linux/kernel/relay.c

1026 lines
24 KiB
C

/*
* Public API and common code for kernel->userspace relay file support.
*
* See Documentation/filesystems/relayfs.txt for an overview of relayfs.
*
* Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
* Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
*
* Moved to kernel/relay.c by Paul Mundt, 2006.
*
* This file is released under the GPL.
*/
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/relay.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
/*
* close() vm_op implementation for relay file mapping.
*/
static void relay_file_mmap_close(struct vm_area_struct *vma)
{
struct rchan_buf *buf = vma->vm_private_data;
buf->chan->cb->buf_unmapped(buf, vma->vm_file);
}
/*
* nopage() vm_op implementation for relay file mapping.
*/
static struct page *relay_buf_nopage(struct vm_area_struct *vma,
unsigned long address,
int *type)
{
struct page *page;
struct rchan_buf *buf = vma->vm_private_data;
unsigned long offset = address - vma->vm_start;
if (address > vma->vm_end)
return NOPAGE_SIGBUS; /* Disallow mremap */
if (!buf)
return NOPAGE_OOM;
page = vmalloc_to_page(buf->start + offset);
if (!page)
return NOPAGE_OOM;
get_page(page);
if (type)
*type = VM_FAULT_MINOR;
return page;
}
/*
* vm_ops for relay file mappings.
*/
static struct vm_operations_struct relay_file_mmap_ops = {
.nopage = relay_buf_nopage,
.close = relay_file_mmap_close,
};
/**
* relay_mmap_buf: - mmap channel buffer to process address space
* @buf: relay channel buffer
* @vma: vm_area_struct describing memory to be mapped
*
* Returns 0 if ok, negative on error
*
* Caller should already have grabbed mmap_sem.
*/
int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
{
unsigned long length = vma->vm_end - vma->vm_start;
struct file *filp = vma->vm_file;
if (!buf)
return -EBADF;
if (length != (unsigned long)buf->chan->alloc_size)
return -EINVAL;
vma->vm_ops = &relay_file_mmap_ops;
vma->vm_private_data = buf;
buf->chan->cb->buf_mapped(buf, filp);
return 0;
}
/**
* relay_alloc_buf - allocate a channel buffer
* @buf: the buffer struct
* @size: total size of the buffer
*
* Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
* passed in size will get page aligned, if it isn't already.
*/
static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
{
void *mem;
unsigned int i, j, n_pages;
*size = PAGE_ALIGN(*size);
n_pages = *size >> PAGE_SHIFT;
buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
if (!buf->page_array)
return NULL;
for (i = 0; i < n_pages; i++) {
buf->page_array[i] = alloc_page(GFP_KERNEL);
if (unlikely(!buf->page_array[i]))
goto depopulate;
}
mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
if (!mem)
goto depopulate;
memset(mem, 0, *size);
buf->page_count = n_pages;
return mem;
depopulate:
for (j = 0; j < i; j++)
__free_page(buf->page_array[j]);
kfree(buf->page_array);
return NULL;
}
/**
* relay_create_buf - allocate and initialize a channel buffer
* @chan: the relay channel
*
* Returns channel buffer if successful, %NULL otherwise.
*/
struct rchan_buf *relay_create_buf(struct rchan *chan)
{
struct rchan_buf *buf = kcalloc(1, sizeof(struct rchan_buf), GFP_KERNEL);
if (!buf)
return NULL;
buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
if (!buf->padding)
goto free_buf;
buf->start = relay_alloc_buf(buf, &chan->alloc_size);
if (!buf->start)
goto free_buf;
buf->chan = chan;
kref_get(&buf->chan->kref);
return buf;
free_buf:
kfree(buf->padding);
kfree(buf);
return NULL;
}
/**
* relay_destroy_channel - free the channel struct
* @kref: target kernel reference that contains the relay channel
*
* Should only be called from kref_put().
*/
void relay_destroy_channel(struct kref *kref)
{
struct rchan *chan = container_of(kref, struct rchan, kref);
kfree(chan);
}
/**
* relay_destroy_buf - destroy an rchan_buf struct and associated buffer
* @buf: the buffer struct
*/
void relay_destroy_buf(struct rchan_buf *buf)
{
struct rchan *chan = buf->chan;
unsigned int i;
if (likely(buf->start)) {
vunmap(buf->start);
for (i = 0; i < buf->page_count; i++)
__free_page(buf->page_array[i]);
kfree(buf->page_array);
}
kfree(buf->padding);
kfree(buf);
kref_put(&chan->kref, relay_destroy_channel);
}
/**
* relay_remove_buf - remove a channel buffer
* @kref: target kernel reference that contains the relay buffer
*
* Removes the file from the fileystem, which also frees the
* rchan_buf_struct and the channel buffer. Should only be called from
* kref_put().
