linux/crypto/drbg.c
Stephan Mueller cde001e4c3 crypto: rng - RNGs must return 0 in success case
Change the RNGs to always return 0 in success case.

This patch ensures that seqiv.c works with RNGs other than krng. seqiv
expects that any return code other than 0 is an error. Without the
patch, rfc4106(gcm(aes)) will not work when using a DRBG or an ANSI
X9.31 RNG.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-03-09 21:06:18 +11:00

1987 lines
57 KiB
C

/*
* DRBG: Deterministic Random Bits Generator
* Based on NIST Recommended DRBG from NIST SP800-90A with the following
* properties:
* * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
* * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
* * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
* * with and without prediction resistance
*
* Copyright Stephan Mueller <smueller@chronox.de>, 2014
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* DRBG Usage
* ==========
* The SP 800-90A DRBG allows the user to specify a personalization string
* for initialization as well as an additional information string for each
* random number request. The following code fragments show how a caller
* uses the kernel crypto API to use the full functionality of the DRBG.
*
* Usage without any additional data
* ---------------------------------
* struct crypto_rng *drng;
* int err;
* char data[DATALEN];
*
* drng = crypto_alloc_rng(drng_name, 0, 0);
* err = crypto_rng_get_bytes(drng, &data, DATALEN);
* crypto_free_rng(drng);
*
*
* Usage with personalization string during initialization
* -------------------------------------------------------
* struct crypto_rng *drng;
* int err;
* char data[DATALEN];
* struct drbg_string pers;
* char personalization[11] = "some-string";
*
* drbg_string_fill(&pers, personalization, strlen(personalization));
* drng = crypto_alloc_rng(drng_name, 0, 0);
* // The reset completely re-initializes the DRBG with the provided
* // personalization string
* err = crypto_rng_reset(drng, &personalization, strlen(personalization));
* err = crypto_rng_get_bytes(drng, &data, DATALEN);
* crypto_free_rng(drng);
*
*
* Usage with additional information string during random number request
* ---------------------------------------------------------------------
* struct crypto_rng *drng;
* int err;
* char data[DATALEN];
* char addtl_string[11] = "some-string";
* string drbg_string addtl;
*
* drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
* drng = crypto_alloc_rng(drng_name, 0, 0);
* // The following call is a wrapper to crypto_rng_get_bytes() and returns
* // the same error codes.
* err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
* crypto_free_rng(drng);
*
*
* Usage with personalization and additional information strings
* -------------------------------------------------------------
* Just mix both scenarios above.
*/
#include <crypto/drbg.h>
/***************************************************************
* Backend cipher definitions available to DRBG
***************************************************************/
/*
* The order of the DRBG definitions here matter: every DRBG is registered
* as stdrng. Each DRBG receives an increasing cra_priority values the later
* they are defined in this array (see drbg_fill_array).
*
* HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
* the SHA256 / AES 256 over other ciphers. Thus, the favored
* DRBGs are the latest entries in this array.
*/
static const struct drbg_core drbg_cores[] = {
#ifdef CONFIG_CRYPTO_DRBG_CTR
{
.flags = DRBG_CTR | DRBG_STRENGTH128,
.statelen = 32, /* 256 bits as defined in 10.2.1 */
.blocklen_bytes = 16,
.cra_name = "ctr_aes128",
.backend_cra_name = "aes",
}, {
.flags = DRBG_CTR | DRBG_STRENGTH192,
.statelen = 40, /* 320 bits as defined in 10.2.1 */
.blocklen_bytes = 16,
.cra_name = "ctr_aes192",
.backend_cra_name = "aes",
}, {
.flags = DRBG_CTR | DRBG_STRENGTH256,
.statelen = 48, /* 384 bits as defined in 10.2.1 */
.blocklen_bytes = 16,
.cra_name = "ctr_aes256",
.backend_cra_name = "aes",
},
#endif /* CONFIG_CRYPTO_DRBG_CTR */
#ifdef CONFIG_CRYPTO_DRBG_HASH
{
.flags = DRBG_HASH | DRBG_STRENGTH128,
.statelen = 55, /* 440 bits */
.blocklen_bytes = 20,
.cra_name = "sha1",
.backend_cra_name = "sha1",
}, {
.flags = DRBG_HASH | DRBG_STRENGTH256,
.statelen = 111, /* 888 bits */
.blocklen_bytes = 48,
.cra_name = "sha384",
.backend_cra_name = "sha384",
}, {
.flags = DRBG_HASH | DRBG_STRENGTH256,
.statelen = 111, /* 888 bits */
.blocklen_bytes = 64,
.cra_name = "sha512",
.backend_cra_name = "sha512",
}, {
.flags = DRBG_HASH | DRBG_STRENGTH256,
.statelen = 55, /* 440 bits */
.blocklen_bytes = 32,
.cra_name = "sha256",
.backend_cra_name = "sha256",
},
#endif /* CONFIG_CRYPTO_DRBG_HASH */
#ifdef CONFIG_CRYPTO_DRBG_HMAC
{
.flags = DRBG_HMAC | DRBG_STRENGTH128,
.statelen = 20, /* block length of cipher */
.blocklen_bytes = 20,
.cra_name = "hmac_sha1",
.backend_cra_name = "hmac(sha1)",
}, {
.flags = DRBG_HMAC | DRBG_STRENGTH256,
.statelen = 48, /* block length of cipher */
.blocklen_bytes = 48,
.cra_name = "hmac_sha384",
.backend_cra_name = "hmac(sha384)",
}, {
.flags = DRBG_HMAC | DRBG_STRENGTH256,
.statelen = 64, /* block length of cipher */
.blocklen_bytes = 64,
.cra_name = "hmac_sha512",
.backend_cra_name = "hmac(sha512)",
}, {
.flags = DRBG_HMAC | DRBG_STRENGTH256,
.statelen = 32, /* block length of cipher */
.blocklen_bytes = 32,
.cra_name = "hmac_sha256",
.backend_cra_name = "hmac(sha256)",
},
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
};
/******************************************************************
* Generic helper functions
******************************************************************/
/*
* Return strength of DRBG according to SP800-90A section 8.4
*
* @flags DRBG flags reference
*
* Return: normalized strength in *bytes* value or 32 as default
* to counter programming errors
*/
static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
{
switch (flags & DRBG_STRENGTH_MASK) {
case DRBG_STRENGTH128:
return 16;
case DRBG_STRENGTH192:
return 24;
case DRBG_STRENGTH256:
return 32;
default:
return 32;
}
}
/*
* FIPS 140-2 continuous self test
* The test is performed on the result of one round of the output
* function. Thus, the function implicitly knows the size of the
* buffer.
