1366 lines
34 KiB
C
1366 lines
34 KiB
C
/*
|
|
* Copyright (C) 2008 Red Hat. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/math64.h>
|
|
#include "ctree.h"
|
|
#include "free-space-cache.h"
|
|
#include "transaction.h"
|
|
|
|
#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
|
|
#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
|
|
|
|
static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
|
|
u64 offset)
|
|
{
|
|
BUG_ON(offset < bitmap_start);
|
|
offset -= bitmap_start;
|
|
return (unsigned long)(div64_u64(offset, sectorsize));
|
|
}
|
|
|
|
static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
|
|
{
|
|
return (unsigned long)(div64_u64(bytes, sectorsize));
|
|
}
|
|
|
|
static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
|
|
u64 offset)
|
|
{
|
|
u64 bitmap_start;
|
|
u64 bytes_per_bitmap;
|
|
|
|
bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
|
|
bitmap_start = offset - block_group->key.objectid;
|
|
bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
|
|
bitmap_start *= bytes_per_bitmap;
|
|
bitmap_start += block_group->key.objectid;
|
|
|
|
return bitmap_start;
|
|
}
|
|
|
|
static int tree_insert_offset(struct rb_root *root, u64 offset,
|
|
struct rb_node *node, int bitmap)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < info->offset) {
|
|
p = &(*p)->rb_left;
|
|
} else if (offset > info->offset) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
/*
|
|
* we could have a bitmap entry and an extent entry
|
|
* share the same offset. If this is the case, we want
|
|
* the extent entry to always be found first if we do a
|
|
* linear search through the tree, since we want to have
|
|
* the quickest allocation time, and allocating from an
|
|
* extent is faster than allocating from a bitmap. So
|
|
* if we're inserting a bitmap and we find an entry at
|
|
* this offset, we want to go right, or after this entry
|
|
* logically. If we are inserting an extent and we've
|
|
* found a bitmap, we want to go left, or before
|
|
* logically.
|
|
*/
|
|
if (bitmap) {
|
|
WARN_ON(info->bitmap);
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
WARN_ON(!info->bitmap);
|
|
p = &(*p)->rb_left;
|
|
}
|
|
}
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* searches the tree for the given offset.
|
|
*
|
|
* fuzzy - If this is set, then we are trying to make an allocation, and we just
|
|
* want a section that has at least bytes size and comes at or after the given
|
|
* offset.
|
|
*/
|
|
static struct btrfs_free_space *
|
|
tree_search_offset(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, int bitmap_only, int fuzzy)
|
|
{
|
|
struct rb_node *n = block_group->free_space_offset.rb_node;
|
|
struct btrfs_free_space *entry, *prev = NULL;
|
|
|
|
/* find entry that is closest to the 'offset' */
|
|
while (1) {
|
|
if (!n) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
prev = entry;
|
|
|
|
if (offset < entry->offset)
|
|
n = n->rb_left;
|
|
else if (offset > entry->offset)
|
|
n = n->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (bitmap_only) {
|
|
if (!entry)
|
|
return NULL;
|
|
if (entry->bitmap)
|
|
return entry;
|
|
|
|
/*
|
|
* bitmap entry and extent entry may share same offset,
|
|
* in that case, bitmap entry comes after extent entry.