*/
void relay_remove_buf(struct kref *kref)
{
struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
buf->chan->cb->remove_buf_file(buf->dentry);
relay_destroy_buf(buf);
}
/**
* relay_buf_empty - boolean, is the channel buffer empty?
* @buf: channel buffer
*
* Returns 1 if the buffer is empty, 0 otherwise.
*/
int relay_buf_empty(struct rchan_buf *buf)
{
return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
}
EXPORT_SYMBOL_GPL(relay_buf_empty);
/**
* relay_buf_full - boolean, is the channel buffer full?
* @buf: channel buffer
*
* Returns 1 if the buffer is full, 0 otherwise.
*/
int relay_buf_full(struct rchan_buf *buf)
{
size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
return (ready >= buf->chan->n_subbufs) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(relay_buf_full);
/*
* High-level relay kernel API and associated functions.
*/
/*
* rchan_callback implementations defining default channel behavior. Used
* in place of corresponding NULL values in client callback struct.
*/
/*
* subbuf_start() default callback. Does nothing.
*/
static int subbuf_start_default_callback (struct rchan_buf *buf,
void *subbuf,
void *prev_subbuf,
size_t prev_padding)
{
if (relay_buf_full(buf))
return 0;
return 1;
}
/*
* buf_mapped() default callback. Does nothing.
*/
static void buf_mapped_default_callback(struct rchan_buf *buf,
struct file *filp)
{
}
/*
* buf_unmapped() default callback. Does nothing.
*/
static void buf_unmapped_default_callback(struct rchan_buf *buf,
struct file *filp)
{
}
/*
* create_buf_file_create() default callback. Does nothing.
*/
static struct dentry *create_buf_file_default_callback(const char *filename,
struct dentry *parent,
int mode,
struct rchan_buf *buf,
int *is_global)
{
return NULL;
}
/*
* remove_buf_file() default callback. Does nothing.
*/
static int remove_buf_file_default_callback(struct dentry *dentry)
{
return -EINVAL;
}
/* relay channel default callbacks */
static struct rchan_callbacks default_channel_callbacks = {
.subbuf_start = subbuf_start_default_callback,
.buf_mapped = buf_mapped_default_callback,
.buf_unmapped = buf_unmapped_default_callback,
.create_buf_file = create_buf_file_default_callback,
.remove_buf_file = remove_buf_file_default_callback,
};
/**
* wakeup_readers - wake up readers waiting on a channel
* @private: the channel buffer
*
* This is the work function used to defer reader waking. The
* reason waking is deferred is that calling directly from write
* causes problems if you're writing from say the scheduler.
*/
static void wakeup_readers(struct work_struct *work)
{
struct rchan_buf *buf =
container_of(work, struct rchan_buf, wake_readers.work);
wake_up_interruptible(&buf->read_wait);
}
/**
* __relay_reset - reset a channel buffer
* @buf: the channel buffer
* @init: 1 if this is a first-time initialization
*
* See relay_reset for description of effect.
*/
static inline void __relay_reset(struct rchan_buf *buf, unsigned int init)
{
size_t i;
if (init) {
init_waitqueue_head(&buf->read_wait);
kref_init(&buf->kref);
INIT_DELAYED_WORK(&buf->wake_readers, NULL);
} else {
cancel_delayed_work(&buf->wake_readers);
flush_scheduled_work();
}
buf->subbufs_produced = 0;
buf->subbufs_consumed = 0;
buf->bytes_consumed = 0;
buf->finalized = 0;
buf->data = buf->start;
buf->offset = 0;
for (i = 0; i < buf->chan->n_subbufs; i++)
buf->padding[i] = 0;
buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
}
/**
* relay_reset - reset the channel
* @chan: the channel
*
* This has the effect of erasing all data from all channel buffers
* and restarting the channel in its initial state. The buffers
* are not freed, so any mappings are still in effect.