*
* @drbg DRBG handle
* @buf output buffer of random data to be checked
*
* return:
* true on success
* false on error
*/
static bool drbg_fips_continuous_test(struct drbg_state *drbg,
const unsigned char *buf)
{
#ifdef CONFIG_CRYPTO_FIPS
int ret = 0;
/* skip test if we test the overall system */
if (drbg->test_data)
return true;
/* only perform test in FIPS mode */
if (0 == fips_enabled)
return true;
if (!drbg->fips_primed) {
/* Priming of FIPS test */
memcpy(drbg->prev, buf, drbg_blocklen(drbg));
drbg->fips_primed = true;
/* return false due to priming, i.e. another round is needed */
return false;
}
ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
if (!ret)
panic("DRBG continuous self test failed\n");
memcpy(drbg->prev, buf, drbg_blocklen(drbg));
/* the test shall pass when the two compared values are not equal */
return ret != 0;
#else
return true;
#endif /* CONFIG_CRYPTO_FIPS */
}
/*
* Convert an integer into a byte representation of this integer.
* The byte representation is big-endian
*
* @val value to be converted
* @buf buffer holding the converted integer -- caller must ensure that
* buffer size is at least 32 bit
*/
#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
{
struct s {
__be32 conv;
};
struct s *conversion = (struct s *) buf;
conversion->conv = cpu_to_be32(val);
}
#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
/******************************************************************
* CTR DRBG callback functions
******************************************************************/
#ifdef CONFIG_CRYPTO_DRBG_CTR
#define CRYPTO_DRBG_CTR_STRING "CTR "
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
unsigned char *outval, const struct drbg_string *in);
static int drbg_init_sym_kernel(struct drbg_state *drbg);
static int drbg_fini_sym_kernel(struct drbg_state *drbg);
/* BCC function for CTR DRBG as defined in 10.4.3 */
static int drbg_ctr_bcc(struct drbg_state *drbg,
unsigned char *out, const unsigned char *key,
struct list_head *in)
{
int ret = 0;
struct drbg_string *curr = NULL;
struct drbg_string data;
short cnt = 0;
drbg_string_fill(&data, out, drbg_blocklen(drbg));
/* 10.4.3 step 2 / 4 */
list_for_each_entry(curr, in, list) {
const unsigned char *pos = curr->buf;
size_t len = curr->len;
/* 10.4.3 step 4.1 */
while (len) {
/* 10.4.3 step 4.2 */
if (drbg_blocklen(drbg) == cnt) {
cnt = 0;
ret = drbg_kcapi_sym(drbg, key, out, &data);
if (ret)
return ret;
}
out[cnt] ^= *pos;
pos++;
cnt++;
len--;
}
}
/* 10.4.3 step 4.2 for last block */
if (cnt)
ret = drbg_kcapi_sym(drbg, key, out, &data);
return ret;
}
/*
* scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
* (and drbg_ctr_bcc, but this function does not need any temporary buffers),
* the scratchpad is used as follows:
* drbg_ctr_update:
* temp
* start: drbg->scratchpad
* length: drbg_statelen(drbg) + drbg_blocklen(drbg)
* note: the cipher writing into this variable works
* blocklen-wise. Now, when the statelen is not a multiple
* of blocklen, the generateion loop below "spills over"
* by at most blocklen. Thus, we need to give sufficient
* memory.
* df_data
* start: drbg->scratchpad +
* drbg_statelen(drbg) + drbg_blocklen(drbg)
* length: drbg_statelen(drbg)
*
* drbg_ctr_df:
* pad
* start: df_data + drbg_statelen(drbg)
* length: drbg_blocklen(drbg)
* iv
* start: pad + drbg_blocklen(drbg)
* length: drbg_blocklen(drbg)
* temp
* start: iv + drbg_blocklen(drbg)
* length: drbg_satelen(drbg) + drbg_blocklen(drbg)
* note: temp is the buffer that the BCC function operates
* on. BCC operates blockwise. drbg_statelen(drbg)
* is sufficient when the DRBG state length is a multiple
* of the block size. For AES192 (and maybe other ciphers)
* this is not correct and the length for temp is
* insufficient (yes, that also means for such ciphers,
* the final output of all BCC rounds are truncated).
* Therefore, add drbg_blocklen(drbg) to cover all
* possibilities.
*/
/* Derivation Function for CTR DRBG as defined in 10.4.2 */
static int drbg_ctr_df(struct drbg_state *drbg,
unsigned char *df_data, size_t bytes_to_return,
struct list_head *seedlist)
{
int ret = -EFAULT;
unsigned char L_N[8];
/* S3 is input */
struct drbg_string S1, S2, S4, cipherin;
LIST_HEAD(bcc_list);
unsigned char *pad = df_data + drbg_statelen(drbg);
unsigned char *iv = pad + drbg_blocklen(drbg);
unsigned char *temp = iv + drbg_blocklen(drbg);
size_t padlen = 0;
unsigned int templen = 0;
/* 10.4.2 step 7 */
unsigned int i = 0;
/* 10.4.2 step 8 */
const unsigned char *K = (unsigned char *)
"\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
unsigned char *X;
size_t generated_len = 0;
size_t inputlen = 0;
struct drbg_string *seed = NULL;
memset(pad, 0, drbg_blocklen(drbg));
memset(iv, 0, drbg_blocklen(drbg));
/* 10.4.2 step 1 is implicit as we work byte-wise */
/* 10.4.2 step 2 */
if ((512/8) < bytes_to_return)
return -EINVAL;
/* 10.4.2 step 2 -- calculate the entire length of all input data */
list_for_each_entry(seed, seedlist, list)
inputlen += seed->len;
drbg_cpu_to_be32(inputlen, &L_N[0]);
/* 10.4.2 step 3 */
drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
/* wrap the padlen appropriately */
if (padlen)
padlen = drbg_blocklen(drbg) - padlen;
/*
* pad / padlen contains the 0x80 byte and the following zero bytes.
* As the calculated padlen value only covers the number of zero
* bytes, this value has to be incremented by one for the 0x80 byte.
