88f414f476
The debug attribute in /sys/class/video4linux/<devX>/debug was never documented. Add this. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
1157 lines
46 KiB
Plaintext
1157 lines
46 KiB
Plaintext
Overview of the V4L2 driver framework
|
|
=====================================
|
|
|
|
This text documents the various structures provided by the V4L2 framework and
|
|
their relationships.
|
|
|
|
|
|
Introduction
|
|
------------
|
|
|
|
The V4L2 drivers tend to be very complex due to the complexity of the
|
|
hardware: most devices have multiple ICs, export multiple device nodes in
|
|
/dev, and create also non-V4L2 devices such as DVB, ALSA, FB, I2C and input
|
|
(IR) devices.
|
|
|
|
Especially the fact that V4L2 drivers have to setup supporting ICs to
|
|
do audio/video muxing/encoding/decoding makes it more complex than most.
|
|
Usually these ICs are connected to the main bridge driver through one or
|
|
more I2C busses, but other busses can also be used. Such devices are
|
|
called 'sub-devices'.
|
|
|
|
For a long time the framework was limited to the video_device struct for
|
|
creating V4L device nodes and video_buf for handling the video buffers
|
|
(note that this document does not discuss the video_buf framework).
|
|
|
|
This meant that all drivers had to do the setup of device instances and
|
|
connecting to sub-devices themselves. Some of this is quite complicated
|
|
to do right and many drivers never did do it correctly.
|
|
|
|
There is also a lot of common code that could never be refactored due to
|
|
the lack of a framework.
|
|
|
|
So this framework sets up the basic building blocks that all drivers
|
|
need and this same framework should make it much easier to refactor
|
|
common code into utility functions shared by all drivers.
|
|
|
|
A good example to look at as a reference is the v4l2-pci-skeleton.c
|
|
source that is available in this directory. It is a skeleton driver for
|
|
a PCI capture card, and demonstrates how to use the V4L2 driver
|
|
framework. It can be used as a template for real PCI video capture driver.
|
|
|
|
Structure of a driver
|
|
---------------------
|
|
|
|
All drivers have the following structure:
|
|
|
|
1) A struct for each device instance containing the device state.
|
|
|
|
2) A way of initializing and commanding sub-devices (if any).
|
|
|
|
3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX and /dev/radioX)
|
|
and keeping track of device-node specific data.
|
|
|
|
4) Filehandle-specific structs containing per-filehandle data;
|
|
|
|
5) video buffer handling.
|
|
|
|
This is a rough schematic of how it all relates:
|
|
|
|
device instances
|
|
|
|
|
+-sub-device instances
|
|
|
|
|
\-V4L2 device nodes
|
|
|
|
|
\-filehandle instances
|
|
|
|
|
|
Structure of the framework
|
|
--------------------------
|
|
|
|
The framework closely resembles the driver structure: it has a v4l2_device
|
|
struct for the device instance data, a v4l2_subdev struct to refer to
|
|
sub-device instances, the video_device struct stores V4L2 device node data
|
|
and the v4l2_fh struct keeps track of filehandle instances.
|
|
|
|
The V4L2 framework also optionally integrates with the media framework. If a
|
|
driver sets the struct v4l2_device mdev field, sub-devices and video nodes
|
|
will automatically appear in the media framework as entities.
|
|
|
|
|
|
struct v4l2_device
|
|
------------------
|
|
|
|
Each device instance is represented by a struct v4l2_device (v4l2-device.h).
|
|
Very simple devices can just allocate this struct, but most of the time you
|
|
would embed this struct inside a larger struct.
|
|
|
|
You must register the device instance:
|
|
|
|
v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev);
|
|
|
|
Registration will initialize the v4l2_device struct. If the dev->driver_data
|
|
field is NULL, it will be linked to v4l2_dev.
|
|
|
|
Drivers that want integration with the media device framework need to set
|
|
dev->driver_data manually to point to the driver-specific device structure
|
|
that embed the struct v4l2_device instance. This is achieved by a
|
|
dev_set_drvdata() call before registering the V4L2 device instance. They must
|
|
also set the struct v4l2_device mdev field to point to a properly initialized
|
|
and registered media_device instance.
|
|
|
|
If v4l2_dev->name is empty then it will be set to a value derived from dev
|
|
(driver name followed by the bus_id, to be precise). If you set it up before
|
|
calling v4l2_device_register then it will be untouched. If dev is NULL, then
|
|
you *must* setup v4l2_dev->name before calling v4l2_device_register.
|
|
|
|
You can use v4l2_device_set_name() to set the name based on a driver name and
|
|
a driver-global atomic_t instance. This will generate names like ivtv0, ivtv1,
|
|
etc. If the name ends with a digit, then it will insert a dash: cx18-0,
|
|
cx18-1, etc. This function returns the instance number.
|
|
|
|
The first 'dev' argument is normally the struct device pointer of a pci_dev,
|
|
usb_interface or platform_device. It is rare for dev to be NULL, but it happens
|
|
with ISA devices or when one device creates multiple PCI devices, thus making
|
|
it impossible to associate v4l2_dev with a particular parent.
|
|
|
|
You can also supply a notify() callback that can be called by sub-devices to
|
|
notify you of events. Whether you need to set this depends on the sub-device.
|
|
Any notifications a sub-device supports must be defined in a header in
|
|
include/media/<subdevice>.h.
|
|
|
|
You unregister with:
|
|
|
|
v4l2_device_unregister(struct v4l2_device *v4l2_dev);
|
|
|
|
If the dev->driver_data field points to v4l2_dev, it will be reset to NULL.
|
|
Unregistering will also automatically unregister all subdevs from the device.
|
|
|
|
If you have a hotpluggable device (e.g. a USB device), then when a disconnect
|
|
happens the parent device becomes invalid. Since v4l2_device has a pointer to
|
|
that parent device it has to be cleared as well to mark that the parent is
|
|
gone. To do this call:
|
|
|
|
v4l2_device_disconnect(struct v4l2_device *v4l2_dev);
|
|
|
|
This does *not* unregister the subdevs, so you still need to call the
|
|
v4l2_device_unregister() function for that. If your driver is not hotpluggable,
|
|
then there is no need to call v4l2_device_disconnect().
|
|
|
|
Sometimes you need to iterate over all devices registered by a specific
|
|
driver. This is usually the case if multiple device drivers use the same
|
|
hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv
|
|
hardware. The same is true for alsa drivers for example.