*
* NOTE: Care should be taken that the channel isn't actually
* being used by anything when this call is made.
*/
void relay_reset(struct rchan *chan)
{
unsigned int i;
struct rchan_buf *prev = NULL;
if (!chan)
return;
for (i = 0; i < NR_CPUS; i++) {
if (!chan->buf[i] || chan->buf[i] == prev)
break;
__relay_reset(chan->buf[i], 0);
prev = chan->buf[i];
}
}
EXPORT_SYMBOL_GPL(relay_reset);
/*
* relay_open_buf - create a new relay channel buffer
*
* Internal - used by relay_open().
*/
static struct rchan_buf *relay_open_buf(struct rchan *chan,
const char *filename,
struct dentry *parent,
int *is_global)
{
struct rchan_buf *buf;
struct dentry *dentry;
if (*is_global)
return chan->buf[0];
buf = relay_create_buf(chan);
if (!buf)
return NULL;
/* Create file in fs */
dentry = chan->cb->create_buf_file(filename, parent, S_IRUSR,
buf, is_global);
if (!dentry) {
relay_destroy_buf(buf);
return NULL;
}
buf->dentry = dentry;
__relay_reset(buf, 1);
return buf;
}
/**
* relay_close_buf - close a channel buffer
* @buf: channel buffer
*
* Marks the buffer finalized and restores the default callbacks.
* The channel buffer and channel buffer data structure are then freed
* automatically when the last reference is given up.
*/
static inline void relay_close_buf(struct rchan_buf *buf)
{
buf->finalized = 1;
cancel_delayed_work(&buf->wake_readers);
flush_scheduled_work();
kref_put(&buf->kref, relay_remove_buf);
}
static inline void setup_callbacks(struct rchan *chan,
struct rchan_callbacks *cb)
{
if (!cb) {
chan->cb = &default_channel_callbacks;
return;
}
if (!cb->subbuf_start)
cb->subbuf_start = subbuf_start_default_callback;
if (!cb->buf_mapped)
cb->buf_mapped = buf_mapped_default_callback;
if (!cb->buf_unmapped)
cb->buf_unmapped = buf_unmapped_default_callback;
if (!cb->create_buf_file)
cb->create_buf_file = create_buf_file_default_callback;
if (!cb->remove_buf_file)
cb->remove_buf_file = remove_buf_file_default_callback;
chan->cb = cb;
}
/**
* relay_open - create a new relay channel
* @base_filename: base name of files to create
* @parent: dentry of parent directory, %NULL for root directory
* @subbuf_size: size of sub-buffers
* @n_subbufs: number of sub-buffers
* @cb: client callback functions
*
* Returns channel pointer if successful, %NULL otherwise.
*
* Creates a channel buffer for each cpu using the sizes and
* attributes specified. The created channel buffer files
* will be named base_filename0...base_filenameN-1. File
* permissions will be S_IRUSR.
*/
struct rchan *relay_open(const char *base_filename,
struct dentry *parent,
size_t subbuf_size,
size_t n_subbufs,
struct rchan_callbacks *cb)
{
unsigned int i;
struct rchan *chan;
char *tmpname;
int is_global = 0;
if (!base_filename)
return NULL;
if (!(subbuf_size && n_subbufs))
return NULL;
chan = kcalloc(1, sizeof(struct rchan), GFP_KERNEL);
if (!chan)
return NULL;
chan->version = RELAYFS_CHANNEL_VERSION;
chan->n_subbufs = n_subbufs;
chan->subbuf_size = subbuf_size;
chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
setup_callbacks(chan, cb);
kref_init(&chan->kref);
tmpname = kmalloc(NAME_MAX + 1, GFP_KERNEL);
if (!tmpname)
goto free_chan;
for_each_online_cpu(i) {
sprintf(tmpname, "%s%d", base_filename, i);
chan->buf[i] = relay_open_buf(chan, tmpname, parent,
&is_global);
if (!chan->buf[i])
goto free_bufs;
chan->buf[i]->cpu = i;
}
kfree(tmpname);
return chan;
free_bufs:
for (i = 0; i < NR_CPUS; i++) {
if (!chan->buf[i])
break;
relay_close_buf(chan->buf[i]);
if (is_global)
break;
}
kfree(tmpname);
free_chan:
kref_put(&chan->kref, relay_destroy_channel);
return NULL;
}
EXPORT_SYMBOL_GPL(relay_open);
/**
* relay_switch_subbuf - switch to a new sub-buffer
* @buf: channel buffer
* @length: size of current event
*
* Returns either the length passed in or 0 if full.