*/
padlen++;
pad[0] = 0x80;
/* 10.4.2 step 4 -- first fill the linked list and then order it */
drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
list_add_tail(&S1.list, &bcc_list);
drbg_string_fill(&S2, L_N, sizeof(L_N));
list_add_tail(&S2.list, &bcc_list);
list_splice_tail(seedlist, &bcc_list);
drbg_string_fill(&S4, pad, padlen);
list_add_tail(&S4.list, &bcc_list);
/* 10.4.2 step 9 */
while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
/*
* 10.4.2 step 9.1 - the padding is implicit as the buffer
* holds zeros after allocation -- even the increment of i
* is irrelevant as the increment remains within length of i
*/
drbg_cpu_to_be32(i, iv);
/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
if (ret)
goto out;
/* 10.4.2 step 9.3 */
i++;
templen += drbg_blocklen(drbg);
}
/* 10.4.2 step 11 */
X = temp + (drbg_keylen(drbg));
drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
/* 10.4.2 step 12: overwriting of outval is implemented in next step */
/* 10.4.2 step 13 */
while (generated_len < bytes_to_return) {
short blocklen = 0;
/*
* 10.4.2 step 13.1: the truncation of the key length is
* implicit as the key is only drbg_blocklen in size based on
* the implementation of the cipher function callback
*/
ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
if (ret)
goto out;
blocklen = (drbg_blocklen(drbg) <
(bytes_to_return - generated_len)) ?
drbg_blocklen(drbg) :
(bytes_to_return - generated_len);
/* 10.4.2 step 13.2 and 14 */
memcpy(df_data + generated_len, X, blocklen);
generated_len += blocklen;
}
ret = 0;
out:
memset(iv, 0, drbg_blocklen(drbg));
memset(temp, 0, drbg_statelen(drbg));
memset(pad, 0, drbg_blocklen(drbg));
return ret;
}
/*
* update function of CTR DRBG as defined in 10.2.1.2
*
* The reseed variable has an enhanced meaning compared to the update
* functions of the other DRBGs as follows:
* 0 => initial seed from initialization
* 1 => reseed via drbg_seed
* 2 => first invocation from drbg_ctr_update when addtl is present. In
* this case, the df_data scratchpad is not deleted so that it is
* available for another calls to prevent calling the DF function
* again.
* 3 => second invocation from drbg_ctr_update. When the update function
* was called with addtl, the df_data memory already contains the
* DFed addtl information and we do not need to call DF again.
*/
static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = -EFAULT;
/* 10.2.1.2 step 1 */
unsigned char *temp = drbg->scratchpad;
unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
drbg_blocklen(drbg);
unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
unsigned int len = 0;
struct drbg_string cipherin;
if (3 > reseed)
memset(df_data, 0, drbg_statelen(drbg));
/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
if (seed) {
ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
if (ret)
goto out;
}
drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
/*
* 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
* zeroizes all memory during initialization
*/
while (len < (drbg_statelen(drbg))) {
/* 10.2.1.2 step 2.1 */
crypto_inc(drbg->V, drbg_blocklen(drbg));
/*
* 10.2.1.2 step 2.2 */
ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
if (ret)
goto out;
/* 10.2.1.2 step 2.3 and 3 */
len += drbg_blocklen(drbg);
}
/* 10.2.1.2 step 4 */
temp_p = temp;
df_data_p = df_data;
for (len = 0; len < drbg_statelen(drbg); len++) {
*temp_p ^= *df_data_p;
df_data_p++; temp_p++;
}
/* 10.2.1.2 step 5 */
memcpy(drbg->C, temp, drbg_keylen(drbg));
/* 10.2.1.2 step 6 */
memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
ret = 0;
out:
memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
if (2 != reseed)
memset(df_data, 0, drbg_statelen(drbg));
return ret;
}
/*
* scratchpad use: drbg_ctr_update is called independently from
* drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
*/
/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
static int drbg_ctr_generate(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct list_head *addtl)
{
int len = 0;
int ret = 0;
struct drbg_string data;
/* 10.2.1.5.2 step 2 */
if (addtl && !list_empty(addtl)) {
ret = drbg_ctr_update(drbg, addtl, 2);
if (ret)
return 0;
}
/* 10.2.1.5.2 step 4.1 */
crypto_inc(drbg->V, drbg_blocklen(drbg));
drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
while (len < buflen) {
int outlen = 0;
/* 10.2.1.5.2 step 4.2 */
ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
if (ret) {
len = ret;
goto out;
}
outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
drbg_blocklen(drbg) : (buflen - len);
if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
/* 10.2.1.5.2 step 6 */
crypto_inc(drbg->V, drbg_blocklen(drbg));
continue;
}
/* 10.2.1.5.2 step 4.3 */
memcpy(buf + len, drbg->scratchpad, outlen);
len += outlen;
/* 10.2.1.5.2 step 6 */
if (len < buflen)
crypto_inc(drbg->V, drbg_blocklen(drbg));
}
/* 10.2.1.5.2 step 6 */
ret = drbg_ctr_update(drbg, NULL, 3);
if (ret)
len = ret;
out:
memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
return len;
}
static struct drbg_state_ops drbg_ctr_ops = {
.update = drbg_ctr_update,
.generate = drbg_ctr_generate,
.crypto_init = drbg_init_sym_kernel,
.crypto_fini = drbg_fini_sym_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_CTR */
/******************************************************************
* HMAC DRBG callback functions
******************************************************************/
#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
unsigned char *outval, const struct list_head *in);
static int drbg_init_hash_kernel(struct drbg_state *drbg);
static int drbg_fini_hash_kernel(struct drbg_state *drbg);
#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
#ifdef CONFIG_CRYPTO_DRBG_HMAC
#define CRYPTO_DRBG_HMAC_STRING "HMAC "
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
/* update function of HMAC DRBG as defined in 10.1.2.2 */
static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = -EFAULT;
int i = 0;
struct drbg_string seed1, seed2, vdata;
LIST_HEAD(seedlist);
LIST_HEAD(vdatalist);
if (!reseed)
/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
memset(drbg->V, 1, drbg_statelen(drbg));
drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
list_add_tail(&seed1.list, &seedlist);
/* buffer of seed2 will be filled in for loop below with one byte */
drbg_string_fill(&seed2, NULL, 1);
list_add_tail(&seed2.list, &seedlist);
/* input data of seed is allowed to be NULL at this point */
if (seed)
list_splice_tail(seed, &seedlist);
drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
list_add_tail(&vdata.list, &vdatalist);
for (i = 2; 0 < i; i--) {
