1879 lines
47 KiB
C
1879 lines
47 KiB
C
/*
|
|
* The Marvell camera core. This device appears in a number of settings,
|
|
* so it needs platform-specific support outside of the core.
|
|
*
|
|
* Copyright 2011 Jonathan Corbet corbet@lwn.net
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/device.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/list.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/videodev2.h>
|
|
#include <media/v4l2-device.h>
|
|
#include <media/v4l2-ioctl.h>
|
|
#include <media/v4l2-chip-ident.h>
|
|
#include <media/ov7670.h>
|
|
#include <media/videobuf2-vmalloc.h>
|
|
#include <media/videobuf2-dma-contig.h>
|
|
#include <media/videobuf2-dma-sg.h>
|
|
|
|
#include "mcam-core.h"
|
|
|
|
/*
|
|
* Basic frame stats - to be deleted shortly
|
|
*/
|
|
static int frames;
|
|
static int singles;
|
|
static int delivered;
|
|
|
|
#ifdef MCAM_MODE_VMALLOC
|
|
/*
|
|
* Internal DMA buffer management. Since the controller cannot do S/G I/O,
|
|
* we must have physically contiguous buffers to bring frames into.
|
|
* These parameters control how many buffers we use, whether we
|
|
* allocate them at load time (better chance of success, but nails down
|
|
* memory) or when somebody tries to use the camera (riskier), and,
|
|
* for load-time allocation, how big they should be.
|
|
*
|
|
* The controller can cycle through three buffers. We could use
|
|
* more by flipping pointers around, but it probably makes little
|
|
* sense.
|
|
*/
|
|
|
|
static bool alloc_bufs_at_read;
|
|
module_param(alloc_bufs_at_read, bool, 0444);
|
|
MODULE_PARM_DESC(alloc_bufs_at_read,
|
|
"Non-zero value causes DMA buffers to be allocated when the "
|
|
"video capture device is read, rather than at module load "
|
|
"time. This saves memory, but decreases the chances of "
|
|
"successfully getting those buffers. This parameter is "
|
|
"only used in the vmalloc buffer mode");
|
|
|
|
static int n_dma_bufs = 3;
|
|
module_param(n_dma_bufs, uint, 0644);
|
|
MODULE_PARM_DESC(n_dma_bufs,
|
|
"The number of DMA buffers to allocate. Can be either two "
|
|
"(saves memory, makes timing tighter) or three.");
|
|
|
|
static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
|
|
module_param(dma_buf_size, uint, 0444);
|
|
MODULE_PARM_DESC(dma_buf_size,
|
|
"The size of the allocated DMA buffers. If actual operating "
|
|
"parameters require larger buffers, an attempt to reallocate "
|
|
"will be made.");
|
|
#else /* MCAM_MODE_VMALLOC */
|
|
static const bool alloc_bufs_at_read = 0;
|
|
static const int n_dma_bufs = 3; /* Used by S/G_PARM */
|
|
#endif /* MCAM_MODE_VMALLOC */
|
|
|
|
static bool flip;
|
|
module_param(flip, bool, 0444);
|
|
MODULE_PARM_DESC(flip,
|
|
"If set, the sensor will be instructed to flip the image "
|
|
"vertically.");
|
|
|
|
static int buffer_mode = -1;
|
|
module_param(buffer_mode, int, 0444);
|
|
MODULE_PARM_DESC(buffer_mode,
|
|
"Set the buffer mode to be used; default is to go with what "
|
|
"the platform driver asks for. Set to 0 for vmalloc, 1 for "
|
|
"DMA contiguous.");
|
|
|
|
/*
|
|
* Status flags. Always manipulated with bit operations.
|
|
*/
|
|
#define CF_BUF0_VALID 0 /* Buffers valid - first three */
|
|
#define CF_BUF1_VALID 1
|
|
#define CF_BUF2_VALID 2
|
|
#define CF_DMA_ACTIVE 3 /* A frame is incoming */
|
|
#define CF_CONFIG_NEEDED 4 /* Must configure hardware */
|
|
#define CF_SINGLE_BUFFER 5 /* Running with a single buffer */
|
|
#define CF_SG_RESTART 6 /* SG restart needed */
|
|
|
|
#define sensor_call(cam, o, f, args...) \
|
|
v4l2_subdev_call(cam->sensor, o, f, ##args)
|
|
|
|
static struct mcam_format_struct {
|
|
__u8 *desc;
|
|
__u32 pixelformat;
|
|
int bpp; /* Bytes per pixel */
|
|
enum v4l2_mbus_pixelcode mbus_code;
|
|
} mcam_formats[] = {
|
|
{
|
|
.desc = "YUYV 4:2:2",
|
|
.pixelformat = V4L2_PIX_FMT_YUYV,
|
|
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
|
|
.bpp = 2,
|
|
},
|
|
{
|
|
.desc = "RGB 444",
|
|
.pixelformat = V4L2_PIX_FMT_RGB444,
|
|
.mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
|
|
.bpp = 2,
|
|
},
|
|
{
|
|
.desc = "RGB 565",
|
|
.pixelformat = V4L2_PIX_FMT_RGB565,
|
|
.mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
|
|
.bpp = 2,
|
|
},
|
|
{
|
|
.desc = "Raw RGB Bayer",
|
|
.pixelformat = V4L2_PIX_FMT_SBGGR8,
|
|
.mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
|
|
.bpp = 1
|
|
},
|
|
};
|
|
#define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
|
|
|
|
static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < N_MCAM_FMTS; i++)
|
|
if (mcam_formats[i].pixelformat == pixelformat)
|
|
return mcam_formats + i;
|
|
/* Not found? Then return the first format. */
|
|
return mcam_formats;
|
|
}
|
|
|
|
/*
|
|
* The default format we use until somebody says otherwise.
|
|
*/
|
|
static const struct v4l2_pix_format mcam_def_pix_format = {
|
|
.width = VGA_WIDTH,
|
|
.height = VGA_HEIGHT,
|
|
.pixelformat = V4L2_PIX_FMT_YUYV,
|
|
.field = V4L2_FIELD_NONE,
|
|
.bytesperline = VGA_WIDTH*2,
|
|
.sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
|
|
};
|
|
|
|
static const enum v4l2_mbus_pixelcode mcam_def_mbus_code =
|
|
V4L2_MBUS_FMT_YUYV8_2X8;
|
|
|
|
|
|
/*
|
|
* The two-word DMA descriptor format used by the Armada 610 and like. There
|
|
* Is a three-word format as well (set C1_DESC_3WORD) where the third
|
|
* word is a pointer to the next descriptor, but we don't use it. Two-word
|
|
* descriptors have to be contiguous in memory.
|
|
*/
|
|
struct mcam_dma_desc {
|
|
u32 dma_addr;
|
|
u32 segment_len;
|
|
};
|
|
|
|
/*
|
|
* Our buffer type for working with videobuf2. Note that the vb2
|
|
* developers have decreed that struct vb2_buffer must be at the
|
|
* beginning of this structure.