*
* Performs sub-buffer-switch tasks such as invoking callbacks,
* updating padding counts, waking up readers, etc.
*/
size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
{
void *old, *new;
size_t old_subbuf, new_subbuf;
if (unlikely(length > buf->chan->subbuf_size))
goto toobig;
if (buf->offset != buf->chan->subbuf_size + 1) {
buf->prev_padding = buf->chan->subbuf_size - buf->offset;
old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
buf->padding[old_subbuf] = buf->prev_padding;
buf->subbufs_produced++;
buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
buf->padding[old_subbuf];
smp_mb();
if (waitqueue_active(&buf->read_wait)) {
PREPARE_DELAYED_WORK(&buf->wake_readers,
wakeup_readers);
schedule_delayed_work(&buf->wake_readers, 1);
}
}
old = buf->data;
new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
new = buf->start + new_subbuf * buf->chan->subbuf_size;
buf->offset = 0;
if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
buf->offset = buf->chan->subbuf_size + 1;
return 0;
}
buf->data = new;
buf->padding[new_subbuf] = 0;
if (unlikely(length + buf->offset > buf->chan->subbuf_size))
goto toobig;
return length;
toobig:
buf->chan->last_toobig = length;
return 0;
}
EXPORT_SYMBOL_GPL(relay_switch_subbuf);
/**
* relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
* @chan: the channel
* @cpu: the cpu associated with the channel buffer to update
* @subbufs_consumed: number of sub-buffers to add to current buf's count
*
* Adds to the channel buffer's consumed sub-buffer count.
* subbufs_consumed should be the number of sub-buffers newly consumed,
* not the total consumed.
*
* NOTE: Kernel clients don't need to call this function if the channel
* mode is 'overwrite'.
*/
void relay_subbufs_consumed(struct rchan *chan,
unsigned int cpu,
size_t subbufs_consumed)
{
struct rchan_buf *buf;
if (!chan)
return;
if (cpu >= NR_CPUS || !chan->buf[cpu])
return;
buf = chan->buf[cpu];
buf->subbufs_consumed += subbufs_consumed;
if (buf->subbufs_consumed > buf->subbufs_produced)
buf->subbufs_consumed = buf->subbufs_produced;
}
EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
/**
* relay_close - close the channel
* @chan: the channel
*
* Closes all channel buffers and frees the channel.
*/
void relay_close(struct rchan *chan)
{
unsigned int i;
struct rchan_buf *prev = NULL;
if (!chan)
return;
for (i = 0; i < NR_CPUS; i++) {
if (!chan->buf[i] || chan->buf[i] == prev)
break;
relay_close_buf(chan->buf[i]);
prev = chan->buf[i];
}
if (chan->last_toobig)
printk(KERN_WARNING "relay: one or more items not logged "
"[item size (%Zd) > sub-buffer size (%Zd)]\n",
chan->last_toobig, chan->subbuf_size);
kref_put(&chan->kref, relay_destroy_channel);
}
EXPORT_SYMBOL_GPL(relay_close);
/**
* relay_flush - close the channel
* @chan: the channel
*
* Flushes all channel buffers, i.e. forces buffer switch.
*/
void relay_flush(struct rchan *chan)
{
unsigned int i;
struct rchan_buf *prev = NULL;
if (!chan)
return;
for (i = 0; i < NR_CPUS; i++) {
if (!chan->buf[i] || chan->buf[i] == prev)
break;
relay_switch_subbuf(chan->buf[i], 0);
prev = chan->buf[i];
}
}
EXPORT_SYMBOL_GPL(relay_flush);
/**
* relay_file_open - open file op for relay files
* @inode: the inode
* @filp: the file
*
* Increments the channel buffer refcount.
*/
static int relay_file_open(struct inode *inode, struct file *filp)
{
struct rchan_buf *buf = inode->i_private;
kref_get(&buf->kref);
filp->private_data = buf;
return 0;
}
/**
* relay_file_mmap - mmap file op for relay files
* @filp: the file
* @vma: the vma describing what to map
*
* Calls upon relay_mmap_buf to map the file into user space.