/* first round uses 0x0, second 0x1 */
unsigned char prefix = DRBG_PREFIX0;
if (1 == i)
prefix = DRBG_PREFIX1;
/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
seed2.buf = &prefix;
ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
if (ret)
return ret;
/* 10.1.2.2 step 2 and 5 -- HMAC for V */
ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
if (ret)
return ret;
/* 10.1.2.2 step 3 */
if (!seed)
return ret;
}
return 0;
}
/* generate function of HMAC DRBG as defined in 10.1.2.5 */
static int drbg_hmac_generate(struct drbg_state *drbg,
unsigned char *buf,
unsigned int buflen,
struct list_head *addtl)
{
int len = 0;
int ret = 0;
struct drbg_string data;
LIST_HEAD(datalist);
/* 10.1.2.5 step 2 */
if (addtl && !list_empty(addtl)) {
ret = drbg_hmac_update(drbg, addtl, 1);
if (ret)
return ret;
}
drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
list_add_tail(&data.list, &datalist);
while (len < buflen) {
unsigned int outlen = 0;
/* 10.1.2.5 step 4.1 */
ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
if (ret)
return ret;
outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
drbg_blocklen(drbg) : (buflen - len);
if (!drbg_fips_continuous_test(drbg, drbg->V))
continue;
/* 10.1.2.5 step 4.2 */
memcpy(buf + len, drbg->V, outlen);
len += outlen;
}
/* 10.1.2.5 step 6 */
if (addtl && !list_empty(addtl))
ret = drbg_hmac_update(drbg, addtl, 1);
else
ret = drbg_hmac_update(drbg, NULL, 1);
if (ret)
return ret;
return len;
}
static struct drbg_state_ops drbg_hmac_ops = {
.update = drbg_hmac_update,
.generate = drbg_hmac_generate,
.crypto_init = drbg_init_hash_kernel,
.crypto_fini = drbg_fini_hash_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
/******************************************************************
* Hash DRBG callback functions
******************************************************************/
#ifdef CONFIG_CRYPTO_DRBG_HASH
#define CRYPTO_DRBG_HASH_STRING "HASH "
MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
/*
* Increment buffer
*
* @dst buffer to increment
* @add value to add
*/
static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
const unsigned char *add, size_t addlen)
{
/* implied: dstlen > addlen */
unsigned char *dstptr;
const unsigned char *addptr;
unsigned int remainder = 0;
size_t len = addlen;
dstptr = dst + (dstlen-1);
addptr = add + (addlen-1);
while (len) {
remainder += *dstptr + *addptr;
*dstptr = remainder & 0xff;
remainder >>= 8;
len--; dstptr--; addptr--;
}
len = dstlen - addlen;
while (len && remainder > 0) {
remainder = *dstptr + 1;
*dstptr = remainder & 0xff;
remainder >>= 8;
len--; dstptr--;
}
}
/*
* scratchpad usage: as drbg_hash_update and drbg_hash_df are used
* interlinked, the scratchpad is used as follows:
* drbg_hash_update
* start: drbg->scratchpad
* length: drbg_statelen(drbg)
* drbg_hash_df:
* start: drbg->scratchpad + drbg_statelen(drbg)
* length: drbg_blocklen(drbg)
*
* drbg_hash_process_addtl uses the scratchpad, but fully completes
* before either of the functions mentioned before are invoked. Therefore,
* drbg_hash_process_addtl does not need to be specifically considered.
*/
/* Derivation Function for Hash DRBG as defined in 10.4.1 */
static int drbg_hash_df(struct drbg_state *drbg,
unsigned char *outval, size_t outlen,
struct list_head *entropylist)
{
int ret = 0;
size_t len = 0;
unsigned char input[5];
unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
struct drbg_string data;
/* 10.4.1 step 3 */
input[0] = 1;
drbg_cpu_to_be32((outlen * 8), &input[1]);
/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
drbg_string_fill(&data, input, 5);
list_add(&data.list, entropylist);
/* 10.4.1 step 4 */
while (len < outlen) {
short blocklen = 0;
/* 10.4.1 step 4.1 */
ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
if (ret)
goto out;
/* 10.4.1 step 4.2 */
input[0]++;
blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
drbg_blocklen(drbg) : (outlen - len);
memcpy(outval + len, tmp, blocklen);
len += blocklen;
}
out:
memset(tmp, 0, drbg_blocklen(drbg));
return ret;
}
/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
int reseed)
{
int ret = 0;
struct drbg_string data1, data2;
LIST_HEAD(datalist);
LIST_HEAD(datalist2);
unsigned char *V = drbg->scratchpad;
unsigned char prefix = DRBG_PREFIX1;
if (!seed)
return -EINVAL;
if (reseed) {
/* 10.1.1.3 step 1 */
memcpy(V, drbg->V, drbg_statelen(drbg));
drbg_string_fill(&data1, &prefix, 1);
list_add_tail(&data1.list, &datalist);
drbg_string_fill(&data2, V, drbg_statelen(drbg));
list_add_tail(&data2.list, &datalist);
}
list_splice_tail(seed, &datalist);
/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
if (ret)
goto out;
/* 10.1.1.2 / 10.1.1.3 step 4 */
prefix = DRBG_PREFIX0;
drbg_string_fill(&data1, &prefix, 1);
list_add_tail(&data1.list, &datalist2);
drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
list_add_tail(&data2.list, &datalist2);
/* 10.1.1.2 / 10.1.1.3 step 4 */
ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
out:
memset(drbg->scratchpad, 0, drbg_statelen(drbg));
return ret;
}
/* processing of additional information string for Hash DRBG */
static int drbg_hash_process_addtl(struct drbg_state *drbg,
struct list_head *addtl)
{
int ret = 0;
struct drbg_string data1, data2;
LIST_HEAD(datalist);
unsigned char prefix = DRBG_PREFIX2;
/* 10.1.1.4 step 2 */
if (!addtl || list_empty(addtl))
return 0;
/* 10.1.1.4 step 2a */
drbg_string_fill(&data1, &prefix, 1);
drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
list_add_tail(&data1.list, &datalist);
list_add_tail(&data2.list, &datalist);
list_splice_tail(addtl, &datalist);
ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
if (ret)
goto out;
/* 10.1.1.4 step 2b */
drbg_add_buf(drbg->V, drbg_statelen(drbg),
drbg->scratchpad, drbg_blocklen(drbg));
out:
memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
return ret;
}
/* Hashgen defined in 10.1.1.4 */
static int drbg_hash_hashgen(struct drbg_state *drbg,
unsigned char *buf,
unsigned int buflen)
{
int len = 0;
int ret = 0;
unsigned char *src = drbg->scratchpad;
unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
struct drbg_string data;
LIST_HEAD(datalist);
/* 10.1.1.4 step hashgen 2 */
memcpy(src, drbg->V, drbg_statelen(drbg));
drbg_string_fill(&data, src, drbg_statelen(drbg));
list_add_tail(&data.list, &datalist);
while (len < buflen) {
unsigned int outlen = 0;
/* 10.1.1.4 step hashgen 4.1 */
ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
if (ret) {
len = ret;
goto out;
}
outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
drbg_blocklen(drbg) : (buflen - len);
if (!drbg_fips_continuous_test(drbg, dst)) {