|
|
*/
|
|
struct mcam_vb_buffer {
|
|
struct vb2_buffer vb_buf;
|
|
struct list_head queue;
|
|
struct mcam_dma_desc *dma_desc; /* Descriptor virtual address */
|
|
dma_addr_t dma_desc_pa; /* Descriptor physical address */
|
|
int dma_desc_nent; /* Number of mapped descriptors */
|
|
};
|
|
|
|
static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_buffer *vb)
|
|
{
|
|
return container_of(vb, struct mcam_vb_buffer, vb_buf);
|
|
}
|
|
|
|
/*
|
|
* Hand a completed buffer back to user space.
|
|
*/
|
|
static void mcam_buffer_done(struct mcam_camera *cam, int frame,
|
|
struct vb2_buffer *vbuf)
|
|
{
|
|
vbuf->v4l2_buf.bytesused = cam->pix_format.sizeimage;
|
|
vbuf->v4l2_buf.sequence = cam->buf_seq[frame];
|
|
vb2_set_plane_payload(vbuf, 0, cam->pix_format.sizeimage);
|
|
vb2_buffer_done(vbuf, VB2_BUF_STATE_DONE);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Debugging and related.
|
|
*/
|
|
#define cam_err(cam, fmt, arg...) \
|
|
dev_err((cam)->dev, fmt, ##arg);
|
|
#define cam_warn(cam, fmt, arg...) \
|
|
dev_warn((cam)->dev, fmt, ##arg);
|
|
#define cam_dbg(cam, fmt, arg...) \
|
|
dev_dbg((cam)->dev, fmt, ##arg);
|
|
|
|
|
|
/*
|
|
* Flag manipulation helpers
|
|
*/
|
|
static void mcam_reset_buffers(struct mcam_camera *cam)
|
|
{
|
|
int i;
|
|
|
|
cam->next_buf = -1;
|
|
for (i = 0; i < cam->nbufs; i++)
|
|
clear_bit(i, &cam->flags);
|
|
}
|
|
|
|
static inline int mcam_needs_config(struct mcam_camera *cam)
|
|
{
|
|
return test_bit(CF_CONFIG_NEEDED, &cam->flags);
|
|
}
|
|
|
|
static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
|
|
{
|
|
if (needed)
|
|
set_bit(CF_CONFIG_NEEDED, &cam->flags);
|
|
else
|
|
clear_bit(CF_CONFIG_NEEDED, &cam->flags);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------- */
|
|
/*
|
|
* Make the controller start grabbing images. Everything must
|
|
* be set up before doing this.
|
|
*/
|
|
static void mcam_ctlr_start(struct mcam_camera *cam)
|
|
{
|
|
/* set_bit performs a read, so no other barrier should be
|
|
needed here */
|
|
mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
|
|
}
|
|
|
|
static void mcam_ctlr_stop(struct mcam_camera *cam)
|
|
{
|
|
mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------- */
|
|
|
|
#ifdef MCAM_MODE_VMALLOC
|
|
/*
|
|
* Code specific to the vmalloc buffer mode.
|
|
*/
|
|
|
|
/*
|
|
* Allocate in-kernel DMA buffers for vmalloc mode.
|
|
*/
|
|
static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
|
|
{
|
|
int i;
|
|
|
|
mcam_set_config_needed(cam, 1);
|
|
if (loadtime)
|
|
cam->dma_buf_size = dma_buf_size;
|
|
else
|
|
cam->dma_buf_size = cam->pix_format.sizeimage;
|
|
if (n_dma_bufs > 3)
|
|
n_dma_bufs = 3;
|
|
|
|
cam->nbufs = 0;
|
|
for (i = 0; i < n_dma_bufs; i++) {
|
|
cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
|
|
cam->dma_buf_size, cam->dma_handles + i,
|
|
GFP_KERNEL);
|
|
if (cam->dma_bufs[i] == NULL) {
|
|
cam_warn(cam, "Failed to allocate DMA buffer\n");
|
|
break;
|
|
}
|
|
(cam->nbufs)++;
|
|
}
|
|
|
|
switch (cam->nbufs) {
|
|
case 1:
|
|
dma_free_coherent(cam->dev, cam->dma_buf_size,
|
|
cam->dma_bufs[0], cam->dma_handles[0]);
|
|
cam->nbufs = 0;
|
|
case 0:
|
|
cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
|
|
return -ENOMEM;
|
|
|
|
case 2:
|
|
if (n_dma_bufs > 2)
|
|
cam_warn(cam, "Will limp along with only 2 buffers\n");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mcam_free_dma_bufs(struct mcam_camera *cam)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cam->nbufs; i++) {
|
|
dma_free_coherent(cam->dev, cam->dma_buf_size,
|
|
cam->dma_bufs[i], cam->dma_handles[i]);
|
|
cam->dma_bufs[i] = NULL;
|
|
}
|
|
cam->nbufs = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set up DMA buffers when operating in vmalloc mode
|
|
*/
|
|
static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
|
|
{
|
|
/*
|
|
* Store the first two Y buffers (we aren't supporting
|
|
* planar formats for now, so no UV bufs). Then either
|
|
* set the third if it exists, or tell the controller
|
|
* to just use two.
|
|
*/
|
|
mcam_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
|
|
mcam_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
|
|
if (cam->nbufs > 2) {
|
|
mcam_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
|
|
mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
|
|
} else
|
|
mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
|
|
if (cam->chip_id == V4L2_IDENT_CAFE)
|
|
mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
|
|
}
|
|
|
|
/*
|
|
* Copy data out to user space in the vmalloc case
|
|
*/
|
|
static void mcam_frame_tasklet(unsigned long data)
|
|
{
|
|
struct mcam_camera *cam = (struct mcam_camera *) data;
|
|
int i;
|
|
unsigned long flags;
|
|
struct mcam_vb_buffer *buf;
|
|
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
for (i = 0; i < cam->nbufs; i++) {
|
|
int bufno = cam->next_buf;
|
|
|
|
if (cam->state != S_STREAMING || bufno < 0)
|
|
break; /* I/O got stopped */
|
|
if (++(cam->next_buf) >= cam->nbufs)
|
|
cam->next_buf = 0;
|
|
if (!test_bit(bufno, &cam->flags))
|
|
continue;
|
|
if (list_empty(&cam->buffers)) {
|
|
singles++;
|
|
break; /* Leave it valid, hope for better later */
|
|
}
|
|
delivered++;
|
|
clear_bit(bufno, &cam->flags);
|
|
buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
|
|
queue);
|
|
list_del_init(&buf->queue);
|
|
/*
|
|
* Drop the lock during the big copy. This *should* be safe...
|
|
*/
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
memcpy(vb2_plane_vaddr(&buf->vb_buf, 0), cam->dma_bufs[bufno],
|
|
cam->pix_format.sizeimage);
|
|
mcam_buffer_done(cam, bufno, &buf->vb_buf);
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
}
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* Make sure our allocated buffers are up to the task.
|
|
*/
|
|
static int mcam_check_dma_buffers(struct mcam_camera *cam)
|
|
{
|
|
if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
|
|
mcam_free_dma_bufs(cam);
|
|
if (cam->nbufs == 0)
|
|
return mcam_alloc_dma_bufs(cam, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
|
|
{
|
|
tasklet_schedule(&cam->s_tasklet);
|
|
}
|
|
|
|
#else /* MCAM_MODE_VMALLOC */
|
|
|
|
static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
#endif /* MCAM_MODE_VMALLOC */
|
|
|
|
|
|
#ifdef MCAM_MODE_DMA_CONTIG
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* DMA-contiguous code.
