8df5a500a3
The pmu_active test is based on the values of PSR.up. THIS IS THE PROBLEM as it does not take into account the lazy restore logic which is as follow (simplified): context switch out: save PMDs clear psr.up release ownership context switch in: if (ctx->last_cpu == smp_processor_id() && ctx->cpu_activation == cpu_activation) { set psr.up return } restore PMD restore PMC ctx->last_cpu = smp_processor_id(); ctx->activation = ++cpu_activation; set psr.up The key here is that on context switch out, we clear psr.up and on context switch in we check if nobody else used the PMU on that processor since last time we came. In that case, we assume the PMD/PMC are ours and we simply reactivate. The Caliper problem is that between the moment we context switch out and the moment we come back, nobody effectively used the PMU BUT the processor went idle. Normally this would have no incidence but PAL_HALT does alter the PMU registers. In default_idle(), the test on psr.up is not strong enough to cover this case and we go into PAL which trashed the PMU resgisters. When we come back we falsely assume that this is our state yet it is corrupted. Very nasty indeed. To avoid the problem it is necessary to forbid going to PAL_HALT as soon as perfmon installs some valid state in the PMU registers. This happens with an application attaches a context to a thread or CPU. It is not enough to check the psr/dcr bits. Hence I propose the attached patch. It adds a callback in process.c to modify the condition to enter PAL on idle. Basically, now it is conditional to pal_halt=1 AND perfmon saying it is okay. Signed-off-by: Tony Luck <tony.luck@intel.com>
814 lines
21 KiB
C
814 lines
21 KiB
C
/*
|
|
* Architecture-specific setup.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
|
|
*/
|
|
#define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unwind.h>
|
|
#include <asm/user.h>
|
|
|
|
#include "entry.h"
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
# include <asm/perfmon.h>
|
|
#endif
|
|
|
|
#include "sigframe.h"
|
|
|
|
void (*ia64_mark_idle)(int);
|
|
static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
|
|
|
|
unsigned long boot_option_idle_override = 0;
|
|
EXPORT_SYMBOL(boot_option_idle_override);
|
|
|
|
void
|
|
ia64_do_show_stack (struct unw_frame_info *info, void *arg)
|
|
{
|
|
unsigned long ip, sp, bsp;
|
|
char buf[128]; /* don't make it so big that it overflows the stack! */
|
|
|
|
printk("\nCall Trace:\n");
|
|
do {
|
|
unw_get_ip(info, &ip);
|
|
if (ip == 0)
|
|
break;
|
|
|
|
unw_get_sp(info, &sp);
|
|
unw_get_bsp(info, &bsp);
|
|
snprintf(buf, sizeof(buf),
|
|
" [<%016lx>] %%s\n"
|
|
" sp=%016lx bsp=%016lx\n",
|
|
ip, sp, bsp);
|
|
print_symbol(buf, ip);
|
|
} while (unw_unwind(info) >= 0);
|
|
}
|
|
|
|
void
|
|
show_stack (struct task_struct *task, unsigned long *sp)
|
|
{
|
|
if (!task)
|
|
unw_init_running(ia64_do_show_stack, NULL);
|
|
else {
|
|
struct unw_frame_info info;
|
|
|
|
unw_init_from_blocked_task(&info, task);
|
|
ia64_do_show_stack(&info, NULL);
|
|
}
|
|
}
|
|
|
|
void
|
|
dump_stack (void)
|
|
{
|
|
show_stack(NULL, NULL);
|
|
}
|
|
|
|
EXPORT_SYMBOL(dump_stack);
|
|
|
|
void
|
|
show_regs (struct pt_regs *regs)
|
|
{
|
|
unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
|
|
|
|
print_modules();
|
|
printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
|
|
printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
|
|
regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
|
|
print_symbol("ip is at %s\n", ip);
|
|
printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
|
|
regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
|
|
printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
|
|
regs->ar_rnat, regs->ar_bspstore, regs->pr);
|
|
printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
|
|
regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
|
|
printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
|
|
printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
|
|
printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
|
|
regs->f6.u.bits[1], regs->f6.u.bits[0],
|
|
regs->f7.u.bits[1], regs->f7.u.bits[0]);
|
|
printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
|
|
regs->f8.u.bits[1], regs->f8.u.bits[0],
|
|
regs->f9.u.bits[1], regs->f9.u.bits[0]);
|
|
printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
|
|
regs->f10.u.bits[1], regs->f10.u.bits[0],
|
|
regs->f11.u.bits[1], regs->f11.u.bits[0]);
|
|
|
|
printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
|
|
printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
|
|
printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
|
|
printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
|
|
printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
|
|
printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
|
|
printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
|
|
printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
|
|
printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
|
|
|
|
if (user_mode(regs)) {
|
|
/* print the stacked registers */
|
|
unsigned long val, *bsp, ndirty;
|
|
int i, sof, is_nat = 0;
|
|
|
|
sof = regs->cr_ifs & 0x7f; /* size of frame */
|
|
ndirty = (regs->loadrs >> 19);
|
|
bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
|
|
for (i = 0; i < sof; ++i) {
|
|
get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
|
|
printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
|
|
((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
|
|
}
|
|
} else
|
|
show_stack(NULL, NULL);
|
|
}
|
|
|
|
void
|
|
do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
|
|
{
|
|
if (fsys_mode(current, &scr->pt)) {
|
|
/* defer signal-handling etc. until we return to privilege-level 0. */
|
|
if (!ia64_psr(&scr->pt)->lp)
|
|
ia64_psr(&scr->pt)->lp = 1;
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if (current->thread.pfm_needs_checking)
|
|
pfm_handle_work();
|
|
#endif
|
|
|
|
/* deal with pending signal delivery */
|
|
if (test_thread_flag(TIF_SIGPENDING))
|
|
ia64_do_signal(oldset, scr, in_syscall);
|
|
}
|
|
|
|
static int pal_halt = 1;
|
|
static int can_do_pal_halt = 1;
|
|
|
|
static int __init nohalt_setup(char * str)
|
|
{
|
|
pal_halt = 0;
|
|
return 1;
|
|
}
|
|
__setup("nohalt", nohalt_setup);
|
|
|
|
int
|
|
update_pal_halt_status(int status)
|
|
{
|
|
can_do_pal_halt = pal_halt && status;
|
|
}
|
|
|
|
/*
|
|
* We use this if we don't have any better idle routine..
|
|
*/
|
|
void
|
|
default_idle (void)
|
|
{
|
|
int can_do_pal;
|
|
|
|
while (!need_resched())
|
|
if (can_do_pal_halt)
|
|
safe_halt();
|
|
else
|
|
cpu_relax();
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* We don't actually take CPU down, just spin without interrupts. */
|
|
static inline void play_dead(void)
|
|
{
|
|
extern void ia64_cpu_local_tick (void);
|
|
unsigned int this_cpu = smp_processor_id();
|
|
|
|
/* Ack it */
|
|
__get_cpu_var(cpu_state) = CPU_DEAD;
|
|
|
|
max_xtp();
|
|
local_irq_disable();
|
|
idle_task_exit();
|
|
ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
|
|
/*
|
|
* The above is a point of no-return, the processor is
|
|
* expected to be in SAL loop now.