crypto_inc(src, drbg_statelen(drbg));
continue;
}
/* 10.1.1.4 step hashgen 4.2 */
memcpy(buf + len, dst, outlen);
len += outlen;
/* 10.1.1.4 hashgen step 4.3 */
if (len < buflen)
crypto_inc(src, drbg_statelen(drbg));
}
out:
memset(drbg->scratchpad, 0,
(drbg_statelen(drbg) + drbg_blocklen(drbg)));
return len;
}
/* generate function for Hash DRBG as defined in 10.1.1.4 */
static int drbg_hash_generate(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct list_head *addtl)
{
int len = 0;
int ret = 0;
union {
unsigned char req[8];
__be64 req_int;
} u;
unsigned char prefix = DRBG_PREFIX3;
struct drbg_string data1, data2;
LIST_HEAD(datalist);
/* 10.1.1.4 step 2 */
ret = drbg_hash_process_addtl(drbg, addtl);
if (ret)
return ret;
/* 10.1.1.4 step 3 */
len = drbg_hash_hashgen(drbg, buf, buflen);
/* this is the value H as documented in 10.1.1.4 */
/* 10.1.1.4 step 4 */
drbg_string_fill(&data1, &prefix, 1);
list_add_tail(&data1.list, &datalist);
drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
list_add_tail(&data2.list, &datalist);
ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
if (ret) {
len = ret;
goto out;
}
/* 10.1.1.4 step 5 */
drbg_add_buf(drbg->V, drbg_statelen(drbg),
drbg->scratchpad, drbg_blocklen(drbg));
drbg_add_buf(drbg->V, drbg_statelen(drbg),
drbg->C, drbg_statelen(drbg));
u.req_int = cpu_to_be64(drbg->reseed_ctr);
drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
out:
memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
return len;
}
/*
* scratchpad usage: as update and generate are used isolated, both
* can use the scratchpad
*/
static struct drbg_state_ops drbg_hash_ops = {
.update = drbg_hash_update,
.generate = drbg_hash_generate,
.crypto_init = drbg_init_hash_kernel,
.crypto_fini = drbg_fini_hash_kernel,
};
#endif /* CONFIG_CRYPTO_DRBG_HASH */
/******************************************************************
* Functions common for DRBG implementations
******************************************************************/
/*
* Seeding or reseeding of the DRBG
*
* @drbg: DRBG state struct
* @pers: personalization / additional information buffer
* @reseed: 0 for initial seed process, 1 for reseeding
*
* return:
* 0 on success
* error value otherwise
*/
static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
bool reseed)
{
int ret = 0;
unsigned char *entropy = NULL;
size_t entropylen = 0;
struct drbg_string data1;
LIST_HEAD(seedlist);
/* 9.1 / 9.2 / 9.3.1 step 3 */
if (pers && pers->len > (drbg_max_addtl(drbg))) {
pr_devel("DRBG: personalization string too long %zu\n",
pers->len);
return -EINVAL;
}
if (drbg->test_data && drbg->test_data->testentropy) {
drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
drbg->test_data->testentropy->len);
pr_devel("DRBG: using test entropy\n");
} else {
/*
* Gather entropy equal to the security strength of the DRBG.
* With a derivation function, a nonce is required in addition
* to the entropy. A nonce must be at least 1/2 of the security
* strength of the DRBG in size. Thus, entropy * nonce is 3/2
* of the strength. The consideration of a nonce is only
* applicable during initial seeding.
*/
entropylen = drbg_sec_strength(drbg->core->flags);
if (!entropylen)
return -EFAULT;
if (!reseed)
entropylen = ((entropylen + 1) / 2) * 3;
pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
entropylen);
entropy = kzalloc(entropylen, GFP_KERNEL);
if (!entropy)
return -ENOMEM;
get_random_bytes(entropy, entropylen);
drbg_string_fill(&data1, entropy, entropylen);
}
list_add_tail(&data1.list, &seedlist);
/*
* concatenation of entropy with personalization str / addtl input)
* the variable pers is directly handed in by the caller, so check its
* contents whether it is appropriate
*/
if (pers && pers->buf && 0 < pers->len) {
list_add_tail(&pers->list, &seedlist);
pr_devel("DRBG: using personalization string\n");
}
if (!reseed) {
memset(drbg->V, 0, drbg_statelen(drbg));
memset(drbg->C, 0, drbg_statelen(drbg));
}
ret = drbg->d_ops->update(drbg, &seedlist, reseed);
if (ret)
goto out;
drbg->seeded = true;
/* 10.1.1.2 / 10.1.1.3 step 5 */
drbg->reseed_ctr = 1;
out:
kzfree(entropy);
return ret;
}
/* Free all substructures in a DRBG state without the DRBG state structure */
static inline void drbg_dealloc_state(struct drbg_state *drbg)
{
if (!drbg)
return;
kzfree(drbg->V);
drbg->V = NULL;
kzfree(drbg->C);
drbg->C = NULL;
kzfree(drbg->scratchpad);
drbg->scratchpad = NULL;
drbg->reseed_ctr = 0;
#ifdef CONFIG_CRYPTO_FIPS
kzfree(drbg->prev);
drbg->prev = NULL;
drbg->fips_primed = false;
#endif
}
/*
* Allocate all sub-structures for a DRBG state.
* The DRBG state structure must already be allocated.
*/
static inline int drbg_alloc_state(struct drbg_state *drbg)
{
int ret = -ENOMEM;
unsigned int sb_size = 0;
drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
if (!drbg->V)
goto err;
drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
if (!drbg->C)
goto err;
#ifdef CONFIG_CRYPTO_FIPS
drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
if (!drbg->prev)
goto err;
drbg->fips_primed = false;
#endif
/* scratchpad is only generated for CTR and Hash */
if (drbg->core->flags & DRBG_HMAC)
sb_size = 0;
else if (drbg->core->flags & DRBG_CTR)
sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
drbg_statelen(drbg) + /* df_data */
drbg_blocklen(drbg) + /* pad */
drbg_blocklen(drbg) + /* iv */
drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
else
sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
if (0 < sb_size) {
drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
if (!drbg->scratchpad)
goto err;
}
spin_lock_init(&drbg->drbg_lock);
return 0;
err:
drbg_dealloc_state(drbg);
return ret;
}
/*
* Strategy to avoid holding long term locks: generate a shadow copy of DRBG
* and perform all operations on this shadow copy. After finishing, restore
* the updated state of the shadow copy into original drbg state. This way,
* only the read and write operations of the original drbg state must be
* locked
*/
static inline void drbg_copy_drbg(struct drbg_state *src,
struct drbg_state *dst)
{
if (!src || !dst)
return;
memcpy(dst->V, src->V, drbg_statelen(src));
memcpy(dst->C, src->C, drbg_statelen(src));
dst->reseed_ctr = src->reseed_ctr;
dst->seeded = src->seeded;
dst->pr = src->pr;
#ifdef CONFIG_CRYPTO_FIPS
dst->fips_primed = src->fips_primed;
memcpy(dst->prev, src->prev, drbg_blocklen(src));
#endif
/*
* Not copied:
* scratchpad is initialized drbg_alloc_state;
* priv_data is initialized with call to crypto_init;
* d_ops and core are set outside, as these parameters are const;
* test_data is set outside to prevent it being copied back.