|
|
*/
|
|
/*
|
|
* Set up a contiguous buffer for the given frame. Here also is where
|
|
* the underrun strategy is set: if there is no buffer available, reuse
|
|
* the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
|
|
* keep the interrupt handler from giving that buffer back to user
|
|
* space. In this way, we always have a buffer to DMA to and don't
|
|
* have to try to play games stopping and restarting the controller.
|
|
*/
|
|
static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
|
|
{
|
|
struct mcam_vb_buffer *buf;
|
|
/*
|
|
* If there are no available buffers, go into single mode
|
|
*/
|
|
if (list_empty(&cam->buffers)) {
|
|
buf = cam->vb_bufs[frame ^ 0x1];
|
|
cam->vb_bufs[frame] = buf;
|
|
mcam_reg_write(cam, frame == 0 ? REG_Y0BAR : REG_Y1BAR,
|
|
vb2_dma_contig_plane_dma_addr(&buf->vb_buf, 0));
|
|
set_bit(CF_SINGLE_BUFFER, &cam->flags);
|
|
singles++;
|
|
return;
|
|
}
|
|
/*
|
|
* OK, we have a buffer we can use.
|
|
*/
|
|
buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
|
|
list_del_init(&buf->queue);
|
|
mcam_reg_write(cam, frame == 0 ? REG_Y0BAR : REG_Y1BAR,
|
|
vb2_dma_contig_plane_dma_addr(&buf->vb_buf, 0));
|
|
cam->vb_bufs[frame] = buf;
|
|
clear_bit(CF_SINGLE_BUFFER, &cam->flags);
|
|
}
|
|
|
|
/*
|
|
* Initial B_DMA_contig setup.
|
|
*/
|
|
static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
|
|
{
|
|
mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
|
|
cam->nbufs = 2;
|
|
mcam_set_contig_buffer(cam, 0);
|
|
mcam_set_contig_buffer(cam, 1);
|
|
}
|
|
|
|
/*
|
|
* Frame completion handling.
|
|
*/
|
|
static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
|
|
{
|
|
struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
|
|
|
|
if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
|
|
delivered++;
|
|
mcam_buffer_done(cam, frame, &buf->vb_buf);
|
|
}
|
|
mcam_set_contig_buffer(cam, frame);
|
|
}
|
|
|
|
#endif /* MCAM_MODE_DMA_CONTIG */
|
|
|
|
#ifdef MCAM_MODE_DMA_SG
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* Scatter/gather-specific code.
|
|
*/
|
|
|
|
/*
|
|
* Set up the next buffer for S/G I/O; caller should be sure that
|
|
* the controller is stopped and a buffer is available.
|
|
*/
|
|
static void mcam_sg_next_buffer(struct mcam_camera *cam)
|
|
{
|
|
struct mcam_vb_buffer *buf;
|
|
|
|
buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
|
|
list_del_init(&buf->queue);
|
|
/*
|
|
* Very Bad Not Good Things happen if you don't clear
|
|
* C1_DESC_ENA before making any descriptor changes.
|
|
*/
|
|
mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
|
|
mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
|
|
mcam_reg_write(cam, REG_DESC_LEN_Y,
|
|
buf->dma_desc_nent*sizeof(struct mcam_dma_desc));
|
|
mcam_reg_write(cam, REG_DESC_LEN_U, 0);
|
|
mcam_reg_write(cam, REG_DESC_LEN_V, 0);
|
|
mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
|
|
cam->vb_bufs[0] = buf;
|
|
}
|
|
|
|
/*
|
|
* Initial B_DMA_sg setup
|
|
*/
|
|
static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
|
|
{
|
|
/*
|
|
* The list-empty condition can hit us at resume time
|
|
* if the buffer list was empty when the system was suspended.
|
|
*/
|
|
if (list_empty(&cam->buffers)) {
|
|
set_bit(CF_SG_RESTART, &cam->flags);
|
|
return;
|
|
}
|
|
|
|
mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
|
|
mcam_sg_next_buffer(cam);
|
|
cam->nbufs = 3;
|
|
}
|
|
|
|
|
|
/*
|
|
* Frame completion with S/G is trickier. We can't muck with
|
|
* a descriptor chain on the fly, since the controller buffers it
|
|
* internally. So we have to actually stop and restart; Marvell
|
|
* says this is the way to do it.
|
|
*
|
|
* Of course, stopping is easier said than done; experience shows
|
|
* that the controller can start a frame *after* C0_ENABLE has been
|
|
* cleared. So when running in S/G mode, the controller is "stopped"
|
|
* on receipt of the start-of-frame interrupt. That means we can
|
|
* safely change the DMA descriptor array here and restart things
|
|
* (assuming there's another buffer waiting to go).
|
|
*/
|
|
static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
|
|
{
|
|
struct mcam_vb_buffer *buf = cam->vb_bufs[0];
|
|
|
|
/*
|
|
* If we're no longer supposed to be streaming, don't do anything.
|
|
*/
|
|
if (cam->state != S_STREAMING)
|
|
return;
|
|
/*
|
|
* If we have another buffer available, put it in and
|
|
* restart the engine.
|
|
*/
|
|
if (!list_empty(&cam->buffers)) {
|
|
mcam_sg_next_buffer(cam);
|
|
mcam_ctlr_start(cam);
|
|
/*
|
|
* Otherwise set CF_SG_RESTART and the controller will
|
|
* be restarted once another buffer shows up.
|
|
*/
|
|
} else {
|
|
set_bit(CF_SG_RESTART, &cam->flags);
|
|
singles++;
|
|
cam->vb_bufs[0] = NULL;
|
|
}
|
|
/*
|
|
* Now we can give the completed frame back to user space.
|
|
*/
|
|
delivered++;
|
|
mcam_buffer_done(cam, frame, &buf->vb_buf);
|
|
}
|
|
|
|
|
|
/*
|
|
* Scatter/gather mode requires stopping the controller between
|
|
* frames so we can put in a new DMA descriptor array. If no new
|
|
* buffer exists at frame completion, the controller is left stopped;
|
|
* this function is charged with gettig things going again.
|
|
*/
|
|
static void mcam_sg_restart(struct mcam_camera *cam)
|
|
{
|
|
mcam_ctlr_dma_sg(cam);
|
|
mcam_ctlr_start(cam);
|
|
clear_bit(CF_SG_RESTART, &cam->flags);
|
|
}
|
|
|
|
#else /* MCAM_MODE_DMA_SG */
|
|
|
|
static inline void mcam_sg_restart(struct mcam_camera *cam)
|
|
{
|
|
return;
|
|
}
|
|
|
|
#endif /* MCAM_MODE_DMA_SG */
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* Buffer-mode-independent controller code.
