linux/arch/arm/kernel/setup.c
Dave Martin 2ecccf90f2 ARM: 7029/1: Make cpu_architecture into a global variable
The CPU architecture really should not be changing at runtime, so
make it a global variable instead of a function.

The cpu_architecture() function declared in <asm/system.h> remains
the correct way to read this variable from C code.

Signed-off-by: Dave Martin <dave.martin@linaro.org>
Reviewed-by: Jon Medhurst <tixy@yxit.co.uk>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2011-10-17 09:12:40 +01:00

1099 lines
25 KiB
C

/*
* linux/arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/of_fdt.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/memblock.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <asm/unified.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/elf.h>
#include <asm/procinfo.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/mach-types.h>
#include <asm/cacheflush.h>
#include <asm/cachetype.h>
#include <asm/tlbflush.h>
#include <asm/system.h>
#include <asm/prom.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include <asm/traps.h>
#include <asm/unwind.h>
#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
#include "compat.h"
#endif
#include "atags.h"
#include "tcm.h"
#ifndef MEM_SIZE
#define MEM_SIZE (16*1024*1024)
#endif
#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
char fpe_type[8];
static int __init fpe_setup(char *line)
{
memcpy(fpe_type, line, 8);
return 1;
}
__setup("fpe=", fpe_setup);
#endif
extern void paging_init(struct machine_desc *desc);
extern void sanity_check_meminfo(void);
extern void reboot_setup(char *str);
unsigned int processor_id;
EXPORT_SYMBOL(processor_id);
unsigned int __machine_arch_type __read_mostly;
EXPORT_SYMBOL(__machine_arch_type);
unsigned int cacheid __read_mostly;
EXPORT_SYMBOL(cacheid);
unsigned int __atags_pointer __initdata;
unsigned int system_rev;
EXPORT_SYMBOL(system_rev);
unsigned int system_serial_low;
EXPORT_SYMBOL(system_serial_low);
unsigned int system_serial_high;
EXPORT_SYMBOL(system_serial_high);
unsigned int elf_hwcap __read_mostly;
EXPORT_SYMBOL(elf_hwcap);
#ifdef MULTI_CPU
struct processor processor __read_mostly;
#endif
#ifdef MULTI_TLB
struct cpu_tlb_fns cpu_tlb __read_mostly;
#endif
#ifdef MULTI_USER
struct cpu_user_fns cpu_user __read_mostly;
#endif
#ifdef MULTI_CACHE
struct cpu_cache_fns cpu_cache __read_mostly;
#endif
#ifdef CONFIG_OUTER_CACHE
struct outer_cache_fns outer_cache __read_mostly;
EXPORT_SYMBOL(outer_cache);
#endif
/*
* Cached cpu_architecture() result for use by assembler code.
* C code should use the cpu_architecture() function instead of accessing this
* variable directly.