*/
}
static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
{
int ret = -ENOMEM;
struct drbg_state *tmp = NULL;
tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
/* read-only data as they are defined as const, no lock needed */
tmp->core = drbg->core;
tmp->d_ops = drbg->d_ops;
ret = drbg_alloc_state(tmp);
if (ret)
goto err;
spin_lock_bh(&drbg->drbg_lock);
drbg_copy_drbg(drbg, tmp);
/* only make a link to the test buffer, as we only read that data */
tmp->test_data = drbg->test_data;
spin_unlock_bh(&drbg->drbg_lock);
*shadow = tmp;
return 0;
err:
kzfree(tmp);
return ret;
}
static void drbg_restore_shadow(struct drbg_state *drbg,
struct drbg_state **shadow)
{
struct drbg_state *tmp = *shadow;
spin_lock_bh(&drbg->drbg_lock);
drbg_copy_drbg(tmp, drbg);
spin_unlock_bh(&drbg->drbg_lock);
drbg_dealloc_state(tmp);
kzfree(tmp);
*shadow = NULL;
}
/*************************************************************************
* DRBG interface functions
*************************************************************************/
/*
* DRBG generate function as required by SP800-90A - this function
* generates random numbers
*
* @drbg DRBG state handle
* @buf Buffer where to store the random numbers -- the buffer must already
* be pre-allocated by caller
* @buflen Length of output buffer - this value defines the number of random
* bytes pulled from DRBG
* @addtl Additional input that is mixed into state, may be NULL -- note
* the entropy is pulled by the DRBG internally unconditionally
* as defined in SP800-90A. The additional input is mixed into
* the state in addition to the pulled entropy.
*
* return: 0 when all bytes are generated; < 0 in case of an error
*/
static int drbg_generate(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct drbg_string *addtl)
{
int len = 0;
struct drbg_state *shadow = NULL;
LIST_HEAD(addtllist);
struct drbg_string timestamp;
union {
cycles_t cycles;
unsigned char char_cycles[sizeof(cycles_t)];
} now;
if (0 == buflen || !buf) {
pr_devel("DRBG: no output buffer provided\n");
return -EINVAL;
}
if (addtl && NULL == addtl->buf && 0 < addtl->len) {
pr_devel("DRBG: wrong format of additional information\n");
return -EINVAL;
}
len = drbg_make_shadow(drbg, &shadow);
if (len) {
pr_devel("DRBG: shadow copy cannot be generated\n");
return len;
}
/* 9.3.1 step 2 */
len = -EINVAL;
if (buflen > (drbg_max_request_bytes(shadow))) {
pr_devel("DRBG: requested random numbers too large %u\n",
buflen);
goto err;
}
/* 9.3.1 step 3 is implicit with the chosen DRBG */
/* 9.3.1 step 4 */
if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
pr_devel("DRBG: additional information string too long %zu\n",
addtl->len);
goto err;
}
/* 9.3.1 step 5 is implicit with the chosen DRBG */
/*
* 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
* here. The spec is a bit convoluted here, we make it simpler.
*/
if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
shadow->seeded = false;
/* allocate cipher handle */
len = shadow->d_ops->crypto_init(shadow);
if (len)
goto err;
if (shadow->pr || !shadow->seeded) {
pr_devel("DRBG: reseeding before generation (prediction "
"resistance: %s, state %s)\n",
drbg->pr ? "true" : "false",
drbg->seeded ? "seeded" : "unseeded");
/* 9.3.1 steps 7.1 through 7.3 */
len = drbg_seed(shadow, addtl, true);
if (len)
goto err;
/* 9.3.1 step 7.4 */
addtl = NULL;
}
/*
* Mix the time stamp into the DRBG state if the DRBG is not in
* test mode. If there are two callers invoking the DRBG at the same
* time, i.e. before the first caller merges its shadow state back,
* both callers would obtain the same random number stream without
* changing the state here.
*/
if (!drbg->test_data) {
now.cycles = random_get_entropy();
drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
list_add_tail(&timestamp.list, &addtllist);
}
if (addtl && 0 < addtl->len)
list_add_tail(&addtl->list, &addtllist);
/* 9.3.1 step 8 and 10 */
len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
shadow->reseed_ctr++;
if (0 >= len)
goto err;
/*
* Section 11.3.3 requires to re-perform self tests after some
* generated random numbers. The chosen value after which self
* test is performed is arbitrary, but it should be reasonable.
* However, we do not perform the self tests because of the following
* reasons: it is mathematically impossible that the initial self tests
* were successfully and the following are not. If the initial would
* pass and the following would not, the kernel integrity is violated.
* In this case, the entire kernel operation is questionable and it
* is unlikely that the integrity violation only affects the
* correct operation of the DRBG.
*
* Albeit the following code is commented out, it is provided in
* case somebody has a need to implement the test of 11.3.3.
*/
#if 0
if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
int err = 0;
pr_devel("DRBG: start to perform self test\n");
if (drbg->core->flags & DRBG_HMAC)
err = alg_test("drbg_pr_hmac_sha256",
"drbg_pr_hmac_sha256", 0, 0);
else if (drbg->core->flags & DRBG_CTR)
err = alg_test("drbg_pr_ctr_aes128",
"drbg_pr_ctr_aes128", 0, 0);
else
err = alg_test("drbg_pr_sha256",
"drbg_pr_sha256", 0, 0);
if (err) {
pr_err("DRBG: periodical self test failed\n");
/*
* uninstantiate implies that from now on, only errors
* are returned when reusing this DRBG cipher handle
*/
drbg_uninstantiate(drbg);
drbg_dealloc_state(shadow);
kzfree(shadow);
return 0;
} else {
pr_devel("DRBG: self test successful\n");
}
}
#endif
/*
* All operations were successful, return 0 as mandated by
* the kernel crypto API interface.
*/
len = 0;
err:
shadow->d_ops->crypto_fini(shadow);
drbg_restore_shadow(drbg, &shadow);
return len;
}
/*
* Wrapper around drbg_generate which can pull arbitrary long strings
* from the DRBG without hitting the maximum request limitation.
*
* Parameters: see drbg_generate
* Return codes: see drbg_generate -- if one drbg_generate request fails,
* the entire drbg_generate_long request fails
*/
static int drbg_generate_long(struct drbg_state *drbg,
unsigned char *buf, unsigned int buflen,
struct drbg_string *addtl)
{
int len = 0;
unsigned int slice = 0;
do {
int tmplen = 0;
unsigned int chunk = 0;
slice = ((buflen - len) / drbg_max_request_bytes(drbg));
chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
if (0 >= tmplen)
return tmplen;
len += tmplen;
} while (slice > 0 && (len < buflen));
return len;
}
/*
* DRBG instantiation function as required by SP800-90A - this function
* sets up the DRBG handle, performs the initial seeding and all sanity
* checks required by SP800-90A
*
* @drbg memory of state -- if NULL, new memory is allocated
* @pers Personalization string that is mixed into state, may be NULL -- note
* the entropy is pulled by the DRBG internally unconditionally
* as defined in SP800-90A. The additional input is mixed into
* the state in addition to the pulled entropy.