|
|
*/
|
|
|
|
/*
|
|
* Image format setup
|
|
*/
|
|
static void mcam_ctlr_image(struct mcam_camera *cam)
|
|
{
|
|
int imgsz;
|
|
struct v4l2_pix_format *fmt = &cam->pix_format;
|
|
|
|
imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
|
|
(fmt->bytesperline & IMGSZ_H_MASK);
|
|
mcam_reg_write(cam, REG_IMGSIZE, imgsz);
|
|
mcam_reg_write(cam, REG_IMGOFFSET, 0);
|
|
/* YPITCH just drops the last two bits */
|
|
mcam_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
|
|
IMGP_YP_MASK);
|
|
/*
|
|
* Tell the controller about the image format we are using.
|
|
*/
|
|
switch (cam->pix_format.pixelformat) {
|
|
case V4L2_PIX_FMT_YUYV:
|
|
mcam_reg_write_mask(cam, REG_CTRL0,
|
|
C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
|
|
C0_DF_MASK);
|
|
break;
|
|
|
|
case V4L2_PIX_FMT_RGB444:
|
|
mcam_reg_write_mask(cam, REG_CTRL0,
|
|
C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
|
|
C0_DF_MASK);
|
|
/* Alpha value? */
|
|
break;
|
|
|
|
case V4L2_PIX_FMT_RGB565:
|
|
mcam_reg_write_mask(cam, REG_CTRL0,
|
|
C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
|
|
C0_DF_MASK);
|
|
break;
|
|
|
|
default:
|
|
cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
|
|
break;
|
|
}
|
|
/*
|
|
* Make sure it knows we want to use hsync/vsync.
|
|
*/
|
|
mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
|
|
C0_SIFM_MASK);
|
|
}
|
|
|
|
|
|
/*
|
|
* Configure the controller for operation; caller holds the
|
|
* device mutex.
|
|
*/
|
|
static int mcam_ctlr_configure(struct mcam_camera *cam)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
clear_bit(CF_SG_RESTART, &cam->flags);
|
|
cam->dma_setup(cam);
|
|
mcam_ctlr_image(cam);
|
|
mcam_set_config_needed(cam, 0);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
|
|
{
|
|
/*
|
|
* Clear any pending interrupts, since we do not
|
|
* expect to have I/O active prior to enabling.
|
|
*/
|
|
mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
|
|
mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
|
|
}
|
|
|
|
static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
|
|
{
|
|
mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
|
|
}
|
|
|
|
|
|
|
|
static void mcam_ctlr_init(struct mcam_camera *cam)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
/*
|
|
* Make sure it's not powered down.
|
|
*/
|
|
mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
|
|
/*
|
|
* Turn off the enable bit. It sure should be off anyway,
|
|
* but it's good to be sure.
|
|
*/
|
|
mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
|
|
/*
|
|
* Clock the sensor appropriately. Controller clock should
|
|
* be 48MHz, sensor "typical" value is half that.
|
|
*/
|
|
mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* Stop the controller, and don't return until we're really sure that no
|
|
* further DMA is going on.
|
|
*/
|
|
static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Theory: stop the camera controller (whether it is operating
|
|
* or not). Delay briefly just in case we race with the SOF
|
|
* interrupt, then wait until no DMA is active.
|
|
*/
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
clear_bit(CF_SG_RESTART, &cam->flags);
|
|
mcam_ctlr_stop(cam);
|
|
cam->state = S_IDLE;
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
/*
|
|
* This is a brutally long sleep, but experience shows that
|
|
* it can take the controller a while to get the message that
|
|
* it needs to stop grabbing frames. In particular, we can
|
|
* sometimes (on mmp) get a frame at the end WITHOUT the
|
|
* start-of-frame indication.
|
|
*/
|
|
msleep(150);
|
|
if (test_bit(CF_DMA_ACTIVE, &cam->flags))
|
|
cam_err(cam, "Timeout waiting for DMA to end\n");
|
|
/* This would be bad news - what now? */
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
mcam_ctlr_irq_disable(cam);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Power up and down.
|
|
*/
|
|
static void mcam_ctlr_power_up(struct mcam_camera *cam)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
cam->plat_power_up(cam);
|
|
mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
msleep(5); /* Just to be sure */
|
|
}
|
|
|
|
static void mcam_ctlr_power_down(struct mcam_camera *cam)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
/*
|
|
* School of hard knocks department: be sure we do any register
|
|
* twiddling on the controller *before* calling the platform
|
|
* power down routine.
|
|
*/
|
|
mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
|
|
cam->plat_power_down(cam);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/*
|
|
* Communications with the sensor.
|
|
*/
|
|
|
|
static int __mcam_cam_reset(struct mcam_camera *cam)
|
|
{
|
|
return sensor_call(cam, core, reset, 0);
|
|
}
|
|
|
|
/*
|
|
* We have found the sensor on the i2c. Let's try to have a
|
|
* conversation.
|
|
*/
|
|
static int mcam_cam_init(struct mcam_camera *cam)
|
|
{
|
|
struct v4l2_dbg_chip_ident chip;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
if (cam->state != S_NOTREADY)
|
|
cam_warn(cam, "Cam init with device in funky state %d",
|
|
cam->state);
|
|
ret = __mcam_cam_reset(cam);
|
|
if (ret)
|
|
goto out;
|
|
chip.ident = V4L2_IDENT_NONE;
|
|
chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
|
|
chip.match.addr = cam->sensor_addr;
|
|
ret = sensor_call(cam, core, g_chip_ident, &chip);
|
|
if (ret)
|
|
goto out;
|
|
cam->sensor_type = chip.ident;
|
|
if (cam->sensor_type != V4L2_IDENT_OV7670) {
|
|
cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
/* Get/set parameters? */
|
|
ret = 0;
|
|
cam->state = S_IDLE;
|
|
out:
|
|
mcam_ctlr_power_down(cam);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Configure the sensor to match the parameters we have. Caller should
|
|
* hold s_mutex
|
|
*/
|
|
static int mcam_cam_set_flip(struct mcam_camera *cam)
|
|
{
|
|
struct v4l2_control ctrl;
|
|
|
|
memset(&ctrl, 0, sizeof(ctrl));
|
|
ctrl.id = V4L2_CID_VFLIP;
|
|
ctrl.value = flip;
|
|
return sensor_call(cam, core, s_ctrl, &ctrl);
|
|
}
|
|
|
|
|
|
static int mcam_cam_configure(struct mcam_camera *cam)
|
|
{
|
|
struct v4l2_mbus_framefmt mbus_fmt;
|
|
int ret;
|
|
|
|
v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
|
|
ret = sensor_call(cam, core, init, 0);
|
|
if (ret == 0)
|
|
ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
|
|
/*
|
|
* OV7670 does weird things if flip is set *before* format...
|
|
*/
|
|
ret += mcam_cam_set_flip(cam);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get everything ready, and start grabbing frames.
|
|
*/
|
|
static int mcam_read_setup(struct mcam_camera *cam)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Configuration. If we still don't have DMA buffers,
|
|
* make one last, desperate attempt.
|
|
*/
|
|
if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
|
|
mcam_alloc_dma_bufs(cam, 0))
|
|
return -ENOMEM;
|
|
|
|
if (mcam_needs_config(cam)) {
|
|
mcam_cam_configure(cam);
|
|
ret = mcam_ctlr_configure(cam);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Turn it loose.
