab_t **)chanid;
|
|
|
|
/*
|
|
* We should have multiple callers for a particular channel,
|
|
* an interrupt doesn't affect this pointer nor the descriptor,
|
|
* so no locking should be needed.
|
|
*/
|
|
dp = ctp->put_ptr;
|
|
|
|
/*
|
|
* If the descriptor is valid, we are way ahead of the DMA
|
|
* engine, so just return an error condition.
|
|
*/
|
|
if (dp->dscr_cmd0 & DSCR_CMD0_V)
|
|
return 0;
|
|
|
|
/* Load up buffer address and byte count. */
|
|
dp->dscr_source0 = virt_to_phys(buf);
|
|
dp->dscr_cmd1 = nbytes;
|
|
/* Check flags */
|
|
if (flags & DDMA_FLAGS_IE)
|
|
dp->dscr_cmd0 |= DSCR_CMD0_IE;
|
|
if (flags & DDMA_FLAGS_NOIE)
|
|
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
|
|
|
|
/*
|
|
* There is an errata on the Au1200/Au1550 parts that could result
|
|
* in "stale" data being DMA'ed. It has to do with the snoop logic on
|
|
* the cache eviction buffer. DMA_NONCOHERENT is on by default for
|
|
* these parts. If it is fixed in the future, these dma_cache_inv will
|
|
* just be nothing more than empty macros. See io.h.
|
|
*/
|
|
dma_cache_wback_inv((unsigned long)buf, nbytes);
|
|
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
|
|
au_sync();
|
|
dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
|
|
ctp->chan_ptr->ddma_dbell = 0;
|
|
|
|
/* Get next descriptor pointer. */
|
|
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
|
|
/* Return something non-zero. */
|
|
return nbytes;
|
|
}
|
|
EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
|
|
|
|
/* Put a destination buffer into the DMA ring.
|
|
* This updates the destination pointer and byte count. Normally used
|
|
* to place an empty buffer into the ring for fifo to memory transfers.
|
|
*/
|
|
u32
|
|
_au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
|
|
/* I guess we could check this to be within the
|
|
* range of the table......
|
|
*/
|
|
ctp = *((chan_tab_t **)chanid);
|
|
|
|
/* We should have multiple callers for a particular channel,
|
|
* an interrupt doesn't affect this pointer nor the descriptor,
|
|
* so no locking should be needed.
|
|
*/
|
|
dp = ctp->put_ptr;
|
|
|
|
/* If the descriptor is valid, we are way ahead of the DMA
|
|
* engine, so just return an error condition.
|
|
*/
|
|
if (dp->dscr_cmd0 & DSCR_CMD0_V)
|
|
return 0;
|
|
|
|
/* Load up buffer address and byte count */
|
|
|
|
/* Check flags */
|
|
if (flags & DDMA_FLAGS_IE)
|
|
dp->dscr_cmd0 |= DSCR_CMD0_IE;
|
|
if (flags & DDMA_FLAGS_NOIE)
|
|
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
|
|
|
|
dp->dscr_dest0 = virt_to_phys(buf);
|
|
dp->dscr_cmd1 = nbytes;
|
|
#if 0
|
|
printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
|
|
dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
|
|
dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
|
|
#endif
|
|
/*
|
|
* There is an errata on the Au1200/Au1550 parts that could result in
|
|
* "stale" data being DMA'ed. It has to do with the snoop logic on the
|
|
* cache eviction buffer. DMA_NONCOHERENT is on by default for these
|
|
* parts. If it is fixed in the future, these dma_cache_inv will just
|
|
* be nothing more than empty macros. See io.h.
|
|
*/
|
|
dma_cache_inv((unsigned long)buf, nbytes);
|
|
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
|
|
au_sync();
|
|
dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
|
|
ctp->chan_ptr->ddma_dbell = 0;
|
|
|
|
/* Get next descriptor pointer. */
|
|
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
|
|
/* Return something non-zero. */
|
|
return nbytes;
|
|
}
|
|
EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
|
|
|
|
/*
|
|
* Get a destination buffer into the DMA ring.
|
|
* Normally used to get a full buffer from the ring during fifo
|
|
* to memory transfers. This does not set the valid bit, you will
|
|
* have to put another destination buffer to keep the DMA going.
|
|
*/
|
|
u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
u32 rv;
|
|
|
|
/*
|
|
* I guess we could check this to be within the
|
|
* range of the table......