|
|
|
|
You can iterate over all registered devices as follows:
|
|
|
|
static int callback(struct device *dev, void *p)
|
|
{
|
|
struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);
|
|
|
|
/* test if this device was inited */
|
|
if (v4l2_dev == NULL)
|
|
return 0;
|
|
...
|
|
return 0;
|
|
}
|
|
|
|
int iterate(void *p)
|
|
{
|
|
struct device_driver *drv;
|
|
int err;
|
|
|
|
/* Find driver 'ivtv' on the PCI bus.
|
|
pci_bus_type is a global. For USB busses use usb_bus_type. */
|
|
drv = driver_find("ivtv", &pci_bus_type);
|
|
/* iterate over all ivtv device instances */
|
|
err = driver_for_each_device(drv, NULL, p, callback);
|
|
put_driver(drv);
|
|
return err;
|
|
}
|
|
|
|
Sometimes you need to keep a running counter of the device instance. This is
|
|
commonly used to map a device instance to an index of a module option array.
|
|
|
|
The recommended approach is as follows:
|
|
|
|
static atomic_t drv_instance = ATOMIC_INIT(0);
|
|
|
|
static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
|
|
{
|
|
...
|
|
state->instance = atomic_inc_return(&drv_instance) - 1;
|
|
}
|
|
|
|
If you have multiple device nodes then it can be difficult to know when it is
|
|
safe to unregister v4l2_device for hotpluggable devices. For this purpose
|
|
v4l2_device has refcounting support. The refcount is increased whenever
|
|
video_register_device is called and it is decreased whenever that device node
|
|
is released. When the refcount reaches zero, then the v4l2_device release()
|
|
callback is called. You can do your final cleanup there.
|
|
|
|
If other device nodes (e.g. ALSA) are created, then you can increase and
|
|
decrease the refcount manually as well by calling:
|
|
|
|
void v4l2_device_get(struct v4l2_device *v4l2_dev);
|
|
|
|
or:
|
|
|
|
int v4l2_device_put(struct v4l2_device *v4l2_dev);
|
|
|
|
Since the initial refcount is 1 you also need to call v4l2_device_put in the
|
|
disconnect() callback (for USB devices) or in the remove() callback (for e.g.
|
|
PCI devices), otherwise the refcount will never reach 0.
|
|
|
|
struct v4l2_subdev
|
|
------------------
|
|
|
|
Many drivers need to communicate with sub-devices. These devices can do all
|
|
sort of tasks, but most commonly they handle audio and/or video muxing,
|
|
encoding or decoding. For webcams common sub-devices are sensors and camera
|
|
controllers.
|
|
|
|
Usually these are I2C devices, but not necessarily. In order to provide the
|
|
driver with a consistent interface to these sub-devices the v4l2_subdev struct
|
|
(v4l2-subdev.h) was created.
|
|
|
|
Each sub-device driver must have a v4l2_subdev struct. This struct can be
|
|
stand-alone for simple sub-devices or it might be embedded in a larger struct
|
|
if more state information needs to be stored. Usually there is a low-level
|
|
device struct (e.g. i2c_client) that contains the device data as setup
|
|
by the kernel. It is recommended to store that pointer in the private
|
|
data of v4l2_subdev using v4l2_set_subdevdata(). That makes it easy to go
|
|
from a v4l2_subdev to the actual low-level bus-specific device data.
|
|
|
|
You also need a way to go from the low-level struct to v4l2_subdev. For the
|
|
common i2c_client struct the i2c_set_clientdata() call is used to store a
|
|
v4l2_subdev pointer, for other busses you may have to use other methods.
|
|
|
|
Bridges might also need to store per-subdev private data, such as a pointer to
|
|
bridge-specific per-subdev private data. The v4l2_subdev structure provides
|
|
host private data for that purpose that can be accessed with
|
|
v4l2_get_subdev_hostdata() and v4l2_set_subdev_hostdata().
|
|
|
|
From the bridge driver perspective you load the sub-device module and somehow
|
|
obtain the v4l2_subdev pointer. For i2c devices this is easy: you call
|
|
i2c_get_clientdata(). For other busses something similar needs to be done.
|
|
Helper functions exists for sub-devices on an I2C bus that do most of this
|
|
tricky work for you.
|
|
|
|
Each v4l2_subdev contains function pointers that sub-device drivers can
|
|
implement (or leave NULL if it is not applicable). Since sub-devices can do
|
|
so many different things and you do not want to end up with a huge ops struct
|
|
of which only a handful of ops are commonly implemented, the function pointers
|
|
are sorted according to category and each category has its own ops struct.
|
|
|
|
The top-level ops struct contains pointers to the category ops structs, which
|
|
may be NULL if the subdev driver does not support anything from that category.
|
|
|
|
It looks like this:
|
|
|
|
struct v4l2_subdev_core_ops {
|
|
int (*log_status)(struct v4l2_subdev *sd);
|
|
int (*init)(struct v4l2_subdev *sd, u32 val);
|
|
...
|
|
};
|
|
|
|
struct v4l2_subdev_tuner_ops {
|
|
...
|
|
};
|
|
|
|
struct v4l2_subdev_audio_ops {
|
|
...
|
|
};
|
|
|
|
struct v4l2_subdev_video_ops {
|
|
...
|
|
};
|
|
|
|
struct v4l2_subdev_pad_ops {
|
|
...
|
|
};
|
|
|
|
struct v4l2_subdev_ops {
|
|
const struct v4l2_subdev_core_ops *core;
|
|
const struct v4l2_subdev_tuner_ops *tuner;
|
|
const struct v4l2_subdev_audio_ops *audio;
|
|
const struct v4l2_subdev_video_ops *video;
|
|
const struct v4l2_subdev_pad_ops *video;
|
|
};
|
|
|
|
The core ops are common to all subdevs, the other categories are implemented
|
|
depending on the sub-device. E.g. a video device is unlikely to support the
|
|
audio ops and vice versa.
|
|
|
|
This setup limits the number of function pointers while still making it easy
|
|
to add new ops and categories.
|
|
|
|
A sub-device driver initializes the v4l2_subdev struct using:
|
|
|
|
v4l2_subdev_init(sd, &ops);
|
|
|
|
Afterwards you need to initialize subdev->name with a unique name and set the
|
|
module owner. This is done for you if you use the i2c helper functions.
