391 lines
11 KiB
C
391 lines
11 KiB
C
/*
|
|
* omap_vout_vrfb.c
|
|
*
|
|
* Copyright (C) 2010 Texas Instruments.
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/videodev2.h>
|
|
|
|
#include <media/videobuf-dma-contig.h>
|
|
#include <media/v4l2-device.h>
|
|
|
|
#include <plat/dma.h>
|
|
#include <plat/vrfb.h>
|
|
|
|
#include "omap_voutdef.h"
|
|
#include "omap_voutlib.h"
|
|
|
|
/*
|
|
* Function for allocating video buffers
|
|
*/
|
|
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
|
|
unsigned int *count, int startindex)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < *count; i++) {
|
|
if (!vout->smsshado_virt_addr[i]) {
|
|
vout->smsshado_virt_addr[i] =
|
|
omap_vout_alloc_buffer(vout->smsshado_size,
|
|
&vout->smsshado_phy_addr[i]);
|
|
}
|
|
if (!vout->smsshado_virt_addr[i] && startindex != -1) {
|
|
if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
|
|
break;
|
|
}
|
|
if (!vout->smsshado_virt_addr[i]) {
|
|
for (j = 0; j < i; j++) {
|
|
omap_vout_free_buffer(
|
|
vout->smsshado_virt_addr[j],
|
|
vout->smsshado_size);
|
|
vout->smsshado_virt_addr[j] = 0;
|
|
vout->smsshado_phy_addr[j] = 0;
|
|
}
|
|
*count = 0;
|
|
return -ENOMEM;
|
|
}
|
|
memset((void *) vout->smsshado_virt_addr[i], 0,
|
|
vout->smsshado_size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wakes up the application once the DMA transfer to VRFB space is completed.
|
|
*/
|
|
static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
|
|
{
|
|
struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
|
|
|
|
t->tx_status = 1;
|
|
wake_up_interruptible(&t->wait);
|
|
}
|
|
|
|
/*
|
|
* Free VRFB buffers
|
|
*/
|
|
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < VRFB_NUM_BUFS; j++) {
|
|
omap_vout_free_buffer(vout->smsshado_virt_addr[j],
|
|
vout->smsshado_size);
|
|
vout->smsshado_virt_addr[j] = 0;
|
|
vout->smsshado_phy_addr[j] = 0;
|
|
}
|
|
}
|
|
|
|
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
|
|
bool static_vrfb_allocation)
|
|
{
|
|
int ret = 0, i, j;
|
|
struct omap_vout_device *vout;
|
|
struct video_device *vfd;
|
|
int image_width, image_height;
|
|
int vrfb_num_bufs = VRFB_NUM_BUFS;
|
|
struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
|
|
struct omap2video_device *vid_dev =
|
|
container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
|
|
|
|
vout = vid_dev->vouts[vid_num];
|
|
vfd = vout->vfd;
|
|
|
|
for (i = 0; i < VRFB_NUM_BUFS; i++) {
|
|
if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
|
|
dev_info(&pdev->dev, ": VRFB allocation failed\n");
|
|
for (j = 0; j < i; j++)
|
|
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
|
|
ret = -ENOMEM;
|
|
goto free_buffers;
|
|
}
|
|
}
|
|
|
|
/* Calculate VRFB memory size */
|
|
/* allocate for worst case size */
|
|
image_width = VID_MAX_WIDTH / TILE_SIZE;
|
|
if (VID_MAX_WIDTH % TILE_SIZE)
|
|
image_width++;
|
|
|
|
image_width = image_width * TILE_SIZE;
|
|
image_height = VID_MAX_HEIGHT / TILE_SIZE;
|
|
|
|
if (VID_MAX_HEIGHT % TILE_SIZE)
|
|
image_height++;
|
|
|
|
image_height = image_height * TILE_SIZE;
|
|
vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
|
|
|
|
/*
|
|
* Request and Initialize DMA, for DMA based VRFB transfer
|
|
*/
|
|
vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
|
|
vout->vrfb_dma_tx.dma_ch = -1;
|
|
vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
|
|
ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
|
|
omap_vout_vrfb_dma_tx_callback,
|
|
(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
|
|
if (ret < 0) {
|
|
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
|
|
dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
|
|
" video%d\n", vfd->minor);
|
|
}
|
|
init_waitqueue_head(&vout->vrfb_dma_tx.wait);
|
|
|
|
/* statically allocated the VRFB buffer is done through
|
|
commands line aruments */
|
|
if (static_vrfb_allocation) {
|
|
if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
|
|
ret = -ENOMEM;
|
|
goto release_vrfb_ctx;
|
|
}
|
|
vout->vrfb_static_allocation = 1;
|
|
}
|
|
return 0;
|
|
|
|
release_vrfb_ctx:
|
|
for (j = 0; j < VRFB_NUM_BUFS; j++)
|
|
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
|
|
free_buffers:
|
|
omap_vout_free_buffers(vout);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Release the VRFB context once the module exits
|
|
*/
|
|
void omap_vout_release_vrfb(struct omap_vout_device *vout)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < VRFB_NUM_BUFS; i++)
|
|
omap_vrfb_release_ctx(&vout->vrfb_context[i]);
|
|
|
|
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
|
|
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
|
|
omap_free_dma(vout->vrfb_dma_tx.dma_ch);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate the buffers for the VRFB space. Data is copied from V4L2
|
|
* buffers to the VRFB buffers using the DMA engine.