|
|
*/
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
clear_bit(CF_DMA_ACTIVE, &cam->flags);
|
|
mcam_reset_buffers(cam);
|
|
mcam_ctlr_irq_enable(cam);
|
|
cam->state = S_STREAMING;
|
|
if (!test_bit(CF_SG_RESTART, &cam->flags))
|
|
mcam_ctlr_start(cam);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
/*
|
|
* Videobuf2 interface code.
|
|
*/
|
|
|
|
static int mcam_vb_queue_setup(struct vb2_queue *vq,
|
|
const struct v4l2_format *fmt, unsigned int *nbufs,
|
|
unsigned int *num_planes, unsigned int sizes[],
|
|
void *alloc_ctxs[])
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vq);
|
|
int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
|
|
|
|
sizes[0] = cam->pix_format.sizeimage;
|
|
*num_planes = 1; /* Someday we have to support planar formats... */
|
|
if (*nbufs < minbufs)
|
|
*nbufs = minbufs;
|
|
if (cam->buffer_mode == B_DMA_contig)
|
|
alloc_ctxs[0] = cam->vb_alloc_ctx;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void mcam_vb_buf_queue(struct vb2_buffer *vb)
|
|
{
|
|
struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
|
|
unsigned long flags;
|
|
int start;
|
|
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
|
|
list_add(&mvb->queue, &cam->buffers);
|
|
if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
|
|
mcam_sg_restart(cam);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
if (start)
|
|
mcam_read_setup(cam);
|
|
}
|
|
|
|
|
|
/*
|
|
* vb2 uses these to release the mutex when waiting in dqbuf. I'm
|
|
* not actually sure we need to do this (I'm not sure that vb2_dqbuf() needs
|
|
* to be called with the mutex held), but better safe than sorry.
|
|
*/
|
|
static void mcam_vb_wait_prepare(struct vb2_queue *vq)
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vq);
|
|
|
|
mutex_unlock(&cam->s_mutex);
|
|
}
|
|
|
|
static void mcam_vb_wait_finish(struct vb2_queue *vq)
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vq);
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
}
|
|
|
|
/*
|
|
* These need to be called with the mutex held from vb2
|
|
*/
|
|
static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vq);
|
|
|
|
if (cam->state != S_IDLE) {
|
|
INIT_LIST_HEAD(&cam->buffers);
|
|
return -EINVAL;
|
|
}
|
|
cam->sequence = 0;
|
|
/*
|
|
* Videobuf2 sneakily hoards all the buffers and won't
|
|
* give them to us until *after* streaming starts. But
|
|
* we can't actually start streaming until we have a
|
|
* destination. So go into a wait state and hope they
|
|
* give us buffers soon.
|
|
*/
|
|
if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
|
|
cam->state = S_BUFWAIT;
|
|
return 0;
|
|
}
|
|
return mcam_read_setup(cam);
|
|
}
|
|
|
|
static int mcam_vb_stop_streaming(struct vb2_queue *vq)
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vq);
|
|
unsigned long flags;
|
|
|
|
if (cam->state == S_BUFWAIT) {
|
|
/* They never gave us buffers */
|
|
cam->state = S_IDLE;
|
|
return 0;
|
|
}
|
|
if (cam->state != S_STREAMING)
|
|
return -EINVAL;
|
|
mcam_ctlr_stop_dma(cam);
|
|
/*
|
|
* VB2 reclaims the buffers, so we need to forget
|
|
* about them.
|
|
*/
|
|
spin_lock_irqsave(&cam->dev_lock, flags);
|
|
INIT_LIST_HEAD(&cam->buffers);
|
|
spin_unlock_irqrestore(&cam->dev_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static const struct vb2_ops mcam_vb2_ops = {
|
|
.queue_setup = mcam_vb_queue_setup,
|
|
.buf_queue = mcam_vb_buf_queue,
|
|
.start_streaming = mcam_vb_start_streaming,
|
|
.stop_streaming = mcam_vb_stop_streaming,
|
|
.wait_prepare = mcam_vb_wait_prepare,
|
|
.wait_finish = mcam_vb_wait_finish,
|
|
};
|
|
|
|
|
|
#ifdef MCAM_MODE_DMA_SG
|
|
/*
|
|
* Scatter/gather mode uses all of the above functions plus a
|
|
* few extras to deal with DMA mapping.
|
|
*/
|
|
static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
|
|
{
|
|
struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
|
|
int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
|
|
|
|
mvb->dma_desc = dma_alloc_coherent(cam->dev,
|
|
ndesc * sizeof(struct mcam_dma_desc),
|
|
&mvb->dma_desc_pa, GFP_KERNEL);
|
|
if (mvb->dma_desc == NULL) {
|
|
cam_err(cam, "Unable to get DMA descriptor array\n");
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
|
|
{
|
|
struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct vb2_dma_sg_desc *sgd = vb2_dma_sg_plane_desc(vb, 0);
|
|
struct mcam_dma_desc *desc = mvb->dma_desc;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
mvb->dma_desc_nent = dma_map_sg(cam->dev, sgd->sglist, sgd->num_pages,
|
|
DMA_FROM_DEVICE);
|
|
if (mvb->dma_desc_nent <= 0)
|
|
return -EIO; /* Not sure what's right here */
|
|
for_each_sg(sgd->sglist, sg, mvb->dma_desc_nent, i) {
|
|
desc->dma_addr = sg_dma_address(sg);
|
|
desc->segment_len = sg_dma_len(sg);
|
|
desc++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mcam_vb_sg_buf_finish(struct vb2_buffer *vb)
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct vb2_dma_sg_desc *sgd = vb2_dma_sg_plane_desc(vb, 0);
|
|
|
|
dma_unmap_sg(cam->dev, sgd->sglist, sgd->num_pages, DMA_FROM_DEVICE);
|
|
return 0;
|
|
}
|
|
|
|
static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
|
|
{
|
|
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
|
|
int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
|
|
|
|
dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
|
|
mvb->dma_desc, mvb->dma_desc_pa);
|
|
}
|
|
|
|
|
|
static const struct vb2_ops mcam_vb2_sg_ops = {
|
|
.queue_setup = mcam_vb_queue_setup,
|
|
.buf_init = mcam_vb_sg_buf_init,
|
|
.buf_prepare = mcam_vb_sg_buf_prepare,
|
|
.buf_queue = mcam_vb_buf_queue,
|
|
.buf_finish = mcam_vb_sg_buf_finish,
|
|
.buf_cleanup = mcam_vb_sg_buf_cleanup,
|
|
.start_streaming = mcam_vb_start_streaming,
|
|
.stop_streaming = mcam_vb_stop_streaming,
|
|
.wait_prepare = mcam_vb_wait_prepare,
|
|
.wait_finish = mcam_vb_wait_finish,
|
|
};
|
|
|
|
#endif /* MCAM_MODE_DMA_SG */
|
|
|
|
static int mcam_setup_vb2(struct mcam_camera *cam)
|
|
{
|
|
struct vb2_queue *vq = &cam->vb_queue;
|
|
|
|
memset(vq, 0, sizeof(*vq));
|
|
vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
|
vq->drv_priv = cam;
|
|
INIT_LIST_HEAD(&cam->buffers);
|
|
switch (cam->buffer_mode) {
|
|
case B_DMA_contig:
|
|
#ifdef MCAM_MODE_DMA_CONTIG
|
|
vq->ops = &mcam_vb2_ops;
|
|
vq->mem_ops = &vb2_dma_contig_memops;
|
|
cam->vb_alloc_ctx = vb2_dma_contig_init_ctx(cam->dev);
|
|
vq->io_modes = VB2_MMAP | VB2_USERPTR;
|
|
cam->dma_setup = mcam_ctlr_dma_contig;
|
|
cam->frame_complete = mcam_dma_contig_done;
|
|
#endif
|
|
break;
|
|
case B_DMA_sg:
|
|
#ifdef MCAM_MODE_DMA_SG
|
|
vq->ops = &mcam_vb2_sg_ops;
|
|
vq->mem_ops = &vb2_dma_sg_memops;
|
|
vq->io_modes = VB2_MMAP | VB2_USERPTR;
|
|
cam->dma_setup = mcam_ctlr_dma_sg;
|
|
cam->frame_complete = mcam_dma_sg_done;
|
|
#endif
|
|
break;
|
|
case B_vmalloc:
|
|
#ifdef MCAM_MODE_VMALLOC
|
|
tasklet_init(&cam->s_tasklet, mcam_frame_tasklet,
|
|
(unsigned long) cam);
|
|
vq->ops = &mcam_vb2_ops;
|
|
vq->mem_ops = &vb2_vmalloc_memops;
|
|
vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
|
|
vq->io_modes = VB2_MMAP;
|
|
cam->dma_setup = mcam_ctlr_dma_vmalloc;
|
|
cam->frame_complete = mcam_vmalloc_done;
|
|
#endif
|
|
break;
|
|
}
|
|
return vb2_queue_init(vq);
|
|
}
|
|
|
|
static void mcam_cleanup_vb2(struct mcam_camera *cam)
|
|
{
|
|
vb2_queue_release(&cam->vb_queue);
|
|
#ifdef MCAM_MODE_DMA_CONTIG
|
|
if (cam->buffer_mode == B_DMA_contig)
|
|
vb2_dma_contig_cleanup_ctx(cam->vb_alloc_ctx);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* The long list of V4L2 ioctl() operations.