|
|
|
|
If integration with the media framework is needed, you must initialize the
|
|
media_entity struct embedded in the v4l2_subdev struct (entity field) by
|
|
calling media_entity_init():
|
|
|
|
struct media_pad *pads = &my_sd->pads;
|
|
int err;
|
|
|
|
err = media_entity_init(&sd->entity, npads, pads, 0);
|
|
|
|
The pads array must have been previously initialized. There is no need to
|
|
manually set the struct media_entity type and name fields, but the revision
|
|
field must be initialized if needed.
|
|
|
|
A reference to the entity will be automatically acquired/released when the
|
|
subdev device node (if any) is opened/closed.
|
|
|
|
Don't forget to cleanup the media entity before the sub-device is destroyed:
|
|
|
|
media_entity_cleanup(&sd->entity);
|
|
|
|
If the subdev driver intends to process video and integrate with the media
|
|
framework, it must implement format related functionality using
|
|
v4l2_subdev_pad_ops instead of v4l2_subdev_video_ops.
|
|
|
|
In that case, the subdev driver may set the link_validate field to provide
|
|
its own link validation function. The link validation function is called for
|
|
every link in the pipeline where both of the ends of the links are V4L2
|
|
sub-devices. The driver is still responsible for validating the correctness
|
|
of the format configuration between sub-devices and video nodes.
|
|
|
|
If link_validate op is not set, the default function
|
|
v4l2_subdev_link_validate_default() is used instead. This function ensures
|
|
that width, height and the media bus pixel code are equal on both source and
|
|
sink of the link. Subdev drivers are also free to use this function to
|
|
perform the checks mentioned above in addition to their own checks.
|
|
|
|
There are currently two ways to register subdevices with the V4L2 core. The
|
|
first (traditional) possibility is to have subdevices registered by bridge
|
|
drivers. This can be done when the bridge driver has the complete information
|
|
about subdevices connected to it and knows exactly when to register them. This
|
|
is typically the case for internal subdevices, like video data processing units
|
|
within SoCs or complex PCI(e) boards, camera sensors in USB cameras or connected
|
|
to SoCs, which pass information about them to bridge drivers, usually in their
|
|
platform data.
|
|
|
|
There are however also situations where subdevices have to be registered
|
|
asynchronously to bridge devices. An example of such a configuration is a Device
|
|
Tree based system where information about subdevices is made available to the
|
|
system independently from the bridge devices, e.g. when subdevices are defined
|
|
in DT as I2C device nodes. The API used in this second case is described further
|
|
below.
|
|
|
|
Using one or the other registration method only affects the probing process, the
|
|
run-time bridge-subdevice interaction is in both cases the same.
|
|
|
|
In the synchronous case a device (bridge) driver needs to register the
|
|
v4l2_subdev with the v4l2_device:
|
|
|
|
int err = v4l2_device_register_subdev(v4l2_dev, sd);
|
|
|
|
This can fail if the subdev module disappeared before it could be registered.
|
|
After this function was called successfully the subdev->dev field points to
|
|
the v4l2_device.
|
|
|
|
If the v4l2_device parent device has a non-NULL mdev field, the sub-device
|
|
entity will be automatically registered with the media device.
|
|
|
|
You can unregister a sub-device using:
|
|
|
|
v4l2_device_unregister_subdev(sd);
|
|
|
|
Afterwards the subdev module can be unloaded and sd->dev == NULL.
|
|
|
|
You can call an ops function either directly:
|
|
|
|
err = sd->ops->core->g_std(sd, &norm);
|
|
|
|
but it is better and easier to use this macro:
|
|
|
|
err = v4l2_subdev_call(sd, core, g_std, &norm);
|
|
|
|
The macro will to the right NULL pointer checks and returns -ENODEV if subdev
|
|
is NULL, -ENOIOCTLCMD if either subdev->core or subdev->core->g_std is
|
|
NULL, or the actual result of the subdev->ops->core->g_std ops.
|
|
|
|
It is also possible to call all or a subset of the sub-devices:
|
|
|
|
v4l2_device_call_all(v4l2_dev, 0, core, g_std, &norm);
|
|
|
|
Any subdev that does not support this ops is skipped and error results are
|
|
ignored. If you want to check for errors use this:
|
|
|
|
err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_std, &norm);
|
|
|
|
Any error except -ENOIOCTLCMD will exit the loop with that error. If no
|
|
errors (except -ENOIOCTLCMD) occurred, then 0 is returned.
|
|
|
|
The second argument to both calls is a group ID. If 0, then all subdevs are
|
|
called. If non-zero, then only those whose group ID match that value will
|
|
be called. Before a bridge driver registers a subdev it can set sd->grp_id
|
|
to whatever value it wants (it's 0 by default). This value is owned by the
|
|
bridge driver and the sub-device driver will never modify or use it.
|
|
|
|
The group ID gives the bridge driver more control how callbacks are called.
|
|
For example, there may be multiple audio chips on a board, each capable of
|
|
changing the volume. But usually only one will actually be used when the
|
|
user want to change the volume. You can set the group ID for that subdev to
|
|
e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling
|
|
v4l2_device_call_all(). That ensures that it will only go to the subdev
|
|
that needs it.
|
|
|
|
If the sub-device needs to notify its v4l2_device parent of an event, then
|
|
it can call v4l2_subdev_notify(sd, notification, arg). This macro checks
|
|
whether there is a notify() callback defined and returns -ENODEV if not.
|
|
Otherwise the result of the notify() call is returned.
|
|
|
|
The advantage of using v4l2_subdev is that it is a generic struct and does
|
|
not contain any knowledge about the underlying hardware. So a driver might
|
|
contain several subdevs that use an I2C bus, but also a subdev that is
|
|
controlled through GPIO pins. This distinction is only relevant when setting
|
|
up the device, but once the subdev is registered it is completely transparent.
|
|
|
|
|
|
In the asynchronous case subdevice probing can be invoked independently of the
|
|
bridge driver availability. The subdevice driver then has to verify whether all
|
|
the requirements for a successful probing are satisfied. This can include a
|
|
check for a master clock availability. If any of the conditions aren't satisfied
|
|
the driver might decide to return -EPROBE_DEFER to request further reprobing
|
|
attempts. Once all conditions are met the subdevice shall be registered using
|
|
the v4l2_async_register_subdev() function. Unregistration is performed using
|
|
the v4l2_async_unregister_subdev() call. Subdevices registered this way are
|
|
stored in a global list of subdevices, ready to be picked up by bridge drivers.