|
|
*/
|
|
BUG();
|
|
}
|
|
#else
|
|
static inline void play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
void cpu_idle_wait(void)
|
|
{
|
|
unsigned int cpu, this_cpu = get_cpu();
|
|
cpumask_t map;
|
|
|
|
set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
|
|
put_cpu();
|
|
|
|
cpus_clear(map);
|
|
for_each_online_cpu(cpu) {
|
|
per_cpu(cpu_idle_state, cpu) = 1;
|
|
cpu_set(cpu, map);
|
|
}
|
|
|
|
__get_cpu_var(cpu_idle_state) = 0;
|
|
|
|
wmb();
|
|
do {
|
|
ssleep(1);
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
|
|
cpu_clear(cpu, map);
|
|
}
|
|
cpus_and(map, map, cpu_online_map);
|
|
} while (!cpus_empty(map));
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_idle_wait);
|
|
|
|
void __attribute__((noreturn))
|
|
cpu_idle (void)
|
|
{
|
|
void (*mark_idle)(int) = ia64_mark_idle;
|
|
|
|
/* endless idle loop with no priority at all */
|
|
while (1) {
|
|
#ifdef CONFIG_SMP
|
|
if (!need_resched())
|
|
min_xtp();
|
|
#endif
|
|
while (!need_resched()) {
|
|
void (*idle)(void);
|
|
|
|
if (__get_cpu_var(cpu_idle_state))
|
|
__get_cpu_var(cpu_idle_state) = 0;
|
|
|
|
rmb();
|
|
if (mark_idle)
|
|
(*mark_idle)(1);
|
|
|
|
idle = pm_idle;
|
|
if (!idle)
|
|
idle = default_idle;
|
|
(*idle)();
|
|
}
|
|
|
|
if (mark_idle)
|
|
(*mark_idle)(0);
|
|
|
|
#ifdef CONFIG_SMP
|
|
normal_xtp();
|
|
#endif
|
|
schedule();
|
|
check_pgt_cache();
|
|
if (cpu_is_offline(smp_processor_id()))
|
|
play_dead();
|
|
}
|
|
}
|
|
|
|
void
|
|
ia64_save_extra (struct task_struct *task)
|
|
{
|
|
#ifdef CONFIG_PERFMON
|
|
unsigned long info;
|
|
#endif
|
|
|
|
if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
|
|
ia64_save_debug_regs(&task->thread.dbr[0]);
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
|
|
pfm_save_regs(task);
|
|
|
|
info = __get_cpu_var(pfm_syst_info);
|
|
if (info & PFM_CPUINFO_SYST_WIDE)
|
|
pfm_syst_wide_update_task(task, info, 0);
|
|
#endif
|
|
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
if (IS_IA32_PROCESS(ia64_task_regs(task)))
|
|
ia32_save_state(task);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ia64_load_extra (struct task_struct *task)
|
|
{
|
|
#ifdef CONFIG_PERFMON
|
|
unsigned long info;
|
|
#endif
|
|
|
|
if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
|
|
ia64_load_debug_regs(&task->thread.dbr[0]);
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
|
|
pfm_load_regs(task);
|
|
|
|
info = __get_cpu_var(pfm_syst_info);
|
|
if (info & PFM_CPUINFO_SYST_WIDE)
|
|
pfm_syst_wide_update_task(task, info, 1);
|
|
#endif
|
|
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
if (IS_IA32_PROCESS(ia64_task_regs(task)))
|
|
ia32_load_state(task);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Copy the state of an ia-64 thread.
|
|
*
|
|
* We get here through the following call chain:
|
|
*
|
|
* from user-level: from kernel:
|
|
*
|
|
* <clone syscall> <some kernel call frames>
|
|
* sys_clone :
|
|
* do_fork do_fork
|
|
* copy_thread copy_thread
|
|
*
|
|
* This means that the stack layout is as follows:
|
|
*
|
|
* +---------------------+ (highest addr)
|
|
* | struct pt_regs |
|
|
* +---------------------+
|
|
* | struct switch_stack |
|
|
* +---------------------+
|
|
* | |
|
|
* | memory stack |
|
|
* | | <-- sp (lowest addr)
|
|
* +---------------------+
|
|
*
|
|
* Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
|
|
* integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
|
|
* with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
|
|
* pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
|
|
* the stack is page aligned and the page size is at least 4KB, this is always the case,
|
|
* so there is nothing to worry about.
|
|
*/
|
|
int
|
|
copy_thread (int nr, unsigned long clone_flags,
|
|
unsigned long user_stack_base, unsigned long user_stack_size,
|
|
struct task_struct *p, struct pt_regs *regs)
|
|
{
|
|
extern char ia64_ret_from_clone, ia32_ret_from_clone;
|
|
struct switch_stack *child_stack, *stack;
|
|
unsigned long rbs, child_rbs, rbs_size;
|
|
struct pt_regs *child_ptregs;
|
|
int retval = 0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* For SMP idle threads, fork_by_hand() calls do_fork with
|
|
* NULL regs.