|
|
*/
|
|
ctp = *((chan_tab_t **)chanid);
|
|
|
|
/*
|
|
* We should have multiple callers for a particular channel,
|
|
* an interrupt doesn't affect this pointer nor the descriptor,
|
|
* so no locking should be needed.
|
|
*/
|
|
dp = ctp->get_ptr;
|
|
|
|
/*
|
|
* If the descriptor is valid, we are way ahead of the DMA
|
|
* engine, so just return an error condition.
|
|
*/
|
|
if (dp->dscr_cmd0 & DSCR_CMD0_V)
|
|
return 0;
|
|
|
|
/* Return buffer address and byte count. */
|
|
*buf = (void *)(phys_to_virt(dp->dscr_dest0));
|
|
*nbytes = dp->dscr_cmd1;
|
|
rv = dp->dscr_stat;
|
|
|
|
/* Get next descriptor pointer. */
|
|
ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
|
|
/* Return something non-zero. */
|
|
return rv;
|
|
}
|
|
EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
|
|
|
|
void au1xxx_dbdma_stop(u32 chanid)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_dma_chan_t *cp;
|
|
int halt_timeout = 0;
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
|
|
cp = ctp->chan_ptr;
|
|
cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
|
|
au_sync();
|
|
while (!(cp->ddma_stat & DDMA_STAT_H)) {
|
|
udelay(1);
|
|
halt_timeout++;
|
|
if (halt_timeout > 100) {
|
|
printk(KERN_WARNING "warning: DMA channel won't halt\n");
|
|
break;
|
|
}
|
|
}
|
|
/* clear current desc valid and doorbell */
|
|
cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
|
|
au_sync();
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_stop);
|
|
|
|
/*
|
|
* Start using the current descriptor pointer. If the DBDMA encounters
|
|
* a non-valid descriptor, it will stop. In this case, we can just
|
|
* continue by adding a buffer to the list and starting again.
|
|
*/
|
|
void au1xxx_dbdma_start(u32 chanid)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_dma_chan_t *cp;
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
cp = ctp->chan_ptr;
|
|
cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
|
|
cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
|
|
au_sync();
|
|
cp->ddma_dbell = 0;
|
|
au_sync();
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_start);
|
|
|
|
void au1xxx_dbdma_reset(u32 chanid)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
|
|
au1xxx_dbdma_stop(chanid);
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
|
|
|
|
/* Run through the descriptors and reset the valid indicator. */
|
|
dp = ctp->chan_desc_base;
|
|
|
|
do {
|
|
dp->dscr_cmd0 &= ~DSCR_CMD0_V;
|
|
/*
|
|
* Reset our software status -- this is used to determine
|
|
* if a descriptor is in use by upper level software. Since
|
|
* posting can reset 'V' bit.
|
|
*/
|
|
dp->sw_status = 0;
|
|
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
} while (dp != ctp->chan_desc_base);
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_reset);
|
|
|
|
u32 au1xxx_get_dma_residue(u32 chanid)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_dma_chan_t *cp;
|
|
u32 rv;
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
cp = ctp->chan_ptr;
|
|
|
|
/* This is only valid if the channel is stopped. */
|
|
rv = cp->ddma_bytecnt;
|
|
au_sync();
|
|
|
|
return rv;
|
|
}
|
|
EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
|
|
|
|
void au1xxx_dbdma_chan_free(u32 chanid)
|
|
{
|
|
chan_tab_t *ctp;
|
|
dbdev_tab_t *stp, *dtp;
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
stp = ctp->chan_src;
|
|
dtp = ctp->chan_dest;
|
|
|
|
au1xxx_dbdma_stop(chanid);
|
|
|
|
kfree((void *)ctp->chan_desc_base);
|
|
|
|
stp->dev_flags &= ~DEV_FLAGS_INUSE;
|
|
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
|
|
chan_tab_ptr[ctp->chan_index] = NULL;
|
|
|
|
kfree(ctp);
|
|
}
|
|
EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
|
|
|
|
static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
|
|
{
|
|
u32 intstat;
|
|
u32 chan_index;
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
au1x_dma_chan_t *cp;
|
|
|
|
intstat = dbdma_gptr->ddma_intstat;
