17ebba1fe4
When CONFIG_DEBUG_HIGHMEM is used, the fixmap entry used for a highmem page by kmap_atomic() is always cleared by kunmap_atomic(). This helps find bad usages such as dereferences after the unmap, or overflow into the adjacent fixmap areas. But this debugging aid is completely bypassed when a kmap for the same page already exists as the kmap is reused instead. ON VIVT systems we have no choice but to reuse that kmap due to cache coherency issues, but on non VIVT systems we should always force the fixmap usage when debugging is active. Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
221 lines
5.6 KiB
C
221 lines
5.6 KiB
C
/*
|
|
* arch/arm/mm/highmem.c -- ARM highmem support
|
|
*
|
|
* Author: Nicolas Pitre
|
|
* Created: september 8, 2008
|
|
* Copyright: Marvell Semiconductors Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/interrupt.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include "mm.h"
|
|
|
|
void *kmap(struct page *page)
|
|
{
|
|
might_sleep();
|
|
if (!PageHighMem(page))
|
|
return page_address(page);
|
|
return kmap_high(page);
|
|
}
|
|
EXPORT_SYMBOL(kmap);
|
|
|
|
void kunmap(struct page *page)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
if (!PageHighMem(page))
|
|
return;
|
|
kunmap_high(page);
|
|
}
|
|
EXPORT_SYMBOL(kunmap);
|
|
|
|
void *kmap_atomic(struct page *page, enum km_type type)
|
|
{
|
|
unsigned int idx;
|
|
unsigned long vaddr;
|
|
void *kmap;
|
|
|
|
pagefault_disable();
|
|
if (!PageHighMem(page))
|
|
return page_address(page);
|
|
|
|
debug_kmap_atomic(type);
|
|
|
|
#ifdef CONFIG_DEBUG_HIGHMEM
|
|
/*
|
|
* There is no cache coherency issue when non VIVT, so force the
|
|
* dedicated kmap usage for better debugging purposes in that case.
|
|
*/
|
|
if (!cache_is_vivt())
|
|
kmap = NULL;
|
|
else
|
|
#endif
|
|
kmap = kmap_high_get(page);
|
|
if (kmap)
|
|
return kmap;
|
|
|
|
idx = type + KM_TYPE_NR * smp_processor_id();
|
|
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
#ifdef CONFIG_DEBUG_HIGHMEM
|
|
/*
|
|
* With debugging enabled, kunmap_atomic forces that entry to 0.
|
|
* Make sure it was indeed properly unmapped.
|
|
*/
|
|
BUG_ON(!pte_none(*(TOP_PTE(vaddr))));
|
|
#endif
|
|
set_pte_ext(TOP_PTE(vaddr), mk_pte(page, kmap_prot), 0);
|
|
/*
|
|
* When debugging is off, kunmap_atomic leaves the previous mapping
|
|
* in place, so this TLB flush ensures the TLB is updated with the
|
|
* new mapping.
|
|
*/
|
|
local_flush_tlb_kernel_page(vaddr);
|
|
|
|
return (void *)vaddr;
|
|
}
|
|
EXPORT_SYMBOL(kmap_atomic);
|
|
|
|
void kunmap_atomic(void *kvaddr, enum km_type type)
|
|
{
|
|
unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
|
|
unsigned int idx = type + KM_TYPE_NR * smp_processor_id();
|
|
|
|
if (kvaddr >= (void *)FIXADDR_START) {
|
|
if (cache_is_vivt())
|
|
__cpuc_flush_dcache_area((void *)vaddr, PAGE_SIZE);
|
|
#ifdef CONFIG_DEBUG_HIGHMEM
|
|
BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
|
|
set_pte_ext(TOP_PTE(vaddr), __pte(0), 0);
|
|
local_flush_tlb_kernel_page(vaddr);
|
|
#else
|
|
(void) idx; /* to kill a warning */
|
|
#endif
|
|
} else if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
|
|
/* this address was obtained through kmap_high_get() */
|
|
kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)]));
|
|
}
|
|
pagefault_enable();
|
|
}
|
|
EXPORT_SYMBOL(kunmap_atomic);
|
|
|
|
void *kmap_atomic_pfn(unsigned long pfn, enum km_type type)
|
|
{
|
|
unsigned int idx;
|
|
unsigned long vaddr;
|
|
|
|
pagefault_disable();
|
|
|
|
idx = type + KM_TYPE_NR * smp_processor_id();
|
|
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
#ifdef CONFIG_DEBUG_HIGHMEM
|
|
BUG_ON(!pte_none(*(TOP_PTE(vaddr))));
|
|
#endif
|
|
set_pte_ext(TOP_PTE(vaddr), pfn_pte(pfn, kmap_prot), 0);
|
|
local_flush_tlb_kernel_page(vaddr);
|
|
|
|
return (void *)vaddr;
|
|
}
|
|
|
|
struct page *kmap_atomic_to_page(const void *ptr)
|
|
{
|
|
unsigned long vaddr = (unsigned long)ptr;
|
|
pte_t *pte;
|
|
|
|
if (vaddr < FIXADDR_START)
|
|
return virt_to_page(ptr);
|
|
|
|
pte = TOP_PTE(vaddr);
|
|
return pte_page(*pte);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_CACHE_VIPT
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
/*
|
|
* The VIVT cache of a highmem page is always flushed before the page
|
|
* is unmapped. Hence unmapped highmem pages need no cache maintenance
|
|
* in that case.