|
|
*/
|
|
if (!regs)
|
|
return 0;
|
|
#endif
|
|
|
|
stack = ((struct switch_stack *) regs) - 1;
|
|
|
|
child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
|
|
child_stack = (struct switch_stack *) child_ptregs - 1;
|
|
|
|
/* copy parent's switch_stack & pt_regs to child: */
|
|
memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
|
|
|
|
rbs = (unsigned long) current + IA64_RBS_OFFSET;
|
|
child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
|
|
rbs_size = stack->ar_bspstore - rbs;
|
|
|
|
/* copy the parent's register backing store to the child: */
|
|
memcpy((void *) child_rbs, (void *) rbs, rbs_size);
|
|
|
|
if (likely(user_mode(child_ptregs))) {
|
|
if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
|
|
child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
|
|
if (user_stack_base) {
|
|
child_ptregs->r12 = user_stack_base + user_stack_size - 16;
|
|
child_ptregs->ar_bspstore = user_stack_base;
|
|
child_ptregs->ar_rnat = 0;
|
|
child_ptregs->loadrs = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* Note: we simply preserve the relative position of
|
|
* the stack pointer here. There is no need to
|
|
* allocate a scratch area here, since that will have
|
|
* been taken care of by the caller of sys_clone()
|
|
* already.
|
|
*/
|
|
child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
|
|
child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
|
|
}
|
|
child_stack->ar_bspstore = child_rbs + rbs_size;
|
|
if (IS_IA32_PROCESS(regs))
|
|
child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
|
|
else
|
|
child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
|
|
|
|
/* copy parts of thread_struct: */
|
|
p->thread.ksp = (unsigned long) child_stack - 16;
|
|
|
|
/* stop some PSR bits from being inherited.
|
|
* the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
|
|
* therefore we must specify them explicitly here and not include them in
|
|
* IA64_PSR_BITS_TO_CLEAR.
|
|
*/
|
|
child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
|
|
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
|
|
|
|
/*
|
|
* NOTE: The calling convention considers all floating point
|
|
* registers in the high partition (fph) to be scratch. Since
|
|
* the only way to get to this point is through a system call,
|
|
* we know that the values in fph are all dead. Hence, there
|
|
* is no need to inherit the fph state from the parent to the
|
|
* child and all we have to do is to make sure that
|
|
* IA64_THREAD_FPH_VALID is cleared in the child.
|
|
*
|
|
* XXX We could push this optimization a bit further by
|
|
* clearing IA64_THREAD_FPH_VALID on ANY system call.
|
|
* However, it's not clear this is worth doing. Also, it
|
|
* would be a slight deviation from the normal Linux system
|
|
* call behavior where scratch registers are preserved across
|
|
* system calls (unless used by the system call itself).
|
|
*/
|
|
# define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
|
|
| IA64_THREAD_PM_VALID)
|
|
# define THREAD_FLAGS_TO_SET 0
|
|
p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
|
|
| THREAD_FLAGS_TO_SET);
|
|
ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
/*
|
|
* If we're cloning an IA32 task then save the IA32 extra
|
|
* state from the current task to the new task
|
|
*/
|
|
if (IS_IA32_PROCESS(ia64_task_regs(current))) {
|
|
ia32_save_state(p);
|
|
if (clone_flags & CLONE_SETTLS)
|
|
retval = ia32_clone_tls(p, child_ptregs);
|
|
|
|
/* Copy partially mapped page list */
|
|
if (!retval)
|
|
retval = ia32_copy_partial_page_list(p, clone_flags);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if (current->thread.pfm_context)
|
|
pfm_inherit(p, child_ptregs);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
|
|
{
|
|
unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
|
|
elf_greg_t *dst = arg;
|
|
struct pt_regs *pt;
|
|
char nat;
|
|
int i;
|
|
|
|
memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
|
|
|
|
if (unw_unwind_to_user(info) < 0)
|
|
return;
|
|
|
|
unw_get_sp(info, &sp);
|
|
pt = (struct pt_regs *) (sp + 16);
|
|
|
|
urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
|
|
|
|
if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
|
|
return;
|
|
|
|
ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
|
|
&ar_rnat);
|
|
|
|
/*
|
|
* coredump format:
|
|
* r0-r31
|
|
* NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
|
|
* predicate registers (p0-p63)
|
|
* b0-b7
|
|
* ip cfm user-mask
|
|
* ar.rsc ar.bsp ar.bspstore ar.rnat
|
|
* ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
|
|
*/
|
|
|
|
/* r0 is zero */
|
|
for (i = 1, mask = (1UL << i); i < 32; ++i) {