*/
static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct rchan_buf *buf = filp->private_data;
return relay_mmap_buf(buf, vma);
}
/**
* relay_file_poll - poll file op for relay files
* @filp: the file
* @wait: poll table
*
* Poll implemention.
*/
static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
{
unsigned int mask = 0;
struct rchan_buf *buf = filp->private_data;
if (buf->finalized)
return POLLERR;
if (filp->f_mode & FMODE_READ) {
poll_wait(filp, &buf->read_wait, wait);
if (!relay_buf_empty(buf))
mask |= POLLIN | POLLRDNORM;
}
return mask;
}
/**
* relay_file_release - release file op for relay files
* @inode: the inode
* @filp: the file
*
* Decrements the channel refcount, as the filesystem is
* no longer using it.
*/
static int relay_file_release(struct inode *inode, struct file *filp)
{
struct rchan_buf *buf = filp->private_data;
kref_put(&buf->kref, relay_remove_buf);
return 0;
}
/*
* relay_file_read_consume - update the consumed count for the buffer
*/
static void relay_file_read_consume(struct rchan_buf *buf,
size_t read_pos,
size_t bytes_consumed)
{
size_t subbuf_size = buf->chan->subbuf_size;
size_t n_subbufs = buf->chan->n_subbufs;
size_t read_subbuf;
if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
relay_subbufs_consumed(buf->chan, buf->cpu, 1);
buf->bytes_consumed = 0;
}
buf->bytes_consumed += bytes_consumed;
read_subbuf = read_pos / buf->chan->subbuf_size;
if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
(buf->offset == subbuf_size))
return;
relay_subbufs_consumed(buf->chan, buf->cpu, 1);
buf->bytes_consumed = 0;
}
}
/*
* relay_file_read_avail - boolean, are there unconsumed bytes available?
*/
static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
{
size_t subbuf_size = buf->chan->subbuf_size;
size_t n_subbufs = buf->chan->n_subbufs;
size_t produced = buf->subbufs_produced;
size_t consumed = buf->subbufs_consumed;
relay_file_read_consume(buf, read_pos, 0);
if (unlikely(buf->offset > subbuf_size)) {
if (produced == consumed)
return 0;
return 1;
}
if (unlikely(produced - consumed >= n_subbufs)) {
consumed = (produced / n_subbufs) * n_subbufs;
buf->subbufs_consumed = consumed;
}
produced = (produced % n_subbufs) * subbuf_size + buf->offset;
consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
if (consumed > produced)
produced += n_subbufs * subbuf_size;
if (consumed == produced)
return 0;
return 1;
}
/**
* relay_file_read_subbuf_avail - return bytes available in sub-buffer
* @read_pos: file read position
* @buf: relay channel buffer
*/
static size_t relay_file_read_subbuf_avail(size_t read_pos,
struct rchan_buf *buf)
{
size_t padding, avail = 0;
size_t read_subbuf, read_offset, write_subbuf, write_offset;
size_t subbuf_size = buf->chan->subbuf_size;
write_subbuf = (buf->data - buf->start) / subbuf_size;
write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
read_subbuf = read_pos / subbuf_size;
read_offset = read_pos % subbuf_size;
padding = buf->padding[read_subbuf];
if (read_subbuf == write_subbuf) {
if (read_offset + padding < write_offset)
avail = write_offset - (read_offset + padding);
} else
avail = (subbuf_size - padding) - read_offset;
return avail;
}
/**
* relay_file_read_start_pos - find the first available byte to read
* @read_pos: file read position
* @buf: relay channel buffer
*
* If the read_pos is in the middle of padding, return the
* position of the first actually available byte, otherwise
* return the original value.