|
|
*/
|
|
|
|
static int mcam_vidioc_streamon(struct file *filp, void *priv,
|
|
enum v4l2_buf_type type)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_streamon(&cam->vb_queue, type);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_streamoff(struct file *filp, void *priv,
|
|
enum v4l2_buf_type type)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_streamoff(&cam->vb_queue, type);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_reqbufs(struct file *filp, void *priv,
|
|
struct v4l2_requestbuffers *req)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_reqbufs(&cam->vb_queue, req);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_querybuf(struct file *filp, void *priv,
|
|
struct v4l2_buffer *buf)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_querybuf(&cam->vb_queue, buf);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mcam_vidioc_qbuf(struct file *filp, void *priv,
|
|
struct v4l2_buffer *buf)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_qbuf(&cam->vb_queue, buf);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mcam_vidioc_dqbuf(struct file *filp, void *priv,
|
|
struct v4l2_buffer *buf)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_dqbuf(&cam->vb_queue, buf, filp->f_flags & O_NONBLOCK);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
static int mcam_vidioc_queryctrl(struct file *filp, void *priv,
|
|
struct v4l2_queryctrl *qc)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, core, queryctrl, qc);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_g_ctrl(struct file *filp, void *priv,
|
|
struct v4l2_control *ctrl)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, core, g_ctrl, ctrl);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_s_ctrl(struct file *filp, void *priv,
|
|
struct v4l2_control *ctrl)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, core, s_ctrl, ctrl);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_querycap(struct file *file, void *priv,
|
|
struct v4l2_capability *cap)
|
|
{
|
|
strcpy(cap->driver, "marvell_ccic");
|
|
strcpy(cap->card, "marvell_ccic");
|
|
cap->version = 1;
|
|
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
|
|
V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
|
|
void *priv, struct v4l2_fmtdesc *fmt)
|
|
{
|
|
if (fmt->index >= N_MCAM_FMTS)
|
|
return -EINVAL;
|
|
strlcpy(fmt->description, mcam_formats[fmt->index].desc,
|
|
sizeof(fmt->description));
|
|
fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
|
|
return 0;
|
|
}
|
|
|
|
static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
|
|
struct v4l2_format *fmt)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
struct mcam_format_struct *f;
|
|
struct v4l2_pix_format *pix = &fmt->fmt.pix;
|
|
struct v4l2_mbus_framefmt mbus_fmt;
|
|
int ret;
|
|
|
|
f = mcam_find_format(pix->pixelformat);
|
|
pix->pixelformat = f->pixelformat;
|
|
v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
|
|
mutex_unlock(&cam->s_mutex);
|
|
v4l2_fill_pix_format(pix, &mbus_fmt);
|
|
pix->bytesperline = pix->width * f->bpp;
|
|
pix->sizeimage = pix->height * pix->bytesperline;
|
|
return ret;
|
|
}
|
|
|
|
static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
|
|
struct v4l2_format *fmt)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
struct mcam_format_struct *f;
|
|
int ret;
|
|
|
|
/*
|
|
* Can't do anything if the device is not idle
|
|
* Also can't if there are streaming buffers in place.
|
|
*/
|
|
if (cam->state != S_IDLE || cam->vb_queue.num_buffers > 0)
|
|
return -EBUSY;
|
|
|
|
f = mcam_find_format(fmt->fmt.pix.pixelformat);
|
|
|
|
/*
|
|
* See if the formatting works in principle.
|
|
*/
|
|
ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* Now we start to change things for real, so let's do it
|
|
* under lock.
|
|
*/
|
|
mutex_lock(&cam->s_mutex);
|
|
cam->pix_format = fmt->fmt.pix;
|
|
cam->mbus_code = f->mbus_code;
|
|
|
|
/*
|
|
* Make sure we have appropriate DMA buffers.
|
|
*/
|
|
if (cam->buffer_mode == B_vmalloc) {
|
|
ret = mcam_check_dma_buffers(cam);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
mcam_set_config_needed(cam, 1);
|
|
out:
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return our stored notion of how the camera is/should be configured.
|
|
* The V4l2 spec wants us to be smarter, and actually get this from
|
|
* the camera (and not mess with it at open time). Someday.
|
|
*/
|
|
static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
|
|
f->fmt.pix = cam->pix_format;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We only have one input - the sensor - so minimize the nonsense here.
|
|
*/
|
|
static int mcam_vidioc_enum_input(struct file *filp, void *priv,
|
|
struct v4l2_input *input)
|
|
{
|
|
if (input->index != 0)
|
|
return -EINVAL;
|
|
|
|
input->type = V4L2_INPUT_TYPE_CAMERA;
|
|
input->std = V4L2_STD_ALL; /* Not sure what should go here */
|
|
strcpy(input->name, "Camera");
|
|
return 0;
|
|
}
|
|
|
|
static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
|
|
{
|
|
*i = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
|
|
{
|
|
if (i != 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/* from vivi.c */
|
|
static int mcam_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* G/S_PARM. Most of this is done by the sensor, but we are
|
|
* the level which controls the number of read buffers.