|
|
unw_get_gr(info, i, &dst[i], &nat);
|
|
if (nat)
|
|
nat_bits |= mask;
|
|
mask <<= 1;
|
|
}
|
|
dst[32] = nat_bits;
|
|
unw_get_pr(info, &dst[33]);
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
unw_get_br(info, i, &dst[34 + i]);
|
|
|
|
unw_get_rp(info, &ip);
|
|
dst[42] = ip + ia64_psr(pt)->ri;
|
|
dst[43] = cfm;
|
|
dst[44] = pt->cr_ipsr & IA64_PSR_UM;
|
|
|
|
unw_get_ar(info, UNW_AR_RSC, &dst[45]);
|
|
/*
|
|
* For bsp and bspstore, unw_get_ar() would return the kernel
|
|
* addresses, but we need the user-level addresses instead:
|
|
*/
|
|
dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
|
|
dst[47] = pt->ar_bspstore;
|
|
dst[48] = ar_rnat;
|
|
unw_get_ar(info, UNW_AR_CCV, &dst[49]);
|
|
unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
|
|
unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
|
|
dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
|
|
unw_get_ar(info, UNW_AR_LC, &dst[53]);
|
|
unw_get_ar(info, UNW_AR_EC, &dst[54]);
|
|
unw_get_ar(info, UNW_AR_CSD, &dst[55]);
|
|
unw_get_ar(info, UNW_AR_SSD, &dst[56]);
|
|
}
|
|
|
|
void
|
|
do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
|
|
{
|
|
elf_fpreg_t *dst = arg;
|
|
int i;
|
|
|
|
memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
|
|
|
|
if (unw_unwind_to_user(info) < 0)
|
|
return;
|
|
|
|
/* f0 is 0.0, f1 is 1.0 */
|
|
|
|
for (i = 2; i < 32; ++i)
|
|
unw_get_fr(info, i, dst + i);
|
|
|
|
ia64_flush_fph(task);
|
|
if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
|
|
memcpy(dst + 32, task->thread.fph, 96*16);
|
|
}
|
|
|
|
void
|
|
do_copy_regs (struct unw_frame_info *info, void *arg)
|
|
{
|
|
do_copy_task_regs(current, info, arg);
|
|
}
|
|
|
|
void
|
|
do_dump_fpu (struct unw_frame_info *info, void *arg)
|
|
{
|
|
do_dump_task_fpu(current, info, arg);
|
|
}
|
|
|
|
int
|
|
dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
|
|
{
|
|
struct unw_frame_info tcore_info;
|
|
|
|
if (current == task) {
|
|
unw_init_running(do_copy_regs, regs);
|
|
} else {
|
|
memset(&tcore_info, 0, sizeof(tcore_info));
|
|
unw_init_from_blocked_task(&tcore_info, task);
|
|
do_copy_task_regs(task, &tcore_info, regs);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
|
|
{
|
|
unw_init_running(do_copy_regs, dst);
|
|
}
|
|
|
|
int
|
|
dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
|
|
{
|
|
struct unw_frame_info tcore_info;
|
|
|
|
if (current == task) {
|
|
unw_init_running(do_dump_fpu, dst);
|
|
} else {
|
|
memset(&tcore_info, 0, sizeof(tcore_info));
|
|
unw_init_from_blocked_task(&tcore_info, task);
|
|
do_dump_task_fpu(task, &tcore_info, dst);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
|
|
{
|
|
unw_init_running(do_dump_fpu, dst);
|
|
return 1; /* f0-f31 are always valid so we always return 1 */
|
|
}
|
|
|
|
long
|
|
sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
|
|
struct pt_regs *regs)
|
|
{
|
|
char *fname;
|
|
int error;
|
|
|
|
fname = getname(filename);
|
|
error = PTR_ERR(fname);
|
|
if (IS_ERR(fname))
|
|
goto out;
|
|
error = do_execve(fname, argv, envp, regs);
|
|
putname(fname);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
pid_t
|
|
kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
|
|
{
|
|
extern void start_kernel_thread (void);
|
|
unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
|
|
struct {
|
|
struct switch_stack sw;
|
|
struct pt_regs pt;
|
|
} regs;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
|
|
regs.pt.r1 = helper_fptr[1]; /* set GP */
|
|
regs.pt.r9 = (unsigned long) fn; /* 1st argument */
|
|
regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
|
|
/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
|
|
regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
|
|
regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
|
|
regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
|
|
regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
|
|
regs.sw.pr = (1 << PRED_KERNEL_STACK);
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL(kernel_thread);
|
|
|
|
/* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
|
|
int
|
|
kernel_thread_helper (int (*fn)(void *), void *arg)
|
|
{
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
if (IS_IA32_PROCESS(ia64_task_regs(current))) {
|
|
/* A kernel thread is always a 64-bit process. */
|
|
current->thread.map_base = DEFAULT_MAP_BASE;
|
|
current->thread.task_size = DEFAULT_TASK_SIZE;
|
|
ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
|
|
ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
|
|
}
|
|
#endif
|
|
return (*fn)(arg);
|
|
}
|
|
|
|
/*
|
|
* Flush thread state. This is called when a thread does an execve().