*/
int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
struct stack {
u32 irq[3];
u32 abt[3];
u32 und[3];
} ____cacheline_aligned;
static struct stack stacks[NR_CPUS];
char elf_platform[ELF_PLATFORM_SIZE];
EXPORT_SYMBOL(elf_platform);
static const char *cpu_name;
static const char *machine_name;
static char __initdata cmd_line[COMMAND_LINE_SIZE];
struct machine_desc *machine_desc __initdata;
static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
#define ENDIANNESS ((char)endian_test.l)
DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Video RAM",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel text",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
}
};
#define video_ram mem_res[0]
#define kernel_code mem_res[1]
#define kernel_data mem_res[2]
static struct resource io_res[] = {
{
.name = "reserved",
.start = 0x3bc,
.end = 0x3be,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x378,
.end = 0x37f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x278,
.end = 0x27f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
}
};
#define lp0 io_res[0]
#define lp1 io_res[1]
#define lp2 io_res[2]
static const char *proc_arch[] = {
"undefined/unknown",
"3",
"4",
"4T",
"5",
"5T",
"5TE",
"5TEJ",
"6TEJ",
"7",
"?(11)",
"?(12)",
"?(13)",
"?(14)",
"?(15)",
"?(16)",
"?(17)",
};
static int __get_cpu_architecture(void)
{
int cpu_arch;
if ((read_cpuid_id() & 0x0008f000) == 0) {
cpu_arch = CPU_ARCH_UNKNOWN;
} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
cpu_arch = (read_cpuid_id() >> 16) & 7;
if (cpu_arch)
cpu_arch += CPU_ARCH_ARMv3;
} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
unsigned int mmfr0;
/* Revised CPUID format. Read the Memory Model Feature
* Register 0 and check for VMSAv7 or PMSAv7 */
asm("mrc p15, 0, %0, c0, c1, 4"
: "=r" (mmfr0));
if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
(mmfr0 & 0x000000f0) >= 0x00000030)
cpu_arch = CPU_ARCH_ARMv7;
else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
(mmfr0 & 0x000000f0) == 0x00000020)
cpu_arch = CPU_ARCH_ARMv6;
else
cpu_arch = CPU_ARCH_UNKNOWN;
} else
cpu_arch = CPU_ARCH_UNKNOWN;
return cpu_arch;
}
int __pure cpu_architecture(void)
{
BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
return __cpu_architecture;
}
static int cpu_has_aliasing_icache(unsigned int arch)
{
int aliasing_icache;
unsigned int id_reg, num_sets, line_size;
/* arch specifies the register format */
switch (arch) {
case CPU_ARCH_ARMv7:
asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
: /* No output operands */
: "r" (1));
isb();
asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
: "=r" (id_reg));
line_size = 4 << ((id_reg & 0x7) + 2);
num_sets = ((id_reg >> 13) & 0x7fff) + 1;
aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
break;
case CPU_ARCH_ARMv6:
aliasing_icache = read_cpuid_cachetype() & (1 << 11);
break;
default:
/* I-cache aliases will be handled by D-cache aliasing code */
aliasing_icache = 0;
}
return aliasing_icache;
}
static void __init cacheid_init(void)
{
unsigned int cachetype = read_cpuid_cachetype();
unsigned int arch = cpu_architecture();
if (arch >= CPU_ARCH_ARMv6) {
if ((cachetype & (7 << 29)) == 4 << 29) {
/* ARMv7 register format */
arch = CPU_ARCH_ARMv7;
cacheid = CACHEID_VIPT_NONALIASING;
if ((cachetype & (3 << 14)) == 1 << 14)
cacheid |= CACHEID_ASID_TAGGED;
} else {
arch = CPU_ARCH_ARMv6;
if (cachetype & (1 << 23))
cacheid = CACHEID_VIPT_ALIASING;
else
cacheid = CACHEID_VIPT_NONALIASING;
}
if (cpu_has_aliasing_icache(arch))
cacheid |= CACHEID_VIPT_I_ALIASING;
} else {
cacheid = CACHEID_VIVT;
}
printk("CPU: %s data cache, %s instruction cache\n",
cache_is_vivt() ? "VIVT" :
cache_is_vipt_aliasing() ? "VIPT aliasing" :
cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
cache_is_vivt() ? "VIVT" :
icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
icache_is_vipt_aliasing() ? "VIPT aliasing" :
cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
}
/*
* These functions re-use the assembly code in head.S, which
* already provide the required functionality.
*/
extern struct proc_info_list *lookup_processor_type(unsigned int);
void __init early_print(const char *str, ...)
{
extern void printascii(const char *);
char buf[256];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
#ifdef CONFIG_DEBUG_LL
printascii(buf);
#endif
printk("%s", buf);
}
static void __init feat_v6_fixup(void)
{
int id = read_cpuid_id();
if ((id & 0xff0f0000) != 0x41070000)
return;
/*
* HWCAP_TLS is available only on 1136 r1p0 and later,
* see also kuser_get_tls_init.
*/
if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
elf_hwcap &= ~HWCAP_TLS;
}
/*
* cpu_init - initialise one CPU.