|
|
|
|
Bridge drivers in turn have to register a notifier object with an array of
|
|
subdevice descriptors that the bridge device needs for its operation. This is
|
|
performed using the v4l2_async_notifier_register() call. To unregister the
|
|
notifier the driver has to call v4l2_async_notifier_unregister(). The former of
|
|
the two functions takes two arguments: a pointer to struct v4l2_device and a
|
|
pointer to struct v4l2_async_notifier. The latter contains a pointer to an array
|
|
of pointers to subdevice descriptors of type struct v4l2_async_subdev type. The
|
|
V4L2 core will then use these descriptors to match asynchronously registered
|
|
subdevices to them. If a match is detected the .bound() notifier callback is
|
|
called. After all subdevices have been located the .complete() callback is
|
|
called. When a subdevice is removed from the system the .unbind() method is
|
|
called. All three callbacks are optional.
|
|
|
|
|
|
V4L2 sub-device userspace API
|
|
-----------------------------
|
|
|
|
Beside exposing a kernel API through the v4l2_subdev_ops structure, V4L2
|
|
sub-devices can also be controlled directly by userspace applications.
|
|
|
|
Device nodes named v4l-subdevX can be created in /dev to access sub-devices
|
|
directly. If a sub-device supports direct userspace configuration it must set
|
|
the V4L2_SUBDEV_FL_HAS_DEVNODE flag before being registered.
|
|
|
|
After registering sub-devices, the v4l2_device driver can create device nodes
|
|
for all registered sub-devices marked with V4L2_SUBDEV_FL_HAS_DEVNODE by calling
|
|
v4l2_device_register_subdev_nodes(). Those device nodes will be automatically
|
|
removed when sub-devices are unregistered.
|
|
|
|
The device node handles a subset of the V4L2 API.
|
|
|
|
VIDIOC_QUERYCTRL
|
|
VIDIOC_QUERYMENU
|
|
VIDIOC_G_CTRL
|
|
VIDIOC_S_CTRL
|
|
VIDIOC_G_EXT_CTRLS
|
|
VIDIOC_S_EXT_CTRLS
|
|
VIDIOC_TRY_EXT_CTRLS
|
|
|
|
The controls ioctls are identical to the ones defined in V4L2. They
|
|
behave identically, with the only exception that they deal only with
|
|
controls implemented in the sub-device. Depending on the driver, those
|
|
controls can be also be accessed through one (or several) V4L2 device
|
|
nodes.
|
|
|
|
VIDIOC_DQEVENT
|
|
VIDIOC_SUBSCRIBE_EVENT
|
|
VIDIOC_UNSUBSCRIBE_EVENT
|
|
|
|
The events ioctls are identical to the ones defined in V4L2. They
|
|
behave identically, with the only exception that they deal only with
|
|
events generated by the sub-device. Depending on the driver, those
|
|
events can also be reported by one (or several) V4L2 device nodes.
|
|
|
|
Sub-device drivers that want to use events need to set the
|
|
V4L2_SUBDEV_USES_EVENTS v4l2_subdev::flags and initialize
|
|
v4l2_subdev::nevents to events queue depth before registering the
|
|
sub-device. After registration events can be queued as usual on the
|
|
v4l2_subdev::devnode device node.
|
|
|
|
To properly support events, the poll() file operation is also
|
|
implemented.
|
|
|
|
Private ioctls
|
|
|
|
All ioctls not in the above list are passed directly to the sub-device
|
|
driver through the core::ioctl operation.
|
|
|
|
|
|
I2C sub-device drivers
|
|
----------------------
|
|
|
|
Since these drivers are so common, special helper functions are available to
|
|
ease the use of these drivers (v4l2-common.h).
|
|
|
|
The recommended method of adding v4l2_subdev support to an I2C driver is to
|
|
embed the v4l2_subdev struct into the state struct that is created for each
|
|
I2C device instance. Very simple devices have no state struct and in that case
|
|
you can just create a v4l2_subdev directly.
|
|
|
|
A typical state struct would look like this (where 'chipname' is replaced by
|
|
the name of the chip):
|
|
|
|
struct chipname_state {
|
|
struct v4l2_subdev sd;
|
|
... /* additional state fields */
|
|
};
|
|
|
|
Initialize the v4l2_subdev struct as follows:
|
|
|
|
v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);
|
|
|
|
This function will fill in all the fields of v4l2_subdev and ensure that the
|
|
v4l2_subdev and i2c_client both point to one another.
|
|
|
|
You should also add a helper inline function to go from a v4l2_subdev pointer
|
|
to a chipname_state struct:
|
|
|
|
static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
|
|
{
|
|
return container_of(sd, struct chipname_state, sd);
|
|
}
|
|
|
|
Use this to go from the v4l2_subdev struct to the i2c_client struct:
|
|
|
|
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
|
|
|
And this to go from an i2c_client to a v4l2_subdev struct:
|
|
|
|
struct v4l2_subdev *sd = i2c_get_clientdata(client);
|
|
|
|
Make sure to call v4l2_device_unregister_subdev(sd) when the remove() callback
|
|
is called. This will unregister the sub-device from the bridge driver. It is
|
|
safe to call this even if the sub-device was never registered.
|
|
|
|
You need to do this because when the bridge driver destroys the i2c adapter
|
|
the remove() callbacks are called of the i2c devices on that adapter.
|
|
After that the corresponding v4l2_subdev structures are invalid, so they
|
|
have to be unregistered first. Calling v4l2_device_unregister_subdev(sd)
|
|
from the remove() callback ensures that this is always done correctly.
|
|
|
|
|
|
The bridge driver also has some helper functions it can use:
|
|
|
|
struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter,
|
|
"module_foo", "chipid", 0x36, NULL);
|
|
|
|
This loads the given module (can be NULL if no module needs to be loaded) and
|
|
calls i2c_new_device() with the given i2c_adapter and chip/address arguments.
|
|
If all goes well, then it registers the subdev with the v4l2_device.
|
|
|
|
You can also use the last argument of v4l2_i2c_new_subdev() to pass an array
|
|
of possible I2C addresses that it should probe. These probe addresses are
|
|
only used if the previous argument is 0. A non-zero argument means that you
|
|
know the exact i2c address so in that case no probing will take place.
|
|
|
|
Both functions return NULL if something went wrong.
|
|
|
|
Note that the chipid you pass to v4l2_i2c_new_subdev() is usually
|
|
the same as the module name. It allows you to specify a chip variant, e.g.
|
|
"saa7114" or "saa7115". In general though the i2c driver autodetects this.
|
|
The use of chipid is something that needs to be looked at more closely at a
|
|
later date. It differs between i2c drivers and as such can be confusing.
|
|
To see which chip variants are supported you can look in the i2c driver code
|
|
for the i2c_device_id table. This lists all the possibilities.
