linux/fs/namei.c
Miklos Szeredi 9409e22acd vfs: rename: check backing inode being equal
If a file is renamed to a hardlink of itself POSIX specifies that rename(2)
should do nothing and return success.

This condition is checked in vfs_rename().  However it won't detect hard
links on overlayfs where these are given separate inodes on the overlayfs
layer.

Overlayfs itself detects this condition and returns success without doing
anything, but then vfs_rename() will proceed as if this was a successful
rename (detach_mounts(), d_move()).

The correct thing to do is to detect this condition before even calling
into overlayfs.  This patch does this by calling vfs_select_inode() to get
the underlying inodes.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: <stable@vger.kernel.org> # v4.2+
2016-05-10 23:55:43 -04:00

4643 lines
115 KiB
C

/*
* linux/fs/namei.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* Some corrections by tytso.
*/
/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
* lookup logic.
*/
/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/fsnotify.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/ima.h>
#include <linux/syscalls.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/device_cgroup.h>
#include <linux/fs_struct.h>
#include <linux/posix_acl.h>
#include <linux/hash.h>
#include <asm/uaccess.h>
#include "internal.h"
#include "mount.h"
/* [Feb-1997 T. Schoebel-Theuer]
* Fundamental changes in the pathname lookup mechanisms (namei)
* were necessary because of omirr. The reason is that omirr needs
* to know the _real_ pathname, not the user-supplied one, in case
* of symlinks (and also when transname replacements occur).
*
* The new code replaces the old recursive symlink resolution with
* an iterative one (in case of non-nested symlink chains). It does
* this with calls to <fs>_follow_link().
* As a side effect, dir_namei(), _namei() and follow_link() are now
* replaced with a single function lookup_dentry() that can handle all
* the special cases of the former code.
*
* With the new dcache, the pathname is stored at each inode, at least as
* long as the refcount of the inode is positive. As a side effect, the
* size of the dcache depends on the inode cache and thus is dynamic.
*
* [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
* resolution to correspond with current state of the code.
*
* Note that the symlink resolution is not *completely* iterative.
* There is still a significant amount of tail- and mid- recursion in
* the algorithm. Also, note that <fs>_readlink() is not used in
* lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
* may return different results than <fs>_follow_link(). Many virtual
* filesystems (including /proc) exhibit this behavior.
*/
/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
* New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
* and the name already exists in form of a symlink, try to create the new
* name indicated by the symlink. The old code always complained that the
* name already exists, due to not following the symlink even if its target
* is nonexistent. The new semantics affects also mknod() and link() when
* the name is a symlink pointing to a non-existent name.
*
* I don't know which semantics is the right one, since I have no access
* to standards. But I found by trial that HP-UX 9.0 has the full "new"
* semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
* "old" one. Personally, I think the new semantics is much more logical.
* Note that "ln old new" where "new" is a symlink pointing to a non-existing
* file does succeed in both HP-UX and SunOs, but not in Solaris
* and in the old Linux semantics.
*/
/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
* semantics. See the comments in "open_namei" and "do_link" below.
*
* [10-Sep-98 Alan Modra] Another symlink change.
*/
/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
* inside the path - always follow.
* in the last component in creation/removal/renaming - never follow.
* if LOOKUP_FOLLOW passed - follow.
* if the pathname has trailing slashes - follow.
* otherwise - don't follow.
* (applied in that order).
*
* [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
* restored for 2.4. This is the last surviving part of old 4.2BSD bug.
* During the 2.4 we need to fix the userland stuff depending on it -
* hopefully we will be able to get rid of that wart in 2.5. So far only
* XEmacs seems to be relying on it...
*/
/*
* [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
* implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
* any extra contention...
*/
/* In order to reduce some races, while at the same time doing additional
* checking and hopefully speeding things up, we copy filenames to the
* kernel data space before using them..
*
* POSIX.1 2.4: an empty pathname is invalid (ENOENT).
* PATH_MAX includes the nul terminator --RR.
*/
#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
struct filename *
getname_flags(const char __user *filename, int flags, int *empty)
{
struct filename *result;
char *kname;
int len;
result = audit_reusename(filename);
if (result)
return result;
result = __getname();
if (unlikely(!result))
return ERR_PTR(-ENOMEM);
/*
* First, try to embed the struct filename inside the names_cache
* allocation
*/
kname = (char *)result->iname;
result->name = kname;
len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
if (unlikely(len < 0)) {
__putname(result);
return ERR_PTR(len);
}
/*
* Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
* separate struct filename so we can dedicate the entire
* names_cache allocation for the pathname, and re-do the copy from
* userland.