* @coreref reference to core
* @pr prediction resistance enabled
*
* return
* 0 on success
* error value otherwise
*/
static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
int coreref, bool pr)
{
int ret = -ENOMEM;
pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
"%s\n", coreref, pr ? "enabled" : "disabled");
drbg->core = &drbg_cores[coreref];
drbg->pr = pr;
drbg->seeded = false;
switch (drbg->core->flags & DRBG_TYPE_MASK) {
#ifdef CONFIG_CRYPTO_DRBG_HMAC
case DRBG_HMAC:
drbg->d_ops = &drbg_hmac_ops;
break;
#endif /* CONFIG_CRYPTO_DRBG_HMAC */
#ifdef CONFIG_CRYPTO_DRBG_HASH
case DRBG_HASH:
drbg->d_ops = &drbg_hash_ops;
break;
#endif /* CONFIG_CRYPTO_DRBG_HASH */
#ifdef CONFIG_CRYPTO_DRBG_CTR
case DRBG_CTR:
drbg->d_ops = &drbg_ctr_ops;
break;
#endif /* CONFIG_CRYPTO_DRBG_CTR */
default:
return -EOPNOTSUPP;
}
/* 9.1 step 1 is implicit with the selected DRBG type */
/*
* 9.1 step 2 is implicit as caller can select prediction resistance
* and the flag is copied into drbg->flags --
* all DRBG types support prediction resistance
*/
/* 9.1 step 4 is implicit in drbg_sec_strength */
ret = drbg_alloc_state(drbg);
if (ret)
return ret;
ret = -EFAULT;
if (drbg->d_ops->crypto_init(drbg))
goto err;
ret = drbg_seed(drbg, pers, false);
drbg->d_ops->crypto_fini(drbg);
if (ret)
goto err;
return 0;
err:
drbg_dealloc_state(drbg);
return ret;
}
/*
* DRBG uninstantiate function as required by SP800-90A - this function
* frees all buffers and the DRBG handle
*
* @drbg DRBG state handle
*
* return
* 0 on success
*/
static int drbg_uninstantiate(struct drbg_state *drbg)
{
spin_lock_bh(&drbg->drbg_lock);
drbg_dealloc_state(drbg);
/* no scrubbing of test_data -- this shall survive an uninstantiate */
spin_unlock_bh(&drbg->drbg_lock);
return 0;
}
/*
* Helper function for setting the test data in the DRBG
*
* @drbg DRBG state handle
* @test_data test data to sets
*/
static inline void drbg_set_testdata(struct drbg_state *drbg,
struct drbg_test_data *test_data)
{
if (!test_data || !test_data->testentropy)
return;
spin_lock_bh(&drbg->drbg_lock);
drbg->test_data = test_data;
spin_unlock_bh(&drbg->drbg_lock);
}
/***************************************************************
* Kernel crypto API cipher invocations requested by DRBG
***************************************************************/
#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
struct sdesc {
struct shash_desc shash;
char ctx[];
};
static int drbg_init_hash_kernel(struct drbg_state *drbg)
{
struct sdesc *sdesc;
struct crypto_shash *tfm;
tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
if (IS_ERR(tfm)) {
pr_info("DRBG: could not allocate digest TFM handle\n");
return PTR_ERR(tfm);
}
BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
GFP_KERNEL);
if (!sdesc) {
crypto_free_shash(tfm);
return -ENOMEM;
}
sdesc->shash.tfm = tfm;
sdesc->shash.flags = 0;
drbg->priv_data = sdesc;
return 0;
}
static int drbg_fini_hash_kernel(struct drbg_state *drbg)
{
struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
if (sdesc) {
crypto_free_shash(sdesc->shash.tfm);
kzfree(sdesc);
}
drbg->priv_data = NULL;
return 0;
}
static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
unsigned char *outval, const struct list_head *in)
{
struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
struct drbg_string *input = NULL;
if (key)
crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
crypto_shash_init(&sdesc->shash);
list_for_each_entry(input, in, list)
crypto_shash_update(&sdesc->shash, input->buf, input->len);
return crypto_shash_final(&sdesc->shash, outval);
}
#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
#ifdef CONFIG_CRYPTO_DRBG_CTR
static int drbg_init_sym_kernel(struct drbg_state *drbg)
{
int ret = 0;
struct crypto_cipher *tfm;
tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
if (IS_ERR(tfm)) {
pr_info("DRBG: could not allocate cipher TFM handle\n");
return PTR_ERR(tfm);
}
BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
drbg->priv_data = tfm;
return ret;
}
static int drbg_fini_sym_kernel(struct drbg_state *drbg)
{
struct crypto_cipher *tfm =
(struct crypto_cipher *)drbg->priv_data;
if (tfm)
crypto_free_cipher(tfm);
drbg->priv_data = NULL;
return 0;
}
static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
unsigned char *outval, const struct drbg_string *in)
{
struct crypto_cipher *tfm =
(struct crypto_cipher *)drbg->priv_data;
crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
/* there is only component in *in */
BUG_ON(in->len < drbg_blocklen(drbg));
crypto_cipher_encrypt_one(tfm, outval, in->buf);
return 0;
}
#endif /* CONFIG_CRYPTO_DRBG_CTR */
/***************************************************************
* Kernel crypto API interface to register DRBG
***************************************************************/
/*
* Look up the DRBG flags by given kernel crypto API cra_name
* The code uses the drbg_cores definition to do this
*
* @cra_name kernel crypto API cra_name
* @coreref reference to integer which is filled with the pointer to
* the applicable core
* @pr reference for setting prediction resistance
*
* return: flags
*/
static inline void drbg_convert_tfm_core(const char *cra_driver_name,
int *coreref, bool *pr)
{
int i = 0;
size_t start = 0;
int len = 0;
*pr = true;
/* disassemble the names */
if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
start = 10;
*pr = false;
} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
start = 8;
} else {
return;
}
/* remove the first part */
len = strlen(cra_driver_name) - start;
for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
len)) {
*coreref = i;
return;
}
}
}
static int drbg_kcapi_init(struct crypto_tfm *tfm)
{
struct drbg_state *drbg = crypto_tfm_ctx(tfm);
bool pr = false;
int coreref = 0;
drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
/*
* when personalization string is needed, the caller must call reset
* and provide the personalization string as seed information
*/
return drbg_instantiate(drbg, NULL, coreref, pr);
}
static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
{
drbg_uninstantiate(crypto_tfm_ctx(tfm));
}
/*
* Generate random numbers invoked by the kernel crypto API:
* The API of the kernel crypto API is extended as follows:
*
* If dlen is larger than zero, rdata is interpreted as the output buffer
* where random data is to be stored.
*
* If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
* which holds the additional information string that is used for the
* DRBG generation process. The output buffer that is to be used to store
* data is also pointed to by struct drbg_gen.