|
|
*/
|
|
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
|
|
unsigned int *count, unsigned int startindex)
|
|
{
|
|
int i;
|
|
bool yuv_mode;
|
|
|
|
if (!is_rotation_enabled(vout))
|
|
return 0;
|
|
|
|
/* If rotation is enabled, allocate memory for VRFB space also */
|
|
*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
|
|
|
|
/* Allocate the VRFB buffers only if the buffers are not
|
|
* allocated during init time.
|
|
*/
|
|
if (!vout->vrfb_static_allocation)
|
|
if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
|
|
return -ENOMEM;
|
|
|
|
if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
|
|
vout->dss_mode == OMAP_DSS_COLOR_UYVY)
|
|
yuv_mode = true;
|
|
else
|
|
yuv_mode = false;
|
|
|
|
for (i = 0; i < *count; i++)
|
|
omap_vrfb_setup(&vout->vrfb_context[i],
|
|
vout->smsshado_phy_addr[i], vout->pix.width,
|
|
vout->pix.height, vout->bpp, yuv_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
|
|
struct videobuf_buffer *vb)
|
|
{
|
|
dma_addr_t dmabuf;
|
|
struct vid_vrfb_dma *tx;
|
|
enum dss_rotation rotation;
|
|
u32 dest_frame_index = 0, src_element_index = 0;
|
|
u32 dest_element_index = 0, src_frame_index = 0;
|
|
u32 elem_count = 0, frame_count = 0, pixsize = 2;
|
|
|
|
if (!is_rotation_enabled(vout))
|
|
return 0;
|
|
|
|
dmabuf = vout->buf_phy_addr[vb->i];
|
|
/* If rotation is enabled, copy input buffer into VRFB
|
|
* memory space using DMA. We are copying input buffer
|
|
* into VRFB memory space of desired angle and DSS will
|
|
* read image VRFB memory for 0 degree angle
|
|
*/
|
|
pixsize = vout->bpp * vout->vrfb_bpp;
|
|
/*
|
|
* DMA transfer in double index mode
|
|
*/
|
|
|
|
/* Frame index */
|
|
dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
|
|
(vout->pix.width * vout->bpp)) + 1;
|
|
|
|
/* Source and destination parameters */
|
|
src_element_index = 0;
|
|
src_frame_index = 0;
|
|
dest_element_index = 1;
|
|
/* Number of elements per frame */
|
|
elem_count = vout->pix.width * vout->bpp;
|
|
frame_count = vout->pix.height;
|
|
tx = &vout->vrfb_dma_tx;
|
|
tx->tx_status = 0;
|
|
omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
|
|
(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
|
|
tx->dev_id, 0x0);
|
|
/* src_port required only for OMAP1 */
|
|
omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
|
|
dmabuf, src_element_index, src_frame_index);
|
|
/*set dma source burst mode for VRFB */
|
|
omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
|
|
rotation = calc_rotation(vout);
|
|
|
|
/* dest_port required only for OMAP1 */
|
|
omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
|
|
vout->vrfb_context[vb->i].paddr[0], dest_element_index,
|
|
dest_frame_index);
|
|
/*set dma dest burst mode for VRFB */
|
|
omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
|
|
omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
|
|
|
|
omap_start_dma(tx->dma_ch);
|
|
interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
|
|
|
|
if (tx->tx_status == 0) {
|
|
omap_stop_dma(tx->dma_ch);
|
|
return -EINVAL;
|
|
}
|
|
/* Store buffers physical address into an array. Addresses
|
|
* from this array will be used to configure DSS */
|
|
vout->queued_buf_addr[vb->i] = (u8 *)
|
|
vout->vrfb_context[vb->i].paddr[rotation];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate the buffer offsets from which the streaming should
|
|
* start. This offset calculation is mainly required because of
|
|
* the VRFB 32 pixels alignment with rotation.