|
|
|
|
There are two more helper functions:
|
|
|
|
v4l2_i2c_new_subdev_cfg: this function adds new irq and platform_data
|
|
arguments and has both 'addr' and 'probed_addrs' arguments: if addr is not
|
|
0 then that will be used (non-probing variant), otherwise the probed_addrs
|
|
are probed.
|
|
|
|
For example: this will probe for address 0x10:
|
|
|
|
struct v4l2_subdev *sd = v4l2_i2c_new_subdev_cfg(v4l2_dev, adapter,
|
|
"module_foo", "chipid", 0, NULL, 0, I2C_ADDRS(0x10));
|
|
|
|
v4l2_i2c_new_subdev_board uses an i2c_board_info struct which is passed
|
|
to the i2c driver and replaces the irq, platform_data and addr arguments.
|
|
|
|
If the subdev supports the s_config core ops, then that op is called with
|
|
the irq and platform_data arguments after the subdev was setup. The older
|
|
v4l2_i2c_new_(probed_)subdev functions will call s_config as well, but with
|
|
irq set to 0 and platform_data set to NULL.
|
|
|
|
struct video_device
|
|
-------------------
|
|
|
|
The actual device nodes in the /dev directory are created using the
|
|
video_device struct (v4l2-dev.h). This struct can either be allocated
|
|
dynamically or embedded in a larger struct.
|
|
|
|
To allocate it dynamically use:
|
|
|
|
struct video_device *vdev = video_device_alloc();
|
|
|
|
if (vdev == NULL)
|
|
return -ENOMEM;
|
|
|
|
vdev->release = video_device_release;
|
|
|
|
If you embed it in a larger struct, then you must set the release()
|
|
callback to your own function:
|
|
|
|
struct video_device *vdev = &my_vdev->vdev;
|
|
|
|
vdev->release = my_vdev_release;
|
|
|
|
The release callback must be set and it is called when the last user
|
|
of the video device exits.
|
|
|
|
The default video_device_release() callback just calls kfree to free the
|
|
allocated memory.
|
|
|
|
There is also a video_device_release_empty() function that does nothing
|
|
(is empty) and can be used if the struct is embedded and there is nothing
|
|
to do when it is released.
|
|
|
|
You should also set these fields:
|
|
|
|
- v4l2_dev: must be set to the v4l2_device parent device.
|
|
|
|
- name: set to something descriptive and unique.
|
|
|
|
- vfl_dir: set this to VFL_DIR_RX for capture devices (VFL_DIR_RX has value 0,
|
|
so this is normally already the default), set to VFL_DIR_TX for output
|
|
devices and VFL_DIR_M2M for mem2mem (codec) devices.
|
|
|
|
- fops: set to the v4l2_file_operations struct.
|
|
|
|
- ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
|
|
(highly recommended to use this and it might become compulsory in the
|
|
future!), then set this to your v4l2_ioctl_ops struct. The vfl_type and
|
|
vfl_dir fields are used to disable ops that do not match the type/dir
|
|
combination. E.g. VBI ops are disabled for non-VBI nodes, and output ops
|
|
are disabled for a capture device. This makes it possible to provide
|
|
just one v4l2_ioctl_ops struct for both vbi and video nodes.
|
|
|
|
- lock: leave to NULL if you want to do all the locking in the driver.
|
|
Otherwise you give it a pointer to a struct mutex_lock and before the
|
|
unlocked_ioctl file operation is called this lock will be taken by the
|
|
core and released afterwards. See the next section for more details.
|
|
|
|
- queue: a pointer to the struct vb2_queue associated with this device node.
|
|
If queue is non-NULL, and queue->lock is non-NULL, then queue->lock is
|
|
used for the queuing ioctls (VIDIOC_REQBUFS, CREATE_BUFS, QBUF, DQBUF,
|
|
QUERYBUF, PREPARE_BUF, STREAMON and STREAMOFF) instead of the lock above.
|
|
That way the vb2 queuing framework does not have to wait for other ioctls.
|
|
This queue pointer is also used by the vb2 helper functions to check for
|
|
queuing ownership (i.e. is the filehandle calling it allowed to do the
|
|
operation).
|
|
|
|
- prio: keeps track of the priorities. Used to implement VIDIOC_G/S_PRIORITY.
|
|
If left to NULL, then it will use the struct v4l2_prio_state in v4l2_device.
|
|
If you want to have a separate priority state per (group of) device node(s),
|
|
then you can point it to your own struct v4l2_prio_state.
|
|
|
|
- dev_parent: you only set this if v4l2_device was registered with NULL as
|
|
the parent device struct. This only happens in cases where one hardware
|
|
device has multiple PCI devices that all share the same v4l2_device core.
|
|
|
|
The cx88 driver is an example of this: one core v4l2_device struct, but
|
|
it is used by both a raw video PCI device (cx8800) and a MPEG PCI device
|
|
(cx8802). Since the v4l2_device cannot be associated with two PCI devices
|
|
at the same time it is setup without a parent device. But when the struct
|
|
video_device is initialized you *do* know which parent PCI device to use and
|
|
so you set dev_device to the correct PCI device.
|
|
|
|
If you use v4l2_ioctl_ops, then you should set .unlocked_ioctl to video_ioctl2
|
|
in your v4l2_file_operations struct.
|
|
|
|
Do not use .ioctl! This is deprecated and will go away in the future.
|
|
|
|
In some cases you want to tell the core that a function you had specified in
|
|
your v4l2_ioctl_ops should be ignored. You can mark such ioctls by calling this
|
|
function before video_device_register is called:
|
|
|
|
void v4l2_disable_ioctl(struct video_device *vdev, unsigned int cmd);
|
|
|
|
This tends to be needed if based on external factors (e.g. which card is
|
|
being used) you want to turns off certain features in v4l2_ioctl_ops without
|
|
having to make a new struct.
|
|
|
|
The v4l2_file_operations struct is a subset of file_operations. The main
|
|
difference is that the inode argument is omitted since it is never used.
|
|
|
|
If integration with the media framework is needed, you must initialize the
|
|
media_entity struct embedded in the video_device struct (entity field) by
|
|
calling media_entity_init():
|
|
|
|
struct media_pad *pad = &my_vdev->pad;
|
|
int err;
|
|
|
|
err = media_entity_init(&vdev->entity, 1, pad, 0);
|
|
|
|
The pads array must have been previously initialized. There is no need to
|
|
manually set the struct media_entity type and name fields.