|
|
*/
|
|
void
|
|
flush_thread (void)
|
|
{
|
|
/* drop floating-point and debug-register state if it exists: */
|
|
current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
|
|
ia64_drop_fpu(current);
|
|
if (IS_IA32_PROCESS(ia64_task_regs(current)))
|
|
ia32_drop_partial_page_list(current);
|
|
}
|
|
|
|
/*
|
|
* Clean up state associated with current thread. This is called when
|
|
* the thread calls exit().
|
|
*/
|
|
void
|
|
exit_thread (void)
|
|
{
|
|
ia64_drop_fpu(current);
|
|
#ifdef CONFIG_PERFMON
|
|
/* if needed, stop monitoring and flush state to perfmon context */
|
|
if (current->thread.pfm_context)
|
|
pfm_exit_thread(current);
|
|
|
|
/* free debug register resources */
|
|
if (current->thread.flags & IA64_THREAD_DBG_VALID)
|
|
pfm_release_debug_registers(current);
|
|
#endif
|
|
if (IS_IA32_PROCESS(ia64_task_regs(current)))
|
|
ia32_drop_partial_page_list(current);
|
|
}
|
|
|
|
unsigned long
|
|
get_wchan (struct task_struct *p)
|
|
{
|
|
struct unw_frame_info info;
|
|
unsigned long ip;
|
|
int count = 0;
|
|
|
|
/*
|
|
* Note: p may not be a blocked task (it could be current or
|
|
* another process running on some other CPU. Rather than
|
|
* trying to determine if p is really blocked, we just assume
|
|
* it's blocked and rely on the unwind routines to fail
|
|
* gracefully if the process wasn't really blocked after all.
|
|
* --davidm 99/12/15
|
|
*/
|
|
unw_init_from_blocked_task(&info, p);
|
|
do {
|
|
if (unw_unwind(&info) < 0)
|
|
return 0;
|
|
unw_get_ip(&info, &ip);
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cpu_halt (void)
|
|
{
|
|
pal_power_mgmt_info_u_t power_info[8];
|
|
unsigned long min_power;
|
|
int i, min_power_state;
|
|
|
|
if (ia64_pal_halt_info(power_info) != 0)
|
|
return;
|
|
|
|
min_power_state = 0;
|
|
min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
|
|
for (i = 1; i < 8; ++i)
|
|
if (power_info[i].pal_power_mgmt_info_s.im
|
|
&& power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
|
|
min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
|
|
min_power_state = i;
|
|
}
|
|
|
|
while (1)
|
|
ia64_pal_halt(min_power_state);
|
|
}
|
|
|
|
void
|
|
machine_restart (char *restart_cmd)
|
|
{
|
|
(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
|
|
}
|
|
|
|
EXPORT_SYMBOL(machine_restart);
|
|
|
|
void
|
|
machine_halt (void)
|
|
{
|
|
cpu_halt();
|
|
}
|
|
|
|
EXPORT_SYMBOL(machine_halt);
|
|
|
|
void
|
|
machine_power_off (void)
|
|
{
|
|
if (pm_power_off)
|
|
pm_power_off();
|
|
machine_halt();
|
|
}
|
|
|
|
EXPORT_SYMBOL(machine_power_off);
|