*/
static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
unsigned int dlen)
{
struct drbg_state *drbg = crypto_rng_ctx(tfm);
if (0 < dlen) {
return drbg_generate_long(drbg, rdata, dlen, NULL);
} else {
struct drbg_gen *data = (struct drbg_gen *)rdata;
struct drbg_string addtl;
/* catch NULL pointer */
if (!data)
return 0;
drbg_set_testdata(drbg, data->test_data);
/* linked list variable is now local to allow modification */
drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
return drbg_generate_long(drbg, data->outbuf, data->outlen,
&addtl);
}
}
/*
* Reset the DRBG invoked by the kernel crypto API
* The reset implies a full re-initialization of the DRBG. Similar to the
* generate function of drbg_kcapi_random, this function extends the
* kernel crypto API interface with struct drbg_gen
*/
static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
{
struct drbg_state *drbg = crypto_rng_ctx(tfm);
struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
bool pr = false;
struct drbg_string seed_string;
int coreref = 0;
drbg_uninstantiate(drbg);
drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
&pr);
if (0 < slen) {
drbg_string_fill(&seed_string, seed, slen);
return drbg_instantiate(drbg, &seed_string, coreref, pr);
} else {
struct drbg_gen *data = (struct drbg_gen *)seed;
/* allow invocation of API call with NULL, 0 */
if (!data)
return drbg_instantiate(drbg, NULL, coreref, pr);
drbg_set_testdata(drbg, data->test_data);
/* linked list variable is now local to allow modification */
drbg_string_fill(&seed_string, data->addtl->buf,
data->addtl->len);
return drbg_instantiate(drbg, &seed_string, coreref, pr);
}
}
/***************************************************************
* Kernel module: code to load the module
***************************************************************/
/*
* Tests as defined in 11.3.2 in addition to the cipher tests: testing
* of the error handling.
*
* Note: testing of failing seed source as defined in 11.3.2 is not applicable
* as seed source of get_random_bytes does not fail.
*
* Note 2: There is no sensible way of testing the reseed counter
* enforcement, so skip it.
*/
static inline int __init drbg_healthcheck_sanity(void)
{
#ifdef CONFIG_CRYPTO_FIPS
int len = 0;
#define OUTBUFLEN 16
unsigned char buf[OUTBUFLEN];
struct drbg_state *drbg = NULL;
int ret = -EFAULT;
int rc = -EFAULT;
bool pr = false;
int coreref = 0;
struct drbg_string addtl;
size_t max_addtllen, max_request_bytes;
/* only perform test in FIPS mode */
if (!fips_enabled)
return 0;
#ifdef CONFIG_CRYPTO_DRBG_CTR
drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
#elif defined CONFIG_CRYPTO_DRBG_HASH
drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
#else
drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
#endif
drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
if (!drbg)
return -ENOMEM;
/*
* if the following tests fail, it is likely that there is a buffer
* overflow as buf is much smaller than the requested or provided
* string lengths -- in case the error handling does not succeed
* we may get an OOPS. And we want to get an OOPS as this is a
* grave bug.
*/
/* get a valid instance of DRBG for following tests */
ret = drbg_instantiate(drbg, NULL, coreref, pr);
if (ret) {
rc = ret;
goto outbuf;
}
max_addtllen = drbg_max_addtl(drbg);
max_request_bytes = drbg_max_request_bytes(drbg);
drbg_string_fill(&addtl, buf, max_addtllen + 1);
/* overflow addtllen with additonal info string */
len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
BUG_ON(0 < len);
/* overflow max_bits */
len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
BUG_ON(0 < len);
drbg_uninstantiate(drbg);
/* overflow max addtllen with personalization string */
ret = drbg_instantiate(drbg, &addtl, coreref, pr);
BUG_ON(0 == ret);
/* all tests passed */
rc = 0;
pr_devel("DRBG: Sanity tests for failure code paths successfully "
"completed\n");
drbg_uninstantiate(drbg);
outbuf:
kzfree(drbg);
return rc;
#else /* CONFIG_CRYPTO_FIPS */
return 0;
#endif /* CONFIG_CRYPTO_FIPS */
}
static struct crypto_alg drbg_algs[22];
/*
* Fill the array drbg_algs used to register the different DRBGs
* with the kernel crypto API. To fill the array, the information
* from drbg_cores[] is used.
*/
static inline void __init drbg_fill_array(struct crypto_alg *alg,
const struct drbg_core *core, int pr)
{
int pos = 0;
static int priority = 100;
memset(alg, 0, sizeof(struct crypto_alg));
memcpy(alg->cra_name, "stdrng", 6);
if (pr) {
memcpy(alg->cra_driver_name, "drbg_pr_", 8);
pos = 8;
} else {
memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
pos = 10;
}
memcpy(alg->cra_driver_name + pos, core->cra_name,
strlen(core->cra_name));
alg->cra_priority = priority;
priority++;
/*
* If FIPS mode enabled, the selected DRBG shall have the
* highest cra_priority over other stdrng instances to ensure
* it is selected.
*/
if (fips_enabled)
alg->cra_priority += 200;
alg->cra_flags = CRYPTO_ALG_TYPE_RNG;
alg->cra_ctxsize = sizeof(struct drbg_state);
alg->cra_type = &crypto_rng_type;
alg->cra_module = THIS_MODULE;
alg->cra_init = drbg_kcapi_init;
alg->cra_exit = drbg_kcapi_cleanup;
alg->cra_u.rng.rng_make_random = drbg_kcapi_random;
alg->cra_u.rng.rng_reset = drbg_kcapi_reset;
alg->cra_u.rng.seedsize = 0;
}
static int __init drbg_init(void)
{
unsigned int i = 0; /* pointer to drbg_algs */
unsigned int j = 0; /* pointer to drbg_cores */
int ret = -EFAULT;
ret = drbg_healthcheck_sanity();
if (ret)
return ret;
if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
pr_info("DRBG: Cannot register all DRBG types"
"(slots needed: %zu, slots available: %zu)\n",
ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
return ret;
}
/*
* each DRBG definition can be used with PR and without PR, thus
* we instantiate each DRBG in drbg_cores[] twice.
*
* As the order of placing them into the drbg_algs array matters
* (the later DRBGs receive a higher cra_priority) we register the
* prediction resistance DRBGs first as the should not be too
* interesting.
*/
for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
}
static void __exit drbg_exit(void)
{
crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
}
module_init(drbg_init);
module_exit(drbg_exit);
#ifndef CRYPTO_DRBG_HASH_STRING
#define CRYPTO_DRBG_HASH_STRING ""
#endif
#ifndef CRYPTO_DRBG_HMAC_STRING
#define CRYPTO_DRBG_HMAC_STRING ""
#endif
#ifndef CRYPTO_DRBG_CTR_STRING
#define CRYPTO_DRBG_CTR_STRING ""
#endif
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
"using following cores: "
CRYPTO_DRBG_HASH_STRING
CRYPTO_DRBG_HMAC_STRING
CRYPTO_DRBG_CTR_STRING);