|
|
*/
|
|
static int mcam_vidioc_g_parm(struct file *filp, void *priv,
|
|
struct v4l2_streamparm *parms)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, video, g_parm, parms);
|
|
mutex_unlock(&cam->s_mutex);
|
|
parms->parm.capture.readbuffers = n_dma_bufs;
|
|
return ret;
|
|
}
|
|
|
|
static int mcam_vidioc_s_parm(struct file *filp, void *priv,
|
|
struct v4l2_streamparm *parms)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, video, s_parm, parms);
|
|
mutex_unlock(&cam->s_mutex);
|
|
parms->parm.capture.readbuffers = n_dma_bufs;
|
|
return ret;
|
|
}
|
|
|
|
static int mcam_vidioc_g_chip_ident(struct file *file, void *priv,
|
|
struct v4l2_dbg_chip_ident *chip)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
|
|
chip->ident = V4L2_IDENT_NONE;
|
|
chip->revision = 0;
|
|
if (v4l2_chip_match_host(&chip->match)) {
|
|
chip->ident = cam->chip_id;
|
|
return 0;
|
|
}
|
|
return sensor_call(cam, core, g_chip_ident, chip);
|
|
}
|
|
|
|
static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
|
|
struct v4l2_frmsizeenum *sizes)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, video, enum_framesizes, sizes);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
|
|
struct v4l2_frmivalenum *interval)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = sensor_call(cam, video, enum_frameintervals, interval);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_VIDEO_ADV_DEBUG
|
|
static int mcam_vidioc_g_register(struct file *file, void *priv,
|
|
struct v4l2_dbg_register *reg)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
|
|
if (v4l2_chip_match_host(®->match)) {
|
|
reg->val = mcam_reg_read(cam, reg->reg);
|
|
reg->size = 4;
|
|
return 0;
|
|
}
|
|
return sensor_call(cam, core, g_register, reg);
|
|
}
|
|
|
|
static int mcam_vidioc_s_register(struct file *file, void *priv,
|
|
struct v4l2_dbg_register *reg)
|
|
{
|
|
struct mcam_camera *cam = priv;
|
|
|
|
if (v4l2_chip_match_host(®->match)) {
|
|
mcam_reg_write(cam, reg->reg, reg->val);
|
|
return 0;
|
|
}
|
|
return sensor_call(cam, core, s_register, reg);
|
|
}
|
|
#endif
|
|
|
|
static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
|
|
.vidioc_querycap = mcam_vidioc_querycap,
|
|
.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
|
|
.vidioc_try_fmt_vid_cap = mcam_vidioc_try_fmt_vid_cap,
|
|
.vidioc_s_fmt_vid_cap = mcam_vidioc_s_fmt_vid_cap,
|
|
.vidioc_g_fmt_vid_cap = mcam_vidioc_g_fmt_vid_cap,
|
|
.vidioc_enum_input = mcam_vidioc_enum_input,
|
|
.vidioc_g_input = mcam_vidioc_g_input,
|
|
.vidioc_s_input = mcam_vidioc_s_input,
|
|
.vidioc_s_std = mcam_vidioc_s_std,
|
|
.vidioc_reqbufs = mcam_vidioc_reqbufs,
|
|
.vidioc_querybuf = mcam_vidioc_querybuf,
|
|
.vidioc_qbuf = mcam_vidioc_qbuf,
|
|
.vidioc_dqbuf = mcam_vidioc_dqbuf,
|
|
.vidioc_streamon = mcam_vidioc_streamon,
|
|
.vidioc_streamoff = mcam_vidioc_streamoff,
|
|
.vidioc_queryctrl = mcam_vidioc_queryctrl,
|
|
.vidioc_g_ctrl = mcam_vidioc_g_ctrl,
|
|
.vidioc_s_ctrl = mcam_vidioc_s_ctrl,
|
|
.vidioc_g_parm = mcam_vidioc_g_parm,
|
|
.vidioc_s_parm = mcam_vidioc_s_parm,
|
|
.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
|
|
.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
|
|
.vidioc_g_chip_ident = mcam_vidioc_g_chip_ident,
|
|
#ifdef CONFIG_VIDEO_ADV_DEBUG
|
|
.vidioc_g_register = mcam_vidioc_g_register,
|
|
.vidioc_s_register = mcam_vidioc_s_register,
|
|
#endif
|
|
};
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* Our various file operations.
|
|
*/
|
|
static int mcam_v4l_open(struct file *filp)
|
|
{
|
|
struct mcam_camera *cam = video_drvdata(filp);
|
|
int ret = 0;
|
|
|
|
filp->private_data = cam;
|
|
|
|
frames = singles = delivered = 0;
|
|
mutex_lock(&cam->s_mutex);
|
|
if (cam->users == 0) {
|
|
ret = mcam_setup_vb2(cam);
|
|
if (ret)
|
|
goto out;
|
|
mcam_ctlr_power_up(cam);
|
|
__mcam_cam_reset(cam);
|
|
mcam_set_config_needed(cam, 1);
|
|
}
|
|
(cam->users)++;
|
|
out:
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_v4l_release(struct file *filp)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
|
|
cam_dbg(cam, "Release, %d frames, %d singles, %d delivered\n", frames,
|
|
singles, delivered);
|
|
mutex_lock(&cam->s_mutex);
|
|
(cam->users)--;
|
|
if (cam->users == 0) {
|
|
mcam_ctlr_stop_dma(cam);
|
|
mcam_cleanup_vb2(cam);
|
|
mcam_ctlr_power_down(cam);
|
|
if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
|
|
mcam_free_dma_bufs(cam);
|
|
}
|
|
mutex_unlock(&cam->s_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t mcam_v4l_read(struct file *filp,
|
|
char __user *buffer, size_t len, loff_t *pos)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_read(&cam->vb_queue, buffer, len, pos,
|
|
filp->f_flags & O_NONBLOCK);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
static unsigned int mcam_v4l_poll(struct file *filp,
|
|
struct poll_table_struct *pt)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_poll(&cam->vb_queue, filp, pt);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int mcam_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct mcam_camera *cam = filp->private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
ret = vb2_mmap(&cam->vb_queue, vma);
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
static const struct v4l2_file_operations mcam_v4l_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = mcam_v4l_open,
|
|
.release = mcam_v4l_release,
|
|
.read = mcam_v4l_read,
|
|
.poll = mcam_v4l_poll,
|
|
.mmap = mcam_v4l_mmap,
|
|
.unlocked_ioctl = video_ioctl2,
|
|
};
|
|
|
|
|
|
/*
|
|
* This template device holds all of those v4l2 methods; we
|
|
* clone it for specific real devices.
|
|
*/
|
|
static struct video_device mcam_v4l_template = {
|
|
.name = "mcam",
|
|
.tvnorms = V4L2_STD_NTSC_M,
|
|
.current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
|
|
|
|
.fops = &mcam_v4l_fops,
|
|
.ioctl_ops = &mcam_v4l_ioctl_ops,
|
|
.release = video_device_release_empty,
|
|
};
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* Interrupt handler stuff
|
|
*/
|
|
static void mcam_frame_complete(struct mcam_camera *cam, int frame)
|
|
{
|
|
/*
|
|
* Basic frame housekeeping.