*/
if (unlikely(len == EMBEDDED_NAME_MAX)) {
const size_t size = offsetof(struct filename, iname[1]);
kname = (char *)result;
/*
* size is chosen that way we to guarantee that
* result->iname[0] is within the same object and that
* kname can't be equal to result->iname, no matter what.
*/
result = kzalloc(size, GFP_KERNEL);
if (unlikely(!result)) {
__putname(kname);
return ERR_PTR(-ENOMEM);
}
result->name = kname;
len = strncpy_from_user(kname, filename, PATH_MAX);
if (unlikely(len < 0)) {
__putname(kname);
kfree(result);
return ERR_PTR(len);
}
if (unlikely(len == PATH_MAX)) {
__putname(kname);
kfree(result);
return ERR_PTR(-ENAMETOOLONG);
}
}
result->refcnt = 1;
/* The empty path is special. */
if (unlikely(!len)) {
if (empty)
*empty = 1;
if (!(flags & LOOKUP_EMPTY)) {
putname(result);
return ERR_PTR(-ENOENT);
}
}
result->uptr = filename;
result->aname = NULL;
audit_getname(result);
return result;
}
struct filename *
getname(const char __user * filename)
{
return getname_flags(filename, 0, NULL);
}
struct filename *
getname_kernel(const char * filename)
{
struct filename *result;
int len = strlen(filename) + 1;
result = __getname();
if (unlikely(!result))
return ERR_PTR(-ENOMEM);
if (len <= EMBEDDED_NAME_MAX) {
result->name = (char *)result->iname;
} else if (len <= PATH_MAX) {
struct filename *tmp;
tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
if (unlikely(!tmp)) {
__putname(result);
return ERR_PTR(-ENOMEM);
}
tmp->name = (char *)result;
result = tmp;
} else {
__putname(result);
return ERR_PTR(-ENAMETOOLONG);
}
memcpy((char *)result->name, filename, len);
result->uptr = NULL;
result->aname = NULL;
result->refcnt = 1;
audit_getname(result);
return result;
}
void putname(struct filename *name)
{
BUG_ON(name->refcnt <= 0);
if (--name->refcnt > 0)
return;
if (name->name != name->iname) {
__putname(name->name);
kfree(name);
} else
__putname(name);
}
static int check_acl(struct inode *inode, int mask)
{
#ifdef CONFIG_FS_POSIX_ACL
struct posix_acl *acl;
if (mask & MAY_NOT_BLOCK) {
acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
if (!acl)
return -EAGAIN;
/* no ->get_acl() calls in RCU mode... */
if (acl == ACL_NOT_CACHED)
return -ECHILD;
return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
}
acl = get_acl(inode, ACL_TYPE_ACCESS);
if (IS_ERR(acl))
return PTR_ERR(acl);
if (acl) {
int error = posix_acl_permission(inode, acl, mask);
posix_acl_release(acl);
return error;
}
#endif
return -EAGAIN;
}
/*
* This does the basic permission checking
*/
static int acl_permission_check(struct inode *inode, int mask)
{
unsigned int mode = inode->i_mode;
if (likely(uid_eq(current_fsuid(), inode->i_uid)))
mode >>= 6;
else {
if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
int error = check_acl(inode, mask);
if (error != -EAGAIN)
return error;
}
if (in_group_p(inode->i_gid))
mode >>= 3;
}
/*
* If the DACs are ok we don't need any capability check.
*/
if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
return 0;
return -EACCES;
}
/**
* generic_permission - check for access rights on a Posix-like filesystem
* @inode: inode to check access rights for
* @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
*
* Used to check for read/write/execute permissions on a file.
* We use "fsuid" for this, letting us set arbitrary permissions
* for filesystem access without changing the "normal" uids which
* are used for other things.
*
* generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
* request cannot be satisfied (eg. requires blocking or too much complexity).
* It would then be called again in ref-walk mode.
*/
int generic_permission(struct inode *inode, int mask)
{
int ret;
/*
* Do the basic permission checks.