|
|
*/
|
|
n = rb_next(n);
|
|
if (!n)
|
|
return NULL;
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (entry->offset != offset)
|
|
return NULL;
|
|
|
|
WARN_ON(!entry->bitmap);
|
|
return entry;
|
|
} else if (entry) {
|
|
if (entry->bitmap) {
|
|
/*
|
|
* if previous extent entry covers the offset,
|
|
* we should return it instead of the bitmap entry
|
|
*/
|
|
n = &entry->offset_index;
|
|
while (1) {
|
|
n = rb_prev(n);
|
|
if (!n)
|
|
break;
|
|
prev = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (!prev->bitmap) {
|
|
if (prev->offset + prev->bytes > offset)
|
|
entry = prev;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
if (!prev)
|
|
return NULL;
|
|
|
|
/* find last entry before the 'offset' */
|
|
entry = prev;
|
|
if (entry->offset > offset) {
|
|
n = rb_prev(&entry->offset_index);
|
|
if (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
BUG_ON(entry->offset > offset);
|
|
} else {
|
|
if (fuzzy)
|
|
return entry;
|
|
else
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (entry->bitmap) {
|
|
n = &entry->offset_index;
|
|
while (1) {
|
|
n = rb_prev(n);
|
|
if (!n)
|
|
break;
|
|
prev = rb_entry(n, struct btrfs_free_space,
|
|
offset_index);
|
|
if (!prev->bitmap) {
|
|
if (prev->offset + prev->bytes > offset)
|
|
return prev;
|
|
break;
|
|
}
|
|
}
|
|
if (entry->offset + BITS_PER_BITMAP *
|
|
block_group->sectorsize > offset)
|
|
return entry;
|
|
} else if (entry->offset + entry->bytes > offset)
|
|
return entry;
|
|
|
|
if (!fuzzy)
|
|
return NULL;
|
|
|
|
while (1) {
|
|
if (entry->bitmap) {
|
|
if (entry->offset + BITS_PER_BITMAP *
|
|
block_group->sectorsize > offset)
|
|
break;
|
|
} else {
|
|
if (entry->offset + entry->bytes > offset)
|
|
break;
|
|
}
|
|
|
|
n = rb_next(&entry->offset_index);
|
|
if (!n)
|
|
return NULL;
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
static void unlink_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
rb_erase(&info->offset_index, &block_group->free_space_offset);
|
|
block_group->free_extents--;
|
|
block_group->free_space -= info->bytes;
|
|
}
|
|
|
|
static int link_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
int ret = 0;
|
|
|
|
BUG_ON(!info->bitmap && !info->bytes);
|
|
ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
|
|
&info->offset_index, (info->bitmap != NULL));
|
|
if (ret)
|
|
return ret;
|
|
|
|
block_group->free_space += info->bytes;
|
|
block_group->free_extents++;
|
|
return ret;
|
|
}
|
|
|
|
static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
u64 max_bytes;
|
|
u64 bitmap_bytes;
|
|
u64 extent_bytes;
|
|
|
|
/*
|
|
* The goal is to keep the total amount of memory used per 1gb of space
|
|
* at or below 32k, so we need to adjust how much memory we allow to be
|
|
* used by extent based free space tracking
|
|
*/
|
|
max_bytes = MAX_CACHE_BYTES_PER_GIG *
|
|
(div64_u64(block_group->key.offset, 1024 * 1024 * 1024));
|
|
|
|
/*
|
|
* we want to account for 1 more bitmap than what we have so we can make
|
|
* sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
|
|
* we add more bitmaps.
|
|
*/
|
|
bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
|
|
|
|
if (bitmap_bytes >= max_bytes) {
|
|
block_group->extents_thresh = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* we want the extent entry threshold to always be at most 1/2 the maxw
|
|
* bytes we can have, or whatever is less than that.
|
|
*/
|
|
extent_bytes = max_bytes - bitmap_bytes;
|
|
extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
|
|
|
|
block_group->extents_thresh =
|
|
div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
|
|
}
|
|
|
|
static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
unsigned long start, end;
|
|
unsigned long i;
|
|
|
|
start = offset_to_bit(info->offset, block_group->sectorsize, offset);
|
|
end = start + bytes_to_bits(bytes, block_group->sectorsize);
|
|
BUG_ON(end > BITS_PER_BITMAP);
|
|
|
|
for (i = start; i < end; i++)
|
|
clear_bit(i, info->bitmap);
|
|
|
|
info->bytes -= bytes;
|
|
block_group->free_space -= bytes;
|
|
}
|
|
|
|
static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
unsigned long start, end;
|
|
unsigned long i;
|
|
|
|
start = offset_to_bit(info->offset, block_group->sectorsize, offset);
|
|
end = start + bytes_to_bits(bytes, block_group->sectorsize);
|
|
BUG_ON(end > BITS_PER_BITMAP);
|
|
|
|
for (i = start; i < end; i++)
|
|
set_bit(i, info->bitmap);
|
|
|
|
info->bytes += bytes;
|
|