*
* cpu_init sets up the per-CPU stacks.
*/
void cpu_init(void)
{
unsigned int cpu = smp_processor_id();
struct stack *stk = &stacks[cpu];
if (cpu >= NR_CPUS) {
printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
BUG();
}
cpu_proc_init();
/*
* Define the placement constraint for the inline asm directive below.
* In Thumb-2, msr with an immediate value is not allowed.
*/
#ifdef CONFIG_THUMB2_KERNEL
#define PLC "r"
#else
#define PLC "I"
#endif
/*
* setup stacks for re-entrant exception handlers
*/
__asm__ (
"msr cpsr_c, %1\n\t"
"add r14, %0, %2\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %3\n\t"
"add r14, %0, %4\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %5\n\t"
"add r14, %0, %6\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %7"
:
: "r" (stk),
PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
"I" (offsetof(struct stack, irq[0])),
PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
"I" (offsetof(struct stack, abt[0])),
PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
"I" (offsetof(struct stack, und[0])),
PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
: "r14");
}
static void __init setup_processor(void)
{
struct proc_info_list *list;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm/mm/proc-*.S
*/
list = lookup_processor_type(read_cpuid_id());
if (!list) {
printk("CPU configuration botched (ID %08x), unable "
"to continue.\n", read_cpuid_id());
while (1);
}
cpu_name = list->cpu_name;
__cpu_architecture = __get_cpu_architecture();
#ifdef MULTI_CPU
processor = *list->proc;
#endif
#ifdef MULTI_TLB
cpu_tlb = *list->tlb;
#endif
#ifdef MULTI_USER
cpu_user = *list->user;
#endif
#ifdef MULTI_CACHE
cpu_cache = *list->cache;
#endif
printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
proc_arch[cpu_architecture()], cr_alignment);
sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
elf_hwcap = list->elf_hwcap;
#ifndef CONFIG_ARM_THUMB
elf_hwcap &= ~HWCAP_THUMB;
#endif
feat_v6_fixup();
cacheid_init();
cpu_init();
}
void __init dump_machine_table(void)
{
struct machine_desc *p;
early_print("Available machine support:\n\nID (hex)\tNAME\n");
for_each_machine_desc(p)
early_print("%08x\t%s\n", p->nr, p->name);
early_print("\nPlease check your kernel config and/or bootloader.\n");
while (true)
/* can't use cpu_relax() here as it may require MMU setup */;
}
int __init arm_add_memory(phys_addr_t start, unsigned long size)
{
struct membank *bank = &meminfo.bank[meminfo.nr_banks];
if (meminfo.nr_banks >= NR_BANKS) {
printk(KERN_CRIT "NR_BANKS too low, "
"ignoring memory at 0x%08llx\n", (long long)start);
return -EINVAL;
}
/*
* Ensure that start/size are aligned to a page boundary.
* Size is appropriately rounded down, start is rounded up.
*/
size -= start & ~PAGE_MASK;
bank->start = PAGE_ALIGN(start);
bank->size = size & PAGE_MASK;
/*
* Check whether this memory region has non-zero size or
* invalid node number.