|
|
|
|
A reference to the entity will be automatically acquired/released when the
|
|
video device is opened/closed.
|
|
|
|
ioctls and locking
|
|
------------------
|
|
|
|
The V4L core provides optional locking services. The main service is the
|
|
lock field in struct video_device, which is a pointer to a mutex. If you set
|
|
this pointer, then that will be used by unlocked_ioctl to serialize all ioctls.
|
|
|
|
If you are using the videobuf2 framework, then there is a second lock that you
|
|
can set: video_device->queue->lock. If set, then this lock will be used instead
|
|
of video_device->lock to serialize all queuing ioctls (see the previous section
|
|
for the full list of those ioctls).
|
|
|
|
The advantage of using a different lock for the queuing ioctls is that for some
|
|
drivers (particularly USB drivers) certain commands such as setting controls
|
|
can take a long time, so you want to use a separate lock for the buffer queuing
|
|
ioctls. That way your VIDIOC_DQBUF doesn't stall because the driver is busy
|
|
changing the e.g. exposure of the webcam.
|
|
|
|
Of course, you can always do all the locking yourself by leaving both lock
|
|
pointers at NULL.
|
|
|
|
If you use the old videobuf then you must pass the video_device lock to the
|
|
videobuf queue initialize function: if videobuf has to wait for a frame to
|
|
arrive, then it will temporarily unlock the lock and relock it afterwards. If
|
|
your driver also waits in the code, then you should do the same to allow other
|
|
processes to access the device node while the first process is waiting for
|
|
something.
|
|
|
|
In the case of videobuf2 you will need to implement the wait_prepare and
|
|
wait_finish callbacks to unlock/lock if applicable. If you use the queue->lock
|
|
pointer, then you can use the helper functions vb2_ops_wait_prepare/finish.
|
|
|
|
The implementation of a hotplug disconnect should also take the lock from
|
|
video_device before calling v4l2_device_disconnect. If you are also using
|
|
video_device->queue->lock, then you have to first lock video_device->queue->lock
|
|
followed by video_device->lock. That way you can be sure no ioctl is running
|
|
when you call v4l2_device_disconnect.
|
|
|
|
video_device registration
|
|
-------------------------
|
|
|
|
Next you register the video device: this will create the character device
|
|
for you.
|
|
|
|
err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
|
|
if (err) {
|
|
video_device_release(vdev); /* or kfree(my_vdev); */
|
|
return err;
|
|
}
|
|
|
|
If the v4l2_device parent device has a non-NULL mdev field, the video device
|
|
entity will be automatically registered with the media device.
|
|
|
|
Which device is registered depends on the type argument. The following
|
|
types exist:
|
|
|
|
VFL_TYPE_GRABBER: videoX for video input/output devices
|
|
VFL_TYPE_VBI: vbiX for vertical blank data (i.e. closed captions, teletext)
|
|
VFL_TYPE_RADIO: radioX for radio tuners
|
|
VFL_TYPE_SDR: swradioX for Software Defined Radio tuners
|
|
|
|
The last argument gives you a certain amount of control over the device
|
|
device node number used (i.e. the X in videoX). Normally you will pass -1
|
|
to let the v4l2 framework pick the first free number. But sometimes users
|
|
want to select a specific node number. It is common that drivers allow
|
|
the user to select a specific device node number through a driver module
|
|
option. That number is then passed to this function and video_register_device
|
|
will attempt to select that device node number. If that number was already
|
|
in use, then the next free device node number will be selected and it
|
|
will send a warning to the kernel log.
|
|
|
|
Another use-case is if a driver creates many devices. In that case it can
|
|
be useful to place different video devices in separate ranges. For example,
|
|
video capture devices start at 0, video output devices start at 16.
|
|
So you can use the last argument to specify a minimum device node number
|
|
and the v4l2 framework will try to pick the first free number that is equal
|
|
or higher to what you passed. If that fails, then it will just pick the
|
|
first free number.
|
|
|
|
Since in this case you do not care about a warning about not being able
|
|
to select the specified device node number, you can call the function
|
|
video_register_device_no_warn() instead.
|
|
|
|
Whenever a device node is created some attributes are also created for you.
|
|
If you look in /sys/class/video4linux you see the devices. Go into e.g.
|
|
video0 and you will see 'name', 'debug' and 'index' attributes. The 'name'
|
|
attribute is the 'name' field of the video_device struct. The 'debug' attribute
|
|
can be used to enable core debugging. See the next section for more detailed
|
|
information on this.
|
|
|
|
The 'index' attribute is the index of the device node: for each call to
|
|
video_register_device() the index is just increased by 1. The first video
|
|
device node you register always starts with index 0.
|
|
|
|
Users can setup udev rules that utilize the index attribute to make fancy
|
|
device names (e.g. 'mpegX' for MPEG video capture device nodes).
|
|
|
|
After the device was successfully registered, then you can use these fields:
|
|
|
|
- vfl_type: the device type passed to video_register_device.
|
|
- minor: the assigned device minor number.
|
|
- num: the device node number (i.e. the X in videoX).
|
|
- index: the device index number.
|
|
|
|
If the registration failed, then you need to call video_device_release()
|
|
to free the allocated video_device struct, or free your own struct if the
|
|
video_device was embedded in it. The vdev->release() callback will never
|
|
be called if the registration failed, nor should you ever attempt to
|
|
unregister the device if the registration failed.
|
|
|
|
video device debugging
|
|
----------------------
|
|
|
|
The 'debug' attribute that is created for each video, vbi, radio or swradio
|
|
device in /sys/class/video4linux/<devX>/ allows you to enable logging of
|
|
file operations.
|
|
|
|
It is a bitmask and the following bits can be set:
|
|
|
|
0x01: Log the ioctl name and error code. VIDIOC_(D)QBUF ioctls are only logged
|
|
if bit 0x08 is also set.
|
|
0x02: Log the ioctl name arguments and error code. VIDIOC_(D)QBUF ioctls are
|
|
only logged if bit 0x08 is also set.
|
|
0x04: Log the file operations open, release, read, write, mmap and
|
|
get_unmapped_area. The read and write operations are only logged if
|
|
bit 0x08 is also set.
|
|
0x08: Log the read and write file operations and the VIDIOC_QBUF and
|
|
VIDIOC_DQBUF ioctls.
|
|
0x10: Log the poll file operation.