block_group->free_space += bytes;
|
|
}
|
|
|
|
static int search_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *bitmap_info, u64 *offset,
|
|
u64 *bytes)
|
|
{
|
|
unsigned long found_bits = 0;
|
|
unsigned long bits, i;
|
|
unsigned long next_zero;
|
|
|
|
i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
|
|
max_t(u64, *offset, bitmap_info->offset));
|
|
bits = bytes_to_bits(*bytes, block_group->sectorsize);
|
|
|
|
for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
|
|
i < BITS_PER_BITMAP;
|
|
i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
|
|
next_zero = find_next_zero_bit(bitmap_info->bitmap,
|
|
BITS_PER_BITMAP, i);
|
|
if ((next_zero - i) >= bits) {
|
|
found_bits = next_zero - i;
|
|
break;
|
|
}
|
|
i = next_zero;
|
|
}
|
|
|
|
if (found_bits) {
|
|
*offset = (u64)(i * block_group->sectorsize) +
|
|
bitmap_info->offset;
|
|
*bytes = (u64)(found_bits) * block_group->sectorsize;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
|
|
*block_group, u64 *offset,
|
|
u64 *bytes, int debug)
|
|
{
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
int ret;
|
|
|
|
if (!block_group->free_space_offset.rb_node)
|
|
return NULL;
|
|
|
|
entry = tree_search_offset(block_group,
|
|
offset_to_bitmap(block_group, *offset),
|
|
0, 1);
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
for (node = &entry->offset_index; node; node = rb_next(node)) {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
if (entry->bytes < *bytes)
|
|
continue;
|
|
|
|
if (entry->bitmap) {
|
|
ret = search_bitmap(block_group, entry, offset, bytes);
|
|
if (!ret)
|
|
return entry;
|
|
continue;
|
|
}
|
|
|
|
*offset = entry->offset;
|
|
*bytes = entry->bytes;
|
|
return entry;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info, u64 offset)
|
|
{
|
|
u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
|
|
int max_bitmaps = (int)div64_u64(block_group->key.offset +
|
|
bytes_per_bg - 1, bytes_per_bg);
|
|
BUG_ON(block_group->total_bitmaps >= max_bitmaps);
|
|
|
|
info->offset = offset_to_bitmap(block_group, offset);
|
|
info->bytes = 0;
|
|
link_free_space(block_group, info);
|
|
block_group->total_bitmaps++;
|
|
|
|
recalculate_thresholds(block_group);
|
|
}
|
|
|
|
static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *bitmap_info,
|
|
u64 *offset, u64 *bytes)
|
|
{
|
|
u64 end;
|
|
u64 search_start, search_bytes;
|
|
int ret;
|
|
|
|
again:
|
|
end = bitmap_info->offset +
|
|
(u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
|
|
|
|
/*
|
|
* XXX - this can go away after a few releases.
|
|
*
|
|
* since the only user of btrfs_remove_free_space is the tree logging
|
|
* stuff, and the only way to test that is under crash conditions, we
|
|
* want to have this debug stuff here just in case somethings not
|
|
* working. Search the bitmap for the space we are trying to use to
|
|
* make sure its actually there. If its not there then we need to stop
|
|
* because something has gone wrong.
|
|
*/
|
|
search_start = *offset;
|
|
search_bytes = *bytes;
|
|
ret = search_bitmap(block_group, bitmap_info, &search_start,
|
|
&search_bytes);
|
|
BUG_ON(ret < 0 || search_start != *offset);
|
|
|
|
if (*offset > bitmap_info->offset && *offset + *bytes > end) {
|
|
bitmap_clear_bits(block_group, bitmap_info, *offset,
|
|
end - *offset + 1);
|
|
*bytes -= end - *offset + 1;
|
|
*offset = end + 1;
|
|
} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
|
|
bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
|
|
*bytes = 0;
|
|
}
|
|
|
|
if (*bytes) {
|
|
struct rb_node *next = rb_next(&bitmap_info->offset_index);
|
|
if (!bitmap_info->bytes) {
|
|
unlink_free_space(block_group, bitmap_info);
|
|
kfree(bitmap_info->bitmap);
|
|
kfree(bitmap_info);
|
|
block_group->total_bitmaps--;
|
|
recalculate_thresholds(block_group);
|
|
}
|
|
|
|
/*
|
|
* no entry after this bitmap, but we still have bytes to
|
|
* remove, so something has gone wrong.
|
|
*/
|
|
if (!next)
|
|
return -EINVAL;
|
|
|
|
bitmap_info = rb_entry(next, struct btrfs_free_space,
|
|
offset_index);
|
|
|
|
/*
|
|
* if the next entry isn't a bitmap we need to return to let the
|
|
* extent stuff do its work.
|
|
*/
|
|
if (!bitmap_info->bitmap)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Ok the next item is a bitmap, but it may not actually hold
|
|
* the information for the rest of this free space stuff, so
|
|
* look for it, and if we don't find it return so we can try
|
|
* everything over again.