|
|
au_sync();
|
|
chan_index = __ffs(intstat);
|
|
|
|
ctp = chan_tab_ptr[chan_index];
|
|
cp = ctp->chan_ptr;
|
|
dp = ctp->cur_ptr;
|
|
|
|
/* Reset interrupt. */
|
|
cp->ddma_irq = 0;
|
|
au_sync();
|
|
|
|
if (ctp->chan_callback)
|
|
ctp->chan_callback(irq, ctp->chan_callparam);
|
|
|
|
ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
return IRQ_RETVAL(1);
|
|
}
|
|
|
|
static void au1xxx_dbdma_init(void)
|
|
{
|
|
int irq_nr;
|
|
|
|
dbdma_gptr->ddma_config = 0;
|
|
dbdma_gptr->ddma_throttle = 0;
|
|
dbdma_gptr->ddma_inten = 0xffff;
|
|
au_sync();
|
|
|
|
#if defined(CONFIG_SOC_AU1550)
|
|
irq_nr = AU1550_DDMA_INT;
|
|
#elif defined(CONFIG_SOC_AU1200)
|
|
irq_nr = AU1200_DDMA_INT;
|
|
#else
|
|
#error Unknown Au1x00 SOC
|
|
#endif
|
|
|
|
if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
|
|
"Au1xxx dbdma", (void *)dbdma_gptr))
|
|
printk(KERN_ERR "Can't get 1550 dbdma irq");
|
|
}
|
|
|
|
void au1xxx_dbdma_dump(u32 chanid)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
dbdev_tab_t *stp, *dtp;
|
|
au1x_dma_chan_t *cp;
|
|
u32 i = 0;
|
|
|
|
ctp = *((chan_tab_t **)chanid);
|
|
stp = ctp->chan_src;
|
|
dtp = ctp->chan_dest;
|
|
cp = ctp->chan_ptr;
|
|
|
|
printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
|
|
(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
|
|
dtp - dbdev_tab);
|
|
printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
|
|
(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
|
|
(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
|
|
|
|
printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
|
|
printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
|
|
cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
|
|
printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
|
|
cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
|
|
cp->ddma_bytecnt);
|
|
|
|
/* Run through the descriptors */
|
|
dp = ctp->chan_desc_base;
|
|
|
|
do {
|
|
printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
|
|
i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
|
|
printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
|
|
dp->dscr_source0, dp->dscr_source1,
|
|
dp->dscr_dest0, dp->dscr_dest1);
|
|
printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
|
|
dp->dscr_stat, dp->dscr_nxtptr);
|
|
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
} while (dp != ctp->chan_desc_base);
|
|
}
|
|
|
|
/* Put a descriptor into the DMA ring.
|
|
* This updates the source/destination pointers and byte count.
|
|
*/
|
|
u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
|
|
{
|
|
chan_tab_t *ctp;
|
|
au1x_ddma_desc_t *dp;
|
|
u32 nbytes = 0;
|
|
|
|
/*
|
|
* I guess we could check this to be within the
|
|
* range of the table......
|
|
*/
|
|
ctp = *((chan_tab_t **)chanid);
|
|
|
|
/*
|
|
* We should have multiple callers for a particular channel,
|
|
* an interrupt doesn't affect this pointer nor the descriptor,
|
|
* so no locking should be needed.
|
|
*/
|
|
dp = ctp->put_ptr;
|
|
|
|
/*
|
|
* If the descriptor is valid, we are way ahead of the DMA
|
|
* engine, so just return an error condition.
|
|
*/
|
|
if (dp->dscr_cmd0 & DSCR_CMD0_V)
|
|
return 0;
|
|
|
|
/* Load up buffer addresses and byte count. */
|
|
dp->dscr_dest0 = dscr->dscr_dest0;
|
|
dp->dscr_source0 = dscr->dscr_source0;
|
|
dp->dscr_dest1 = dscr->dscr_dest1;
|
|
dp->dscr_source1 = dscr->dscr_source1;
|
|
dp->dscr_cmd1 = dscr->dscr_cmd1;
|
|
nbytes = dscr->dscr_cmd1;
|
|
/* Allow the caller to specifiy if an interrupt is generated */
|
|
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
|
|
dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
|
|
ctp->chan_ptr->ddma_dbell = 0;
|
|
|
|
/* Get next descriptor pointer. */
|
|
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
|
|
|
|
/* Return something non-zero. */
|
|
return nbytes;
|
|
}
|
|
|
|
#endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
|