*/
if (bank->size == 0)
return -EINVAL;
meminfo.nr_banks++;
return 0;
}
/*
* Pick out the memory size. We look for mem=size@start,
* where start and size are "size[KkMm]"
*/
static int __init early_mem(char *p)
{
static int usermem __initdata = 0;
unsigned long size;
phys_addr_t start;
char *endp;
/*
* If the user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
usermem = 1;
meminfo.nr_banks = 0;
}
start = PHYS_OFFSET;
size = memparse(p, &endp);
if (*endp == '@')
start = memparse(endp + 1, NULL);
arm_add_memory(start, size);
return 0;
}
early_param("mem", early_mem);
static void __init
setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
{
#ifdef CONFIG_BLK_DEV_RAM
extern int rd_size, rd_image_start, rd_prompt, rd_doload;
rd_image_start = image_start;
rd_prompt = prompt;
rd_doload = doload;
if (rd_sz)
rd_size = rd_sz;
#endif
}
static void __init request_standard_resources(struct machine_desc *mdesc)
{
struct memblock_region *region;
struct resource *res;
kernel_code.start = virt_to_phys(_text);
kernel_code.end = virt_to_phys(_etext - 1);
kernel_data.start = virt_to_phys(_sdata);
kernel_data.end = virt_to_phys(_end - 1);
for_each_memblock(memory, region) {
res = alloc_bootmem_low(sizeof(*res));
res->name = "System RAM";
res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
if (mdesc->video_start) {
video_ram.start = mdesc->video_start;
video_ram.end = mdesc->video_end;
request_resource(&iomem_resource, &video_ram);
}
/*
* Some machines don't have the possibility of ever
* possessing lp0, lp1 or lp2
*/
if (mdesc->reserve_lp0)
request_resource(&ioport_resource, &lp0);
if (mdesc->reserve_lp1)
request_resource(&ioport_resource, &lp1);
if (mdesc->reserve_lp2)
request_resource(&ioport_resource, &lp2);
}
/*
* Tag parsing.
*
* This is the new way of passing data to the kernel at boot time. Rather
* than passing a fixed inflexible structure to the kernel, we pass a list
* of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
* tag for the list to be recognised (to distinguish the tagged list from
* a param_struct). The list is terminated with a zero-length tag (this tag
* is not parsed in any way).
*/
static int __init parse_tag_core(const struct tag *tag)
{
if (tag->hdr.size > 2) {
if ((tag->u.core.flags & 1) == 0)
root_mountflags &= ~MS_RDONLY;
ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
}
return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);
static int __init parse_tag_mem32(const struct tag *tag)
{
return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
}
__tagtable(ATAG_MEM, parse_tag_mem32);
#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
struct screen_info screen_info = {
.orig_video_lines = 30,
.orig_video_cols = 80,
.orig_video_mode = 0,
.orig_video_ega_bx = 0,
.orig_video_isVGA = 1,
.orig_video_points = 8
};
static int __init parse_tag_videotext(const struct tag *tag)
{
screen_info.orig_x = tag->u.videotext.x;
screen_info.orig_y = tag->u.videotext.y;
screen_info.orig_video_page = tag->u.videotext.video_page;
screen_info.orig_video_mode = tag->u.videotext.video_mode;
screen_info.orig_video_cols = tag->u.videotext.video_cols;
screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
screen_info.orig_video_lines = tag->u.videotext.video_lines;
screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
screen_info.orig_video_points = tag->u.videotext.video_points;
return 0;
}
__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
#endif
static int __init parse_tag_ramdisk(const struct tag *tag)
{
setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
(tag->u.ramdisk.flags & 2) == 0,
tag->u.ramdisk.start, tag->u.ramdisk.size);
return 0;
}
__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
static int __init parse_tag_serialnr(const struct tag *tag)
{
system_serial_low = tag->u.serialnr.low;
system_serial_high = tag->u.serialnr.high;
return 0;
}
__tagtable(ATAG_SERIAL, parse_tag_serialnr);
static int __init parse_tag_revision(const struct tag *tag)
{
system_rev = tag->u.revision.rev;
return 0;
}
__tagtable(ATAG_REVISION, parse_tag_revision);
static int __init parse_tag_cmdline(const struct tag *tag)
{
#if defined(CONFIG_CMDLINE_EXTEND)
strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
strlcat(default_command_line, tag->u.cmdline.cmdline,
COMMAND_LINE_SIZE);
#elif defined(CONFIG_CMDLINE_FORCE)
pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
#else
strlcpy(default_command_line, tag->u.cmdline.cmdline,
COMMAND_LINE_SIZE);
#endif
return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
/*
* Scan the tag table for this tag, and call its parse function.
* The tag table is built by the linker from all the __tagtable
* declarations.