|
|
|
|
video_device cleanup
|
|
--------------------
|
|
|
|
When the video device nodes have to be removed, either during the unload
|
|
of the driver or because the USB device was disconnected, then you should
|
|
unregister them:
|
|
|
|
video_unregister_device(vdev);
|
|
|
|
This will remove the device nodes from sysfs (causing udev to remove them
|
|
from /dev).
|
|
|
|
After video_unregister_device() returns no new opens can be done. However,
|
|
in the case of USB devices some application might still have one of these
|
|
device nodes open. So after the unregister all file operations (except
|
|
release, of course) will return an error as well.
|
|
|
|
When the last user of the video device node exits, then the vdev->release()
|
|
callback is called and you can do the final cleanup there.
|
|
|
|
Don't forget to cleanup the media entity associated with the video device if
|
|
it has been initialized:
|
|
|
|
media_entity_cleanup(&vdev->entity);
|
|
|
|
This can be done from the release callback.
|
|
|
|
|
|
video_device helper functions
|
|
-----------------------------
|
|
|
|
There are a few useful helper functions:
|
|
|
|
- file/video_device private data
|
|
|
|
You can set/get driver private data in the video_device struct using:
|
|
|
|
void *video_get_drvdata(struct video_device *vdev);
|
|
void video_set_drvdata(struct video_device *vdev, void *data);
|
|
|
|
Note that you can safely call video_set_drvdata() before calling
|
|
video_register_device().
|
|
|
|
And this function:
|
|
|
|
struct video_device *video_devdata(struct file *file);
|
|
|
|
returns the video_device belonging to the file struct.
|
|
|
|
The video_drvdata function combines video_get_drvdata with video_devdata:
|
|
|
|
void *video_drvdata(struct file *file);
|
|
|
|
You can go from a video_device struct to the v4l2_device struct using:
|
|
|
|
struct v4l2_device *v4l2_dev = vdev->v4l2_dev;
|
|
|
|
- Device node name
|
|
|
|
The video_device node kernel name can be retrieved using
|
|
|
|
const char *video_device_node_name(struct video_device *vdev);
|
|
|
|
The name is used as a hint by userspace tools such as udev. The function
|
|
should be used where possible instead of accessing the video_device::num and
|
|
video_device::minor fields.
|
|
|
|
|
|
video buffer helper functions
|
|
-----------------------------
|
|
|
|
The v4l2 core API provides a set of standard methods (called "videobuf")
|
|
for dealing with video buffers. Those methods allow a driver to implement
|
|
read(), mmap() and overlay() in a consistent way. There are currently
|
|
methods for using video buffers on devices that supports DMA with
|
|
scatter/gather method (videobuf-dma-sg), DMA with linear access
|
|
(videobuf-dma-contig), and vmalloced buffers, mostly used on USB drivers
|
|
(videobuf-vmalloc).
|
|
|
|
Please see Documentation/video4linux/videobuf for more information on how
|
|
to use the videobuf layer.
|
|
|
|
struct v4l2_fh
|
|
--------------
|
|
|
|
struct v4l2_fh provides a way to easily keep file handle specific data
|
|
that is used by the V4L2 framework. New drivers must use struct v4l2_fh
|
|
since it is also used to implement priority handling (VIDIOC_G/S_PRIORITY).
|
|
|
|
The users of v4l2_fh (in the V4L2 framework, not the driver) know
|
|
whether a driver uses v4l2_fh as its file->private_data pointer by
|
|
testing the V4L2_FL_USES_V4L2_FH bit in video_device->flags. This bit is
|
|
set whenever v4l2_fh_init() is called.
|
|
|
|
struct v4l2_fh is allocated as a part of the driver's own file handle
|
|
structure and file->private_data is set to it in the driver's open
|
|
function by the driver.
|
|
|
|
In many cases the struct v4l2_fh will be embedded in a larger structure.
|
|
In that case you should call v4l2_fh_init+v4l2_fh_add in open() and
|
|
v4l2_fh_del+v4l2_fh_exit in release().
|
|
|
|
Drivers can extract their own file handle structure by using the container_of
|
|
macro. Example:
|
|
|
|
struct my_fh {
|
|
int blah;
|
|
struct v4l2_fh fh;
|
|
};
|
|
|
|
...
|
|
|
|
int my_open(struct file *file)
|
|
{
|
|
struct my_fh *my_fh;
|
|
struct video_device *vfd;
|
|
int ret;
|
|
|
|
...
|
|
|
|
my_fh = kzalloc(sizeof(*my_fh), GFP_KERNEL);
|
|
|
|
...
|
|
|
|
v4l2_fh_init(&my_fh->fh, vfd);
|
|
|
|
...
|
|
|
|
file->private_data = &my_fh->fh;
|
|
v4l2_fh_add(&my_fh->fh);
|
|
return 0;
|
|
}
|
|
|
|
int my_release(struct file *file)
|
|
{
|
|
struct v4l2_fh *fh = file->private_data;
|
|
struct my_fh *my_fh = container_of(fh, struct my_fh, fh);
|
|
|
|
...
|
|
v4l2_fh_del(&my_fh->fh);
|
|
v4l2_fh_exit(&my_fh->fh);
|
|
kfree(my_fh);
|
|
return 0;
|
|
}
|
|
|
|
Below is a short description of the v4l2_fh functions used:
|
|
|
|
void v4l2_fh_init(struct v4l2_fh *fh, struct video_device *vdev)
|
|
|
|
Initialise the file handle. This *MUST* be performed in the driver's
|
|
v4l2_file_operations->open() handler.
|
|
|
|
void v4l2_fh_add(struct v4l2_fh *fh)
|
|
|
|
Add a v4l2_fh to video_device file handle list. Must be called once the
|
|
file handle is completely initialized.
|
|
|
|
void v4l2_fh_del(struct v4l2_fh *fh)
|
|
|
|
Unassociate the file handle from video_device(). The file handle
|
|
exit function may now be called.
|
|
|
|
void v4l2_fh_exit(struct v4l2_fh *fh)
|
|
|
|
Uninitialise the file handle. After uninitialisation the v4l2_fh
|
|
memory can be freed.
|
|
|
|
|
|
If struct v4l2_fh is not embedded, then you can use these helper functions:
|
|
|
|
int v4l2_fh_open(struct file *filp)
|
|
|
|
This allocates a struct v4l2_fh, initializes it and adds it to the struct
|
|
video_device associated with the file struct.
|
|
|
|
int v4l2_fh_release(struct file *filp)
|
|
|
|
This deletes it from the struct video_device associated with the file
|
|
struct, uninitialised the v4l2_fh and frees it.