|
|
*
|
|
* However unmapped pages may still be cached with a VIPT cache, and
|
|
* it is not possible to perform cache maintenance on them using physical
|
|
* addresses unfortunately. So we have no choice but to set up a temporary
|
|
* virtual mapping for that purpose.
|
|
*
|
|
* Yet this VIPT cache maintenance may be triggered from DMA support
|
|
* functions which are possibly called from interrupt context. As we don't
|
|
* want to keep interrupt disabled all the time when such maintenance is
|
|
* taking place, we therefore allow for some reentrancy by preserving and
|
|
* restoring the previous fixmap entry before the interrupted context is
|
|
* resumed. If the reentrancy depth is 0 then there is no need to restore
|
|
* the previous fixmap, and leaving the current one in place allow it to
|
|
* be reused the next time without a TLB flush (common with DMA).
|
|
*/
|
|
|
|
static DEFINE_PER_CPU(int, kmap_high_l1_vipt_depth);
|
|
|
|
void *kmap_high_l1_vipt(struct page *page, pte_t *saved_pte)
|
|
{
|
|
unsigned int idx, cpu = smp_processor_id();
|
|
int *depth = &per_cpu(kmap_high_l1_vipt_depth, cpu);
|
|
unsigned long vaddr, flags;
|
|
pte_t pte, *ptep;
|
|
|
|
idx = KM_L1_CACHE + KM_TYPE_NR * cpu;
|
|
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
ptep = TOP_PTE(vaddr);
|
|
pte = mk_pte(page, kmap_prot);
|
|
|
|
if (!in_interrupt())
|
|
preempt_disable();
|
|
|
|
raw_local_irq_save(flags);
|
|
(*depth)++;
|
|
if (pte_val(*ptep) == pte_val(pte)) {
|
|
*saved_pte = pte;
|
|
} else {
|
|
*saved_pte = *ptep;
|
|
set_pte_ext(ptep, pte, 0);
|
|
local_flush_tlb_kernel_page(vaddr);
|
|
}
|
|
raw_local_irq_restore(flags);
|
|
|
|
return (void *)vaddr;
|
|
}
|
|
|
|
void kunmap_high_l1_vipt(struct page *page, pte_t saved_pte)
|
|
{
|
|
unsigned int idx, cpu = smp_processor_id();
|
|
int *depth = &per_cpu(kmap_high_l1_vipt_depth, cpu);
|
|
unsigned long vaddr, flags;
|
|
pte_t pte, *ptep;
|
|
|
|
idx = KM_L1_CACHE + KM_TYPE_NR * cpu;
|
|
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
|
|
ptep = TOP_PTE(vaddr);
|
|
pte = mk_pte(page, kmap_prot);
|
|
|
|
BUG_ON(pte_val(*ptep) != pte_val(pte));
|
|
BUG_ON(*depth <= 0);
|
|
|
|
raw_local_irq_save(flags);
|
|
(*depth)--;
|
|
if (*depth != 0 && pte_val(pte) != pte_val(saved_pte)) {
|
|
set_pte_ext(ptep, saved_pte, 0);
|
|
local_flush_tlb_kernel_page(vaddr);
|
|
}
|
|
raw_local_irq_restore(flags);
|
|
|
|
if (!in_interrupt())
|
|
preempt_enable();
|
|
}
|
|
|
|
#endif /* CONFIG_CPU_CACHE_VIPT */
|