|
|
*/
|
|
search_start = *offset;
|
|
search_bytes = *bytes;
|
|
ret = search_bitmap(block_group, bitmap_info, &search_start,
|
|
&search_bytes);
|
|
if (ret < 0 || search_start != *offset)
|
|
return -EAGAIN;
|
|
|
|
goto again;
|
|
} else if (!bitmap_info->bytes) {
|
|
unlink_free_space(block_group, bitmap_info);
|
|
kfree(bitmap_info->bitmap);
|
|
kfree(bitmap_info);
|
|
block_group->total_bitmaps--;
|
|
recalculate_thresholds(block_group);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
struct btrfs_free_space *bitmap_info;
|
|
int added = 0;
|
|
u64 bytes, offset, end;
|
|
int ret;
|
|
|
|
/*
|
|
* If we are below the extents threshold then we can add this as an
|
|
* extent, and don't have to deal with the bitmap
|
|
*/
|
|
if (block_group->free_extents < block_group->extents_thresh &&
|
|
info->bytes > block_group->sectorsize * 4)
|
|
return 0;
|
|
|
|
/*
|
|
* some block groups are so tiny they can't be enveloped by a bitmap, so
|
|
* don't even bother to create a bitmap for this
|
|
*/
|
|
if (BITS_PER_BITMAP * block_group->sectorsize >
|
|
block_group->key.offset)
|
|
return 0;
|
|
|
|
bytes = info->bytes;
|
|
offset = info->offset;
|
|
|
|
again:
|
|
bitmap_info = tree_search_offset(block_group,
|
|
offset_to_bitmap(block_group, offset),
|
|
1, 0);
|
|
if (!bitmap_info) {
|
|
BUG_ON(added);
|
|
goto new_bitmap;
|
|
}
|
|
|
|
end = bitmap_info->offset +
|
|
(u64)(BITS_PER_BITMAP * block_group->sectorsize);
|
|
|
|
if (offset >= bitmap_info->offset && offset + bytes > end) {
|
|
bitmap_set_bits(block_group, bitmap_info, offset,
|
|
end - offset);
|
|
bytes -= end - offset;
|
|
offset = end;
|
|
added = 0;
|
|
} else if (offset >= bitmap_info->offset && offset + bytes <= end) {
|
|
bitmap_set_bits(block_group, bitmap_info, offset, bytes);
|
|
bytes = 0;
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
if (!bytes) {
|
|
ret = 1;
|
|
goto out;
|
|
} else
|
|
goto again;
|
|
|
|
new_bitmap:
|
|
if (info && info->bitmap) {
|
|
add_new_bitmap(block_group, info, offset);
|
|
added = 1;
|
|
info = NULL;
|
|
goto again;
|
|
} else {
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
/* no pre-allocated info, allocate a new one */
|
|
if (!info) {
|
|
info = kzalloc(sizeof(struct btrfs_free_space),
|
|
GFP_NOFS);
|
|
if (!info) {
|
|
spin_lock(&block_group->tree_lock);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* allocate the bitmap */
|
|
info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
|
|
spin_lock(&block_group->tree_lock);
|
|
if (!info->bitmap) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
out:
|
|
if (info) {
|
|
if (info->bitmap)
|
|
kfree(info->bitmap);
|
|
kfree(info);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *right_info = NULL;
|
|
struct btrfs_free_space *left_info = NULL;
|
|
struct btrfs_free_space *info = NULL;
|
|
int ret = 0;
|
|
|
|
info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->offset = offset;
|
|
info->bytes = bytes;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
|
|
/*
|
|
* first we want to see if there is free space adjacent to the range we
|
|
* are adding, if there is remove that struct and add a new one to
|
|
* cover the entire range
|
|
*/
|
|
right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
|
|
if (right_info && rb_prev(&right_info->offset_index))
|
|
left_info = rb_entry(rb_prev(&right_info->offset_index),
|
|
struct btrfs_free_space, offset_index);
|
|
else
|
|
left_info = tree_search_offset(block_group, offset - 1, 0, 0);
|
|
|
|
/*
|
|
* If there was no extent directly to the left or right of this new
|
|
* extent then we know we're going to have to allocate a new extent, so
|
|
* before we do that see if we need to drop this into a bitmap
|
|
*/
|
|
if ((!left_info || left_info->bitmap) &&
|
|
(!right_info || right_info->bitmap)) {
|
|