|
|
*/
|
|
set_bit(frame, &cam->flags);
|
|
clear_bit(CF_DMA_ACTIVE, &cam->flags);
|
|
cam->next_buf = frame;
|
|
cam->buf_seq[frame] = ++(cam->sequence);
|
|
frames++;
|
|
/*
|
|
* "This should never happen"
|
|
*/
|
|
if (cam->state != S_STREAMING)
|
|
return;
|
|
/*
|
|
* Process the frame and set up the next one.
|
|
*/
|
|
cam->frame_complete(cam, frame);
|
|
}
|
|
|
|
|
|
/*
|
|
* The interrupt handler; this needs to be called from the
|
|
* platform irq handler with the lock held.
|
|
*/
|
|
int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
|
|
{
|
|
unsigned int frame, handled = 0;
|
|
|
|
mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
|
|
/*
|
|
* Handle any frame completions. There really should
|
|
* not be more than one of these, or we have fallen
|
|
* far behind.
|
|
*
|
|
* When running in S/G mode, the frame number lacks any
|
|
* real meaning - there's only one descriptor array - but
|
|
* the controller still picks a different one to signal
|
|
* each time.
|
|
*/
|
|
for (frame = 0; frame < cam->nbufs; frame++)
|
|
if (irqs & (IRQ_EOF0 << frame)) {
|
|
mcam_frame_complete(cam, frame);
|
|
handled = 1;
|
|
if (cam->buffer_mode == B_DMA_sg)
|
|
break;
|
|
}
|
|
/*
|
|
* If a frame starts, note that we have DMA active. This
|
|
* code assumes that we won't get multiple frame interrupts
|
|
* at once; may want to rethink that.
|
|
*/
|
|
if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2)) {
|
|
set_bit(CF_DMA_ACTIVE, &cam->flags);
|
|
handled = 1;
|
|
if (cam->buffer_mode == B_DMA_sg)
|
|
mcam_ctlr_stop(cam);
|
|
}
|
|
return handled;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
/*
|
|
* Registration and such.
|
|
*/
|
|
static struct ov7670_config sensor_cfg = {
|
|
/*
|
|
* Exclude QCIF mode, because it only captures a tiny portion
|
|
* of the sensor FOV
|
|
*/
|
|
.min_width = 320,
|
|
.min_height = 240,
|
|
};
|
|
|
|
|
|
int mccic_register(struct mcam_camera *cam)
|
|
{
|
|
struct i2c_board_info ov7670_info = {
|
|
.type = "ov7670",
|
|
.addr = 0x42 >> 1,
|
|
.platform_data = &sensor_cfg,
|
|
};
|
|
int ret;
|
|
|
|
/*
|
|
* Validate the requested buffer mode.
|
|
*/
|
|
if (buffer_mode >= 0)
|
|
cam->buffer_mode = buffer_mode;
|
|
if (cam->buffer_mode == B_DMA_sg &&
|
|
cam->chip_id == V4L2_IDENT_CAFE) {
|
|
printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, "
|
|
"attempting vmalloc mode instead\n");
|
|
cam->buffer_mode = B_vmalloc;
|
|
}
|
|
if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
|
|
printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
|
|
cam->buffer_mode);
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* Register with V4L
|
|
*/
|
|
ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_init(&cam->s_mutex);
|
|
cam->state = S_NOTREADY;
|
|
mcam_set_config_needed(cam, 1);
|
|
cam->pix_format = mcam_def_pix_format;
|
|
cam->mbus_code = mcam_def_mbus_code;
|
|
INIT_LIST_HEAD(&cam->buffers);
|
|
mcam_ctlr_init(cam);
|
|
|
|
/*
|
|
* Try to find the sensor.
|
|
*/
|
|
sensor_cfg.clock_speed = cam->clock_speed;
|
|
sensor_cfg.use_smbus = cam->use_smbus;
|
|
cam->sensor_addr = ov7670_info.addr;
|
|
cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
|
|
cam->i2c_adapter, &ov7670_info, NULL);
|
|
if (cam->sensor == NULL) {
|
|
ret = -ENODEV;
|
|
goto out_unregister;
|
|
}
|
|
|
|
ret = mcam_cam_init(cam);
|
|
if (ret)
|
|
goto out_unregister;
|
|
/*
|
|
* Get the v4l2 setup done.
|
|
*/
|
|
mutex_lock(&cam->s_mutex);
|
|
cam->vdev = mcam_v4l_template;
|
|
cam->vdev.debug = 0;
|
|
cam->vdev.v4l2_dev = &cam->v4l2_dev;
|
|
ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
|
|
if (ret)
|
|
goto out;
|
|
video_set_drvdata(&cam->vdev, cam);
|
|
|
|
/*
|
|
* If so requested, try to get our DMA buffers now.
|
|
*/
|
|
if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
|
|
if (mcam_alloc_dma_bufs(cam, 1))
|
|
cam_warn(cam, "Unable to alloc DMA buffers at load"
|
|
" will try again later.");
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&cam->s_mutex);
|
|
return ret;
|
|
out_unregister:
|
|
v4l2_device_unregister(&cam->v4l2_dev);
|
|
return ret;
|
|
}
|
|
|
|
|
|
void mccic_shutdown(struct mcam_camera *cam)
|
|
{
|
|
/*
|
|
* If we have no users (and we really, really should have no
|
|
* users) the device will already be powered down. Trying to
|
|
* take it down again will wedge the machine, which is frowned
|
|
* upon.
|
|
*/
|
|
if (cam->users > 0) {
|
|
cam_warn(cam, "Removing a device with users!\n");
|
|
mcam_ctlr_power_down(cam);
|
|
}
|
|
vb2_queue_release(&cam->vb_queue);
|
|
if (cam->buffer_mode == B_vmalloc)
|
|
mcam_free_dma_bufs(cam);
|
|
video_unregister_device(&cam->vdev);
|
|
v4l2_device_unregister(&cam->v4l2_dev);
|
|
}
|
|
|
|
/*
|
|
* Power management
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
|
|
void mccic_suspend(struct mcam_camera *cam)
|
|
{
|
|
mutex_lock(&cam->s_mutex);
|
|
if (cam->users > 0) {
|
|
enum mcam_state cstate = cam->state;
|
|
|
|
mcam_ctlr_stop_dma(cam);
|
|
mcam_ctlr_power_down(cam);
|
|
cam->state = cstate;
|
|
}
|
|
mutex_unlock(&cam->s_mutex);
|
|
}
|
|
|
|
int mccic_resume(struct mcam_camera *cam)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&cam->s_mutex);
|
|
if (cam->users > 0) {
|
|
mcam_ctlr_power_up(cam);
|
|
__mcam_cam_reset(cam);
|
|
} else {
|
|
mcam_ctlr_power_down(cam);
|
|
}
|
|
mutex_unlock(&cam->s_mutex);
|
|
|
|
set_bit(CF_CONFIG_NEEDED, &cam->flags);
|
|
if (cam->state == S_STREAMING) {
|
|
/*
|
|
* If there was a buffer in the DMA engine at suspend
|
|
* time, put it back on the queue or we'll forget about it.
|
|
*/
|
|
if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
|
|
list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
|
|
ret = mcam_read_setup(cam);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_PM */
|