*/
static int __init parse_tag(const struct tag *tag)
{
extern struct tagtable __tagtable_begin, __tagtable_end;
struct tagtable *t;
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
break;
}
return t < &__tagtable_end;
}
/*
* Parse all tags in the list, checking both the global and architecture
* specific tag tables.
*/
static void __init parse_tags(const struct tag *t)
{
for (; t->hdr.size; t = tag_next(t))
if (!parse_tag(t))
printk(KERN_WARNING
"Ignoring unrecognised tag 0x%08x\n",
t->hdr.tag);
}
/*
* This holds our defaults.
*/
static struct init_tags {
struct tag_header hdr1;
struct tag_core core;
struct tag_header hdr2;
struct tag_mem32 mem;
struct tag_header hdr3;
} init_tags __initdata = {
{ tag_size(tag_core), ATAG_CORE },
{ 1, PAGE_SIZE, 0xff },
{ tag_size(tag_mem32), ATAG_MEM },
{ MEM_SIZE },
{ 0, ATAG_NONE }
};
static int __init customize_machine(void)
{
/* customizes platform devices, or adds new ones */
if (machine_desc->init_machine)
machine_desc->init_machine();
return 0;
}
arch_initcall(customize_machine);
#ifdef CONFIG_KEXEC
static inline unsigned long long get_total_mem(void)
{
unsigned long total;
total = max_low_pfn - min_low_pfn;
return total << PAGE_SHIFT;
}
/**
* reserve_crashkernel() - reserves memory are for crash kernel
*
* This function reserves memory area given in "crashkernel=" kernel command
* line parameter. The memory reserved is used by a dump capture kernel when
* primary kernel is crashing.
*/
static void __init reserve_crashkernel(void)
{
unsigned long long crash_size, crash_base;
unsigned long long total_mem;
int ret;
total_mem = get_total_mem();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret)
return;
ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
if (ret < 0) {
printk(KERN_WARNING "crashkernel reservation failed - "
"memory is in use (0x%lx)\n", (unsigned long)crash_base);
return;
}
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(total_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
}
#else
static inline void reserve_crashkernel(void) {}
#endif /* CONFIG_KEXEC */
static void __init squash_mem_tags(struct tag *tag)
{
for (; tag->hdr.size; tag = tag_next(tag))
if (tag->hdr.tag == ATAG_MEM)
tag->hdr.tag = ATAG_NONE;
}
static struct machine_desc * __init setup_machine_tags(unsigned int nr)
{
struct tag *tags = (struct tag *)&init_tags;
struct machine_desc *mdesc = NULL, *p;
char *from = default_command_line;
init_tags.mem.start = PHYS_OFFSET;
/*
* locate machine in the list of supported machines.
*/
for_each_machine_desc(p)
if (nr == p->nr) {
printk("Machine: %s\n", p->name);
mdesc = p;
break;
}
if (!mdesc) {
early_print("\nError: unrecognized/unsupported machine ID"
" (r1 = 0x%08x).\n\n", nr);
dump_machine_table(); /* does not return */
}
if (__atags_pointer)
tags = phys_to_virt(__atags_pointer);
else if (mdesc->boot_params) {
#ifdef CONFIG_MMU
/*
* We still are executing with a minimal MMU mapping created
* with the presumption that the machine default for this
* is located in the first MB of RAM. Anything else will
* fault and silently hang the kernel at this point.
*/
if (mdesc->boot_params < PHYS_OFFSET ||
mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
printk(KERN_WARNING
"Default boot params at physical 0x%08lx out of reach\n",
mdesc->boot_params);
} else
#endif
{
tags = phys_to_virt(mdesc->boot_params);
}
}
#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
/*
* If we have the old style parameters, convert them to
* a tag list.