ret = insert_into_bitmap(block_group, info);
|
|
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (right_info && !right_info->bitmap) {
|
|
unlink_free_space(block_group, right_info);
|
|
info->bytes += right_info->bytes;
|
|
kfree(right_info);
|
|
}
|
|
|
|
if (left_info && !left_info->bitmap &&
|
|
left_info->offset + left_info->bytes == offset) {
|
|
unlink_free_space(block_group, left_info);
|
|
info->offset = left_info->offset;
|
|
info->bytes += left_info->bytes;
|
|
kfree(left_info);
|
|
}
|
|
|
|
ret = link_free_space(block_group, info);
|
|
if (ret)
|
|
kfree(info);
|
|
out:
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
if (ret) {
|
|
printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
|
|
BUG_ON(ret == -EEXIST);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct btrfs_free_space *next_info = NULL;
|
|
int ret = 0;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
|
|
again:
|
|
info = tree_search_offset(block_group, offset, 0, 0);
|
|
if (!info) {
|
|
/*
|
|
* oops didn't find an extent that matched the space we wanted
|
|
* to remove, look for a bitmap instead
|
|
*/
|
|
info = tree_search_offset(block_group,
|
|
offset_to_bitmap(block_group, offset),
|
|
1, 0);
|
|
if (!info) {
|
|
WARN_ON(1);
|
|
goto out_lock;
|
|
}
|
|
}
|
|
|
|
if (info->bytes < bytes && rb_next(&info->offset_index)) {
|
|
u64 end;
|
|
next_info = rb_entry(rb_next(&info->offset_index),
|
|
struct btrfs_free_space,
|
|
offset_index);
|
|
|
|
if (next_info->bitmap)
|
|
end = next_info->offset + BITS_PER_BITMAP *
|
|
block_group->sectorsize - 1;
|
|
else
|
|
end = next_info->offset + next_info->bytes;
|
|
|
|
if (next_info->bytes < bytes ||
|
|
next_info->offset > offset || offset > end) {
|
|
printk(KERN_CRIT "Found free space at %llu, size %llu,"
|
|
" trying to use %llu\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes,
|
|
(unsigned long long)bytes);
|
|
WARN_ON(1);
|
|
ret = -EINVAL;
|
|
goto out_lock;
|
|
}
|
|
|
|
info = next_info;
|
|
}
|
|
|
|
if (info->bytes == bytes) {
|
|
unlink_free_space(block_group, info);
|
|
if (info->bitmap) {
|
|
kfree(info->bitmap);
|
|
block_group->total_bitmaps--;
|
|
}
|
|
kfree(info);
|
|
goto out_lock;
|
|
}
|
|
|
|
if (!info->bitmap && info->offset == offset) {
|
|
unlink_free_space(block_group, info);
|
|
info->offset += bytes;
|
|
info->bytes -= bytes;
|
|
link_free_space(block_group, info);
|
|
goto out_lock;
|
|
}
|
|
|
|
if (!info->bitmap && info->offset <= offset &&
|
|
info->offset + info->bytes >= offset + bytes) {
|
|
u64 old_start = info->offset;
|
|
/*
|
|
* we're freeing space in the middle of the info,
|
|
* this can happen during tree log replay
|
|
*
|
|
* first unlink the old info and then
|
|
* insert it again after the hole we're creating
|
|
*/
|
|
unlink_free_space(block_group, info);
|
|
if (offset + bytes < info->offset + info->bytes) {
|
|
u64 old_end = info->offset + info->bytes;
|
|
|
|
info->offset = offset + bytes;
|
|
info->bytes = old_end - info->offset;
|
|
ret = link_free_space(block_group, info);
|
|
WARN_ON(ret);
|
|
if (ret)
|
|
goto out_lock;
|
|
} else {
|
|
/* the hole we're creating ends at the end
|
|
* of the info struct, just free the info
|
|
*/
|
|
kfree(info);
|
|
}
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
/* step two, insert a new info struct to cover
|
|
* anything before the hole
|
|
*/
|
|
ret = btrfs_add_free_space(block_group, old_start,
|
|
offset - old_start);
|
|
WARN_ON(ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = remove_from_bitmap(block_group, info, &offset, &bytes);
|
|
if (ret == -EAGAIN)
|
|
goto again;
|
|
BUG_ON(ret);
|
|
out_lock:
|
|
spin_unlock(&block_group->tree_lock);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
int count = 0;
|
|
|
|
for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (info->bytes >= bytes)