|
|
*/
|
|
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
|
|
{
|
|
enum dss_rotation rotation;
|
|
bool mirroring = vout->mirror;
|
|
struct v4l2_rect *crop = &vout->crop;
|
|
struct v4l2_pix_format *pix = &vout->pix;
|
|
int *cropped_offset = &vout->cropped_offset;
|
|
int vr_ps = 1, ps = 2, temp_ps = 2;
|
|
int offset = 0, ctop = 0, cleft = 0, line_length = 0;
|
|
|
|
rotation = calc_rotation(vout);
|
|
|
|
if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
|
|
V4L2_PIX_FMT_UYVY == pix->pixelformat) {
|
|
if (is_rotation_enabled(vout)) {
|
|
/*
|
|
* ps - Actual pixel size for YUYV/UYVY for
|
|
* VRFB/Mirroring is 4 bytes
|
|
* vr_ps - Virtually pixel size for YUYV/UYVY is
|
|
* 2 bytes
|
|
*/
|
|
ps = 4;
|
|
vr_ps = 2;
|
|
} else {
|
|
ps = 2; /* otherwise the pixel size is 2 byte */
|
|
}
|
|
} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
|
|
ps = 4;
|
|
} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
|
|
ps = 3;
|
|
}
|
|
vout->ps = ps;
|
|
vout->vr_ps = vr_ps;
|
|
|
|
if (is_rotation_enabled(vout)) {
|
|
line_length = MAX_PIXELS_PER_LINE;
|
|
ctop = (pix->height - crop->height) - crop->top;
|
|
cleft = (pix->width - crop->width) - crop->left;
|
|
} else {
|
|
line_length = pix->width;
|
|
}
|
|
vout->line_length = line_length;
|
|
switch (rotation) {
|
|
case dss_rotation_90_degree:
|
|
offset = vout->vrfb_context[0].yoffset *
|
|
vout->vrfb_context[0].bytespp;
|
|
temp_ps = ps / vr_ps;
|
|
if (mirroring == 0) {
|
|
*cropped_offset = offset + line_length *
|
|
temp_ps * cleft + crop->top * temp_ps;
|
|
} else {
|
|
*cropped_offset = offset + line_length * temp_ps *
|
|
cleft + crop->top * temp_ps + (line_length *
|
|
((crop->width / (vr_ps)) - 1) * ps);
|
|
}
|
|
break;
|
|
case dss_rotation_180_degree:
|
|
offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
|
|
vout->vrfb_context[0].bytespp) +
|
|
(vout->vrfb_context[0].xoffset *
|
|
vout->vrfb_context[0].bytespp));
|
|
if (mirroring == 0) {
|
|
*cropped_offset = offset + (line_length * ps * ctop) +
|
|
(cleft / vr_ps) * ps;
|
|
|
|
} else {
|
|
*cropped_offset = offset + (line_length * ps * ctop) +
|
|
(cleft / vr_ps) * ps + (line_length *
|
|
(crop->height - 1) * ps);
|
|
}
|
|
break;
|
|
case dss_rotation_270_degree:
|
|
offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
|
|
vout->vrfb_context[0].bytespp;
|
|
temp_ps = ps / vr_ps;
|
|
if (mirroring == 0) {
|
|
*cropped_offset = offset + line_length *
|
|
temp_ps * crop->left + ctop * ps;
|
|
} else {
|
|
*cropped_offset = offset + line_length *
|
|
temp_ps * crop->left + ctop * ps +
|
|
(line_length * ((crop->width / vr_ps) - 1) *
|
|
ps);
|
|
}
|
|
break;
|
|
case dss_rotation_0_degree:
|
|
if (mirroring == 0) {
|
|
*cropped_offset = (line_length * ps) *
|
|
crop->top + (crop->left / vr_ps) * ps;
|
|
} else {
|
|
*cropped_offset = (line_length * ps) *
|
|
crop->top + (crop->left / vr_ps) * ps +
|
|
(line_length * (crop->height - 1) * ps);
|
|
}
|
|
break;
|
|
default:
|
|
*cropped_offset = (line_length * ps * crop->top) /
|
|
vr_ps + (crop->left * ps) / vr_ps +
|
|
((crop->width / vr_ps) - 1) * ps;
|
|
break;
|
|
}
|
|
}
|