*/
if (tags->hdr.tag != ATAG_CORE)
convert_to_tag_list(tags);
#endif
if (tags->hdr.tag != ATAG_CORE) {
#if defined(CONFIG_OF)
/*
* If CONFIG_OF is set, then assume this is a reasonably
* modern system that should pass boot parameters
*/
early_print("Warning: Neither atags nor dtb found\n");
#endif
tags = (struct tag *)&init_tags;
}
if (mdesc->fixup)
mdesc->fixup(mdesc, tags, &from, &meminfo);
if (tags->hdr.tag == ATAG_CORE) {
if (meminfo.nr_banks != 0)
squash_mem_tags(tags);
save_atags(tags);
parse_tags(tags);
}
/* parse_early_param needs a boot_command_line */
strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
return mdesc;
}
void __init setup_arch(char **cmdline_p)
{
struct machine_desc *mdesc;
unwind_init();
setup_processor();
mdesc = setup_machine_fdt(__atags_pointer);
if (!mdesc)
mdesc = setup_machine_tags(machine_arch_type);
machine_desc = mdesc;
machine_name = mdesc->name;
if (mdesc->soft_reboot)
reboot_setup("s");
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
/* populate cmd_line too for later use, preserving boot_command_line */
strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = cmd_line;
parse_early_param();
sanity_check_meminfo();
arm_memblock_init(&meminfo, mdesc);
paging_init(mdesc);
request_standard_resources(mdesc);
unflatten_device_tree();
#ifdef CONFIG_SMP
if (is_smp())
smp_init_cpus();
#endif
reserve_crashkernel();
tcm_init();
#ifdef CONFIG_ZONE_DMA
if (mdesc->dma_zone_size) {
extern unsigned long arm_dma_zone_size;
arm_dma_zone_size = mdesc->dma_zone_size;
}
#endif
#ifdef CONFIG_MULTI_IRQ_HANDLER
handle_arch_irq = mdesc->handle_irq;
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
early_trap_init();
if (mdesc->init_early)
mdesc->init_early();
}
static int __init topology_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
cpuinfo->cpu.hotpluggable = 1;
register_cpu(&cpuinfo->cpu, cpu);
}
return 0;
}
subsys_initcall(topology_init);
#ifdef CONFIG_HAVE_PROC_CPU
static int __init proc_cpu_init(void)
{
struct proc_dir_entry *res;
res = proc_mkdir("cpu", NULL);
if (!res)
return -ENOMEM;
return 0;
}
fs_initcall(proc_cpu_init);
#endif
static const char *hwcap_str[] = {
"swp",
"half",
"thumb",
"26bit",
"fastmult",
"fpa",
"vfp",
"edsp",
"java",
"iwmmxt",
"crunch",
"thumbee",
"neon",
"vfpv3",
"vfpv3d16",
"tls",
"vfpv4",
"idiva",
"idivt",
NULL
};
static int c_show(struct seq_file *m, void *v)
{
int i;
seq_printf(m, "Processor\t: %s rev %d (%s)\n",
cpu_name, read_cpuid_id() & 15, elf_platform);
#if defined(CONFIG_SMP)
for_each_online_cpu(i) {
/*
* glibc reads /proc/cpuinfo to determine the number of
* online processors, looking for lines beginning with
* "processor". Give glibc what it expects.
*/
seq_printf(m, "processor\t: %d\n", i);
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
(per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
}
#else /* CONFIG_SMP */
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (i = 0; hwcap_str[i]; i++)
if (elf_hwcap & (1 << i))
seq_printf(m, "%s ", hwcap_str[i]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
/* pre-ARM7 */
seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
} else {
if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
/* ARM7 */
seq_printf(m, "CPU variant\t: 0x%02x\n",
(read_cpuid_id() >> 16) & 127);
} else {
/* post-ARM7 */
seq_printf(m, "CPU variant\t: 0x%x\n",
(read_cpuid_id() >> 20) & 15);
}
seq_printf(m, "CPU part\t: 0x%03x\n",
(read_cpuid_id() >> 4) & 0xfff);
}
seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
seq_puts(m, "\n");
seq_printf(m, "Hardware\t: %s\n", machine_name);
seq_printf(m, "Revision\t: %04x\n", system_rev);
seq_printf(m, "Serial\t\t: %08x%08x\n",
system_serial_high, system_serial_low);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};