|
|
count++;
|
|
printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes,
|
|
(info->bitmap) ? "yes" : "no");
|
|
}
|
|
printk(KERN_INFO "block group has cluster?: %s\n",
|
|
list_empty(&block_group->cluster_list) ? "no" : "yes");
|
|
printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
|
|
"\n", count);
|
|
}
|
|
|
|
u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
u64 ret = 0;
|
|
|
|
for (n = rb_first(&block_group->free_space_offset); n;
|
|
n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
ret += info->bytes;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* for a given cluster, put all of its extents back into the free
|
|
* space cache. If the block group passed doesn't match the block group
|
|
* pointed to by the cluster, someone else raced in and freed the
|
|
* cluster already. In that case, we just return without changing anything
|
|
*/
|
|
static int
|
|
__btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
bool bitmap;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
bitmap = cluster->points_to_bitmap;
|
|
cluster->block_group = NULL;
|
|
cluster->window_start = 0;
|
|
list_del_init(&cluster->block_group_list);
|
|
cluster->points_to_bitmap = false;
|
|
|
|
if (bitmap)
|
|
goto out;
|
|
|
|
node = rb_first(&cluster->root);
|
|
while (node) {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
BUG_ON(entry->bitmap);
|
|
tree_insert_offset(&block_group->free_space_offset,
|
|
entry->offset, &entry->offset_index, 0);
|
|
}
|
|
cluster->root = RB_ROOT;
|
|
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
btrfs_put_block_group(block_group);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *node;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct list_head *head;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
while ((head = block_group->cluster_list.next) !=
|
|
&block_group->cluster_list) {
|
|
cluster = list_entry(head, struct btrfs_free_cluster,
|
|
block_group_list);
|
|
|
|
WARN_ON(cluster->block_group != block_group);
|
|
__btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
if (need_resched()) {
|
|
spin_unlock(&block_group->tree_lock);
|
|
cond_resched();
|
|
spin_lock(&block_group->tree_lock);
|
|
}
|
|
}
|
|
|
|
while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
|
|
info = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
unlink_free_space(block_group, info);
|
|
if (info->bitmap)
|
|
kfree(info->bitmap);
|
|
kfree(info);
|
|
if (need_resched()) {
|
|
spin_unlock(&block_group->tree_lock);
|
|
cond_resched();
|
|
spin_lock(&block_group->tree_lock);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&block_group->tree_lock);
|
|
}
|
|
|
|
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space *entry = NULL;
|
|
u64 bytes_search = bytes + empty_size;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
entry = find_free_space(block_group, &offset, &bytes_search, 0);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
ret = offset;
|
|
if (entry->bitmap) {
|
|
bitmap_clear_bits(block_group, entry, offset, bytes);
|
|
if (!entry->bytes) {
|
|
unlink_free_space(block_group, entry);
|
|
kfree(entry->bitmap);
|
|
kfree(entry);
|
|
block_group->total_bitmaps--;
|
|
recalculate_thresholds(block_group);
|
|
}
|
|
} else {
|
|
unlink_free_space(block_group, entry);
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
if (!entry->bytes)
|
|
kfree(entry);
|
|
else
|
|
link_free_space(block_group, entry);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, put all of its extents back into the free space
|
|
* cache. If a block group is passed, this function will only free
|
|
* a cluster that belongs to the passed block group.
|
|
*
|
|
* Otherwise, it'll get a reference on the block group pointed to by the
|
|
* cluster and remove the cluster from it.