|
|
|
|
These two functions can be plugged into the v4l2_file_operation's open() and
|
|
release() ops.
|
|
|
|
|
|
Several drivers need to do something when the first file handle is opened and
|
|
when the last file handle closes. Two helper functions were added to check
|
|
whether the v4l2_fh struct is the only open filehandle of the associated
|
|
device node:
|
|
|
|
int v4l2_fh_is_singular(struct v4l2_fh *fh)
|
|
|
|
Returns 1 if the file handle is the only open file handle, else 0.
|
|
|
|
int v4l2_fh_is_singular_file(struct file *filp)
|
|
|
|
Same, but it calls v4l2_fh_is_singular with filp->private_data.
|
|
|
|
|
|
V4L2 events
|
|
-----------
|
|
|
|
The V4L2 events provide a generic way to pass events to user space.
|
|
The driver must use v4l2_fh to be able to support V4L2 events.
|
|
|
|
Events are defined by a type and an optional ID. The ID may refer to a V4L2
|
|
object such as a control ID. If unused, then the ID is 0.
|
|
|
|
When the user subscribes to an event the driver will allocate a number of
|
|
kevent structs for that event. So every (type, ID) event tuple will have
|
|
its own set of kevent structs. This guarantees that if a driver is generating
|
|
lots of events of one type in a short time, then that will not overwrite
|
|
events of another type.
|
|
|
|
But if you get more events of one type than the number of kevents that were
|
|
reserved, then the oldest event will be dropped and the new one added.
|
|
|
|
Furthermore, the internal struct v4l2_subscribed_event has merge() and
|
|
replace() callbacks which drivers can set. These callbacks are called when
|
|
a new event is raised and there is no more room. The replace() callback
|
|
allows you to replace the payload of the old event with that of the new event,
|
|
merging any relevant data from the old payload into the new payload that
|
|
replaces it. It is called when this event type has only one kevent struct
|
|
allocated. The merge() callback allows you to merge the oldest event payload
|
|
into that of the second-oldest event payload. It is called when there are two
|
|
or more kevent structs allocated.
|
|
|
|
This way no status information is lost, just the intermediate steps leading
|
|
up to that state.
|
|
|
|
A good example of these replace/merge callbacks is in v4l2-event.c:
|
|
ctrls_replace() and ctrls_merge() callbacks for the control event.
|
|
|
|
Note: these callbacks can be called from interrupt context, so they must be
|
|
fast.
|
|
|
|
Useful functions:
|
|
|
|
void v4l2_event_queue(struct video_device *vdev, const struct v4l2_event *ev)
|
|
|
|
Queue events to video device. The driver's only responsibility is to fill
|
|
in the type and the data fields. The other fields will be filled in by
|
|
V4L2.
|
|
|
|
int v4l2_event_subscribe(struct v4l2_fh *fh,
|
|
struct v4l2_event_subscription *sub, unsigned elems,
|
|
const struct v4l2_subscribed_event_ops *ops)
|
|
|
|
The video_device->ioctl_ops->vidioc_subscribe_event must check the driver
|
|
is able to produce events with specified event id. Then it calls
|
|
v4l2_event_subscribe() to subscribe the event.
|
|
|
|
The elems argument is the size of the event queue for this event. If it is 0,
|
|
then the framework will fill in a default value (this depends on the event
|
|
type).
|
|
|
|
The ops argument allows the driver to specify a number of callbacks:
|
|
* add: called when a new listener gets added (subscribing to the same
|
|
event twice will only cause this callback to get called once)
|
|
* del: called when a listener stops listening
|
|
* replace: replace event 'old' with event 'new'.
|
|
* merge: merge event 'old' into event 'new'.
|
|
All 4 callbacks are optional, if you don't want to specify any callbacks
|
|
the ops argument itself maybe NULL.
|
|
|
|
int v4l2_event_unsubscribe(struct v4l2_fh *fh,
|
|
struct v4l2_event_subscription *sub)
|
|
|
|
vidioc_unsubscribe_event in struct v4l2_ioctl_ops. A driver may use
|
|
v4l2_event_unsubscribe() directly unless it wants to be involved in
|
|
unsubscription process.
|
|
|
|
The special type V4L2_EVENT_ALL may be used to unsubscribe all events. The
|
|
drivers may want to handle this in a special way.
|
|
|
|
int v4l2_event_pending(struct v4l2_fh *fh)
|
|
|
|
Returns the number of pending events. Useful when implementing poll.
|
|
|
|
Events are delivered to user space through the poll system call. The driver
|
|
can use v4l2_fh->wait (a wait_queue_head_t) as the argument for poll_wait().
|
|
|
|
There are standard and private events. New standard events must use the
|
|
smallest available event type. The drivers must allocate their events from
|
|
their own class starting from class base. Class base is
|
|
V4L2_EVENT_PRIVATE_START + n * 1000 where n is the lowest available number.
|
|
The first event type in the class is reserved for future use, so the first
|
|
available event type is 'class base + 1'.
|
|
|
|
An example on how the V4L2 events may be used can be found in the OMAP
|
|
3 ISP driver (drivers/media/platform/omap3isp).
|
|
|
|
|
|
V4L2 clocks
|
|
-----------
|
|
|
|
Many subdevices, like camera sensors, TV decoders and encoders, need a clock
|
|
signal to be supplied by the system. Often this clock is supplied by the
|
|
respective bridge device. The Linux kernel provides a Common Clock Framework for
|
|
this purpose. However, it is not (yet) available on all architectures. Besides,
|
|
the nature of the multi-functional (clock, data + synchronisation, I2C control)
|
|
connection of subdevices to the system might impose special requirements on the
|
|
clock API usage. E.g. V4L2 has to support clock provider driver unregistration
|
|
while a subdevice driver is holding a reference to the clock. For these reasons
|
|
a V4L2 clock helper API has been developed and is provided to bridge and
|
|
subdevice drivers.
|
|
|
|
The API consists of two parts: two functions to register and unregister a V4L2
|
|
clock source: v4l2_clk_register() and v4l2_clk_unregister() and calls to control
|
|
a clock object, similar to the respective generic clock API calls:
|
|
v4l2_clk_get(), v4l2_clk_put(), v4l2_clk_enable(), v4l2_clk_disable(),
|
|
v4l2_clk_get_rate(), and v4l2_clk_set_rate(). Clock suppliers have to provide
|
|
clock operations that will be called when clock users invoke respective API
|
|
methods.
|
|
|
|
It is expected that once the CCF becomes available on all relevant
|
|
architectures this API will be removed.
|