*/
ret = acl_permission_check(inode, mask);
if (ret != -EACCES)
return ret;
if (S_ISDIR(inode->i_mode)) {
/* DACs are overridable for directories */
if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
return 0;
if (!(mask & MAY_WRITE))
if (capable_wrt_inode_uidgid(inode,
CAP_DAC_READ_SEARCH))
return 0;
return -EACCES;
}
/*
* Read/write DACs are always overridable.
* Executable DACs are overridable when there is
* at least one exec bit set.
*/
if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
return 0;
/*
* Searching includes executable on directories, else just read.
*/
mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
if (mask == MAY_READ)
if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
return 0;
return -EACCES;
}
EXPORT_SYMBOL(generic_permission);
/*
* We _really_ want to just do "generic_permission()" without
* even looking at the inode->i_op values. So we keep a cache
* flag in inode->i_opflags, that says "this has not special
* permission function, use the fast case".
*/
static inline int do_inode_permission(struct inode *inode, int mask)
{
if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
if (likely(inode->i_op->permission))
return inode->i_op->permission(inode, mask);
/* This gets set once for the inode lifetime */
spin_lock(&inode->i_lock);
inode->i_opflags |= IOP_FASTPERM;
spin_unlock(&inode->i_lock);
}
return generic_permission(inode, mask);
}
/**
* __inode_permission - Check for access rights to a given inode
* @inode: Inode to check permission on
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
*
* Check for read/write/execute permissions on an inode.
*
* When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
*
* This does not check for a read-only file system. You probably want
* inode_permission().
*/
int __inode_permission(struct inode *inode, int mask)
{
int retval;
if (unlikely(mask & MAY_WRITE)) {
/*
* Nobody gets write access to an immutable file.
*/
if (IS_IMMUTABLE(inode))
return -EACCES;
}
retval = do_inode_permission(inode, mask);
if (retval)
return retval;
retval = devcgroup_inode_permission(inode, mask);
if (retval)
return retval;
return security_inode_permission(inode, mask);
}
EXPORT_SYMBOL(__inode_permission);
/**
* sb_permission - Check superblock-level permissions
* @sb: Superblock of inode to check permission on
* @inode: Inode to check permission on
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
*
* Separate out file-system wide checks from inode-specific permission checks.
*/
static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
{
if (unlikely(mask & MAY_WRITE)) {
umode_t mode = inode->i_mode;
/* Nobody gets write access to a read-only fs. */
if ((sb->s_flags & MS_RDONLY) &&
(S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
return -EROFS;
}
return 0;
}
/**
* inode_permission - Check for access rights to a given inode
* @inode: Inode to check permission on
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
*
* Check for read/write/execute permissions on an inode. We use fs[ug]id for
* this, letting us set arbitrary permissions for filesystem access without
* changing the "normal" UIDs which are used for other things.
*
* When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
*/
int inode_permission(struct inode *inode, int mask)
{
int retval;
retval = sb_permission(inode->i_sb, inode, mask);
if (retval)
return retval;
return __inode_permission(inode, mask);
}
EXPORT_SYMBOL(inode_permission);
/**
* path_get - get a reference to a path
* @path: path to get the reference to
*
* Given a path increment the reference count to the dentry and the vfsmount.
*/
void path_get(const struct path *path)
{
mntget(path->mnt);
dget(path->dentry);
}
EXPORT_SYMBOL(path_get);
/**
* path_put - put a reference to a path
* @path: path to put the reference to
*
* Given a path decrement the reference count to the dentry and the vfsmount.
*/
void path_put(const struct path *path)
{
dput(path->dentry);
mntput(path->mnt);
}
EXPORT_SYMBOL(path_put);
#define EMBEDDED_LEVELS 2
struct nameidata {
struct path path;
struct qstr last;
struct path root;
struct inode *inode; /* path.dentry.d_inode */
unsigned int flags;
unsigned seq, m_seq;
int last_type;
unsigned depth;
int total_link_count;
struct saved {
struct path link;
struct delayed_call done;
const char *name;
unsigned seq;
} *stack, internal[EMBEDDED_LEVELS];
struct filename *name;
struct nameidata *saved;
struct inode *link_inode;
unsigned root_seq;
int dfd;
};
static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
{
struct nameidata *old = current->nameidata;
p->stack = p->internal;
p->dfd = dfd;
p->name = name;
p->total_link_count = old ? old->total_link_count : 0;
p->saved = old;
current->nameidata = p;
}
static void restore_nameidata(void)
{
struct nameidata *now = current->nameidata, *old = now->saved;
current->nameidata = old;
if (old)
old->total_link_count = now->total_link_count;
if (now->stack != now->internal)
kfree(now->stack);
}
static int __nd_alloc_stack(struct nameidata *nd)
{
struct saved *p;
if (nd->flags & LOOKUP_RCU) {
p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
GFP_ATOMIC);
if (unlikely(!p))
return -ECHILD;
} else {
p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
GFP_KERNEL);
if (unlikely(!p))
return -ENOMEM;
}
memcpy(p, nd->internal, sizeof(nd->internal));
nd->stack = p;
return 0;
}
/**
* path_connected - Verify that a path->dentry is below path->mnt.mnt_root
* @path: nameidate to verify
*
* Rename can sometimes move a file or directory outside of a bind
* mount, path_connected allows those cases to be detected.