|
|
*/
|
|
int btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
int ret;
|
|
|
|
/* first, get a safe pointer to the block group */
|
|
spin_lock(&cluster->lock);
|
|
if (!block_group) {
|
|
block_group = cluster->block_group;
|
|
if (!block_group) {
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
} else if (cluster->block_group != block_group) {
|
|
/* someone else has already freed it don't redo their work */
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
atomic_inc(&block_group->count);
|
|
spin_unlock(&cluster->lock);
|
|
|
|
/* now return any extents the cluster had on it */
|
|
spin_lock(&block_group->tree_lock);
|
|
ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
/* finally drop our ref */
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 bytes, u64 min_start)
|
|
{
|
|
struct btrfs_free_space *entry;
|
|
int err;
|
|
u64 search_start = cluster->window_start;
|
|
u64 search_bytes = bytes;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
spin_lock(&cluster->lock);
|
|
|
|
if (!cluster->points_to_bitmap)
|
|
goto out;
|
|
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
/*
|
|
* search_start is the beginning of the bitmap, but at some point it may
|
|
* be a good idea to point to the actual start of the free area in the
|
|
* bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only
|
|
* to 1 to make sure we get the bitmap entry
|
|
*/
|
|
entry = tree_search_offset(block_group,
|
|
offset_to_bitmap(block_group, search_start),
|
|
1, 0);
|
|
if (!entry || !entry->bitmap)
|
|
goto out;
|
|
|
|
search_start = min_start;
|
|
search_bytes = bytes;
|
|
|
|
err = search_bitmap(block_group, entry, &search_start,
|
|
&search_bytes);
|
|
if (err)
|
|
goto out;
|
|
|
|
ret = search_start;
|
|
bitmap_clear_bits(block_group, entry, ret, bytes);
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, try to allocate 'bytes' from it, returns 0
|
|
* if it couldn't find anything suitably large, or a logical disk offset
|
|
* if things worked out
|
|
*/
|
|
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster, u64 bytes,
|
|
u64 min_start)
|
|
{
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct rb_node *node;
|
|
u64 ret = 0;
|
|
|
|
if (cluster->points_to_bitmap)
|
|
return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
|
|
min_start);
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (bytes > cluster->max_size)
|
|
goto out;
|
|
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
node = rb_first(&cluster->root);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
|
|
while(1) {
|
|
if (entry->bytes < bytes || entry->offset < min_start) {
|
|
struct rb_node *node;
|
|
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
}
|
|
ret = entry->offset;
|
|
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
|
|
if (entry->bytes == 0) {
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
kfree(entry);
|
|
}
|
|
break;
|
|
}
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *entry,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes, u64 min_bytes)
|
|
{
|
|
unsigned long next_zero;
|
|
unsigned long i;
|
|
unsigned long search_bits;
|
|
unsigned long total_bits;
|
|
unsigned long found_bits;
|
|
unsigned long start = 0;
|
|
unsigned long total_found = 0;
|
|
bool found = false;
|
|
|
|
i = offset_to_bit(entry->offset, block_group->sectorsize,
|
|
max_t(u64, offset, entry->offset));
|
|
search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
|
|
total_bits = bytes_to_bits(bytes, block_group->sectorsize);
|
|
|
|
again:
|
|
found_bits = 0;
|
|
for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
|
|
i < BITS_PER_BITMAP;
|
|
i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
|
|
next_zero = find_next_zero_bit(entry->bitmap,
|
|
BITS_PER_BITMAP, i);
|
|
if (next_zero - i >= search_bits) {
|
|
found_bits = next_zero - i;
|
|
break;
|
|
}
|
|
i = next_zero;
|
|
}
|
|
|
|
if (!found_bits)
|
|
return -1;
|
|
|
|
if (!found) {
|
|
start = i;
|
|
found = true;
|
|
}
|
|
|
|
total_found += found_bits;
|
|
|
|
if (cluster->max_size < found_bits * block_group->sectorsize)
|
|
cluster->max_size = found_bits * block_group->sectorsize;
|
|
|
|
if (total_found < total_bits) {
|
|
i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
|
|
if (i - start > total_bits * 2) {
|
|
total_found = 0;
|
|
cluster->max_size = 0;
|
|
found = false;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
cluster->window_start = start * block_group->sectorsize +
|
|
entry->offset;
|
|
cluster->points_to_bitmap = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* here we try to find a cluster of blocks in a block group. The goal
|
|
* is to find at least bytes free and up to empty_size + bytes free.
|
|
* We might not find them all in one contiguous area.
|
|
*
|
|
* returns zero and sets up cluster if things worked out, otherwise
|
|
* it returns -enospc
|
|
*/
|
|
int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct rb_node *node;
|
|
struct btrfs_free_space *next;
|
|
struct btrfs_free_space *last = NULL;
|
|
u64 min_bytes;
|
|
u64 window_start;
|
|
u64 window_free;
|
|
u64 max_extent = 0;
|
|
bool found_bitmap = false;
|
|
int ret;
|
|
|
|
/* for metadata, allow allocates with more holes */
|
|
if (btrfs_test_opt(root, SSD_SPREAD)) {
|
|
min_bytes = bytes + empty_size;
|
|
} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
|
|
/*
|
|
* we want to do larger allocations when we are
|
|
* flushing out the delayed refs, it helps prevent
|
|
* making more work as we go along.