*/
static size_t relay_file_read_start_pos(size_t read_pos,
struct rchan_buf *buf)
{
size_t read_subbuf, padding, padding_start, padding_end;
size_t subbuf_size = buf->chan->subbuf_size;
size_t n_subbufs = buf->chan->n_subbufs;
read_subbuf = read_pos / subbuf_size;
padding = buf->padding[read_subbuf];
padding_start = (read_subbuf + 1) * subbuf_size - padding;
padding_end = (read_subbuf + 1) * subbuf_size;
if (read_pos >= padding_start && read_pos < padding_end) {
read_subbuf = (read_subbuf + 1) % n_subbufs;
read_pos = read_subbuf * subbuf_size;
}
return read_pos;
}
/**
* relay_file_read_end_pos - return the new read position
* @read_pos: file read position
* @buf: relay channel buffer
* @count: number of bytes to be read
*/
static size_t relay_file_read_end_pos(struct rchan_buf *buf,
size_t read_pos,
size_t count)
{
size_t read_subbuf, padding, end_pos;
size_t subbuf_size = buf->chan->subbuf_size;
size_t n_subbufs = buf->chan->n_subbufs;
read_subbuf = read_pos / subbuf_size;
padding = buf->padding[read_subbuf];
if (read_pos % subbuf_size + count + padding == subbuf_size)
end_pos = (read_subbuf + 1) * subbuf_size;
else
end_pos = read_pos + count;
if (end_pos >= subbuf_size * n_subbufs)
end_pos = 0;
return end_pos;
}
/*
* subbuf_read_actor - read up to one subbuf's worth of data
*/
static int subbuf_read_actor(size_t read_start,
struct rchan_buf *buf,
size_t avail,
read_descriptor_t *desc,
read_actor_t actor)
{
void *from;
int ret = 0;
from = buf->start + read_start;
ret = avail;
if (copy_to_user(desc->arg.buf, from, avail)) {
desc->error = -EFAULT;
ret = 0;
}
desc->arg.data += ret;
desc->written += ret;
desc->count -= ret;
return ret;
}
/*
* subbuf_send_actor - send up to one subbuf's worth of data
*/
static int subbuf_send_actor(size_t read_start,
struct rchan_buf *buf,
size_t avail,
read_descriptor_t *desc,
read_actor_t actor)
{
unsigned long pidx, poff;
unsigned int subbuf_pages;
int ret = 0;
subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
pidx = (read_start / PAGE_SIZE) % subbuf_pages;
poff = read_start & ~PAGE_MASK;
while (avail) {
struct page *p = buf->page_array[pidx];
unsigned int len;
len = PAGE_SIZE - poff;
if (len > avail)
len = avail;
len = actor(desc, p, poff, len);
if (desc->error)
break;
avail -= len;
ret += len;
poff = 0;
pidx = (pidx + 1) % subbuf_pages;
}
return ret;
}
typedef int (*subbuf_actor_t) (size_t read_start,
struct rchan_buf *buf,
size_t avail,
read_descriptor_t *desc,
read_actor_t actor);
/*
* relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
*/
static inline ssize_t relay_file_read_subbufs(struct file *filp,
loff_t *ppos,
subbuf_actor_t subbuf_actor,
read_actor_t actor,
read_descriptor_t *desc)
{
struct rchan_buf *buf = filp->private_data;
size_t read_start, avail;
int ret;
if (!desc->count)
return 0;
mutex_lock(&filp->f_dentry->d_inode->i_mutex);
do {
if (!relay_file_read_avail(buf, *ppos))
break;
read_start = relay_file_read_start_pos(*ppos, buf);
avail = relay_file_read_subbuf_avail(read_start, buf);
if (!avail)
break;
avail = min(desc->count, avail);
ret = subbuf_actor(read_start, buf, avail, desc, actor);
if (desc->error < 0)
break;
if (ret) {
relay_file_read_consume(buf, read_start, ret);
*ppos = relay_file_read_end_pos(buf, read_start, ret);
}
} while (desc->count && ret);
mutex_unlock(&filp->f_dentry->d_inode->i_mutex);
return desc->written;
}
static ssize_t relay_file_read(struct file *filp,
char __user *buffer,
size_t count,
loff_t *ppos)
{
read_descriptor_t desc;
desc.written = 0;
desc.count = count;
desc.arg.buf = buffer;
desc.error = 0;
return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
NULL, &desc);
}
static ssize_t relay_file_sendfile(struct file *filp,
loff_t *ppos,
size_t count,
read_actor_t actor,
void *target)
{
read_descriptor_t desc;
desc.written = 0;
desc.count = count;
desc.arg.data = target;
desc.error = 0;
return relay_file_read_subbufs(filp, ppos, subbuf_send_actor,
actor, &desc);
}
struct file_operations relay_file_operations = {
.open = relay_file_open,
.poll = relay_file_poll,
.mmap = relay_file_mmap,
.read = relay_file_read,
.llseek = no_llseek,
.release = relay_file_release,
.sendfile = relay_file_sendfile,
};
EXPORT_SYMBOL_GPL(relay_file_operations);