|
|
*/
|
|
if (trans->transaction->delayed_refs.flushing)
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 1);
|
|
else
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 4);
|
|
} else
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 2);
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
spin_lock(&cluster->lock);
|
|
|
|
/* someone already found a cluster, hooray */
|
|
if (cluster->block_group) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
again:
|
|
entry = tree_search_offset(block_group, offset, found_bitmap, 1);
|
|
if (!entry) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If found_bitmap is true, we exhausted our search for extent entries,
|
|
* and we just want to search all of the bitmaps that we can find, and
|
|
* ignore any extent entries we find.
|
|
*/
|
|
while (entry->bitmap || found_bitmap ||
|
|
(!entry->bitmap && entry->bytes < min_bytes)) {
|
|
struct rb_node *node = rb_next(&entry->offset_index);
|
|
|
|
if (entry->bitmap && entry->bytes > bytes + empty_size) {
|
|
ret = btrfs_bitmap_cluster(block_group, entry, cluster,
|
|
offset, bytes + empty_size,
|
|
min_bytes);
|
|
if (!ret)
|
|
goto got_it;
|
|
}
|
|
|
|
if (!node) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
}
|
|
|
|
/*
|
|
* We already searched all the extent entries from the passed in offset
|
|
* to the end and didn't find enough space for the cluster, and we also
|
|
* didn't find any bitmaps that met our criteria, just go ahead and exit
|
|
*/
|
|
if (found_bitmap) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
cluster->points_to_bitmap = false;
|
|
window_start = entry->offset;
|
|
window_free = entry->bytes;
|
|
last = entry;
|
|
max_extent = entry->bytes;
|
|
|
|
while (1) {
|
|
/* out window is just right, lets fill it */
|
|
if (window_free >= bytes + empty_size)
|
|
break;
|
|
|
|
node = rb_next(&last->offset_index);
|
|
if (!node) {
|
|
if (found_bitmap)
|
|
goto again;
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
next = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
|
|
/*
|
|
* we found a bitmap, so if this search doesn't result in a
|
|
* cluster, we know to go and search again for the bitmaps and
|
|
* start looking for space there
|
|
*/
|
|
if (next->bitmap) {
|
|
if (!found_bitmap)
|
|
offset = next->offset;
|
|
found_bitmap = true;
|
|
last = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* we haven't filled the empty size and the window is
|
|
* very large. reset and try again
|
|
*/
|
|
if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
|
|
next->offset - window_start > (bytes + empty_size) * 2) {
|
|
entry = next;
|
|
window_start = entry->offset;
|
|
window_free = entry->bytes;
|
|
last = entry;
|
|
max_extent = entry->bytes;
|
|
} else {
|
|
last = next;
|
|
window_free += next->bytes;
|
|
if (entry->bytes > max_extent)
|
|
max_extent = entry->bytes;
|
|
}
|
|
}
|
|
|
|
cluster->window_start = entry->offset;
|
|
|
|
/*
|
|
* now we've found our entries, pull them out of the free space
|
|
* cache and put them into the cluster rbtree
|
|
*
|
|
* The cluster includes an rbtree, but only uses the offset index
|
|
* of each free space cache entry.
|
|
*/
|
|
while (1) {
|
|
node = rb_next(&entry->offset_index);
|
|
if (entry->bitmap && node) {
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
} else if (entry->bitmap && !node) {
|
|
break;
|
|
}
|
|
|
|
rb_erase(&entry->offset_index, &block_group->free_space_offset);
|
|
ret = tree_insert_offset(&cluster->root, entry->offset,
|
|
&entry->offset_index, 0);
|
|
BUG_ON(ret);
|
|
|
|
if (!node || entry == last)
|
|
break;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
}
|
|
|
|
cluster->max_size = max_extent;
|
|
got_it:
|
|
ret = 0;
|
|
atomic_inc(&block_group->count);
|
|
list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
|
|
cluster->block_group = block_group;
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* simple code to zero out a cluster
|
|
*/
|
|
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
|
|
{
|
|
spin_lock_init(&cluster->lock);
|
|
spin_lock_init(&cluster->refill_lock);
|
|
cluster->root = RB_ROOT;
|
|
cluster->max_size = 0;
|
|
cluster->points_to_bitmap = false;
|
|
INIT_LIST_HEAD(&cluster->block_group_list);
|
|
cluster->block_group = NULL;
|
|
}
|
|
|