*/
static bool path_connected(const struct path *path)
{
struct vfsmount *mnt = path->mnt;
/* Only bind mounts can have disconnected paths */
if (mnt->mnt_root == mnt->mnt_sb->s_root)
return true;
return is_subdir(path->dentry, mnt->mnt_root);
}
static inline int nd_alloc_stack(struct nameidata *nd)
{
if (likely(nd->depth != EMBEDDED_LEVELS))
return 0;
if (likely(nd->stack != nd->internal))
return 0;
return __nd_alloc_stack(nd);
}
static void drop_links(struct nameidata *nd)
{
int i = nd->depth;
while (i--) {
struct saved *last = nd->stack + i;
do_delayed_call(&last->done);
clear_delayed_call(&last->done);
}
}
static void terminate_walk(struct nameidata *nd)
{
drop_links(nd);
if (!(nd->flags & LOOKUP_RCU)) {
int i;
path_put(&nd->path);
for (i = 0; i < nd->depth; i++)
path_put(&nd->stack[i].link);
if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
path_put(&nd->root);
nd->root.mnt = NULL;
}
} else {
nd->flags &= ~LOOKUP_RCU;
if (!(nd->flags & LOOKUP_ROOT))
nd->root.mnt = NULL;
rcu_read_unlock();
}
nd->depth = 0;
}
/* path_put is needed afterwards regardless of success or failure */
static bool legitimize_path(struct nameidata *nd,
struct path *path, unsigned seq)
{
int res = __legitimize_mnt(path->mnt, nd->m_seq);
if (unlikely(res)) {
if (res > 0)
path->mnt = NULL;
path->dentry = NULL;
return false;
}
if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
path->dentry = NULL;
return false;
}
return !read_seqcount_retry(&path->dentry->d_seq, seq);
}
static bool legitimize_links(struct nameidata *nd)
{
int i;
for (i = 0; i < nd->depth; i++) {
struct saved *last = nd->stack + i;
if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
drop_links(nd);
nd->depth = i + 1;
return false;
}
}
return true;
}
/*
* Path walking has 2 modes, rcu-walk and ref-walk (see
* Documentation/filesystems/path-lookup.txt). In situations when we can't
* continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
* normal reference counts on dentries and vfsmounts to transition to ref-walk
* mode. Refcounts are grabbed at the last known good point before rcu-walk
* got stuck, so ref-walk may continue from there. If this is not successful
* (eg. a seqcount has changed), then failure is returned and it's up to caller
* to restart the path walk from the beginning in ref-walk mode.
*/
/**
* unlazy_walk - try to switch to ref-walk mode.
* @nd: nameidata pathwalk data
* @dentry: child of nd->path.dentry or NULL
* @seq: seq number to check dentry against
* Returns: 0 on success, -ECHILD on failure
*
* unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
* for ref-walk mode. @dentry must be a path found by a do_lookup call on
* @nd or NULL. Must be called from rcu-walk context.
* Nothing should touch nameidata between unlazy_walk() failure and
* terminate_walk().
*/
static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
{
struct dentry *parent = nd->path.dentry;
BUG_ON(!(nd->flags & LOOKUP_RCU));
nd->flags &= ~LOOKUP_RCU;
if (unlikely(!legitimize_links(nd)))
goto out2;
if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
goto out2;
if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
goto out1;
/*
* For a negative lookup, the lookup sequence point is the parents
* sequence point, and it only needs to revalidate the parent dentry.
*
* For a positive lookup, we need to move both the parent and the
* dentry from the RCU domain to be properly refcounted. And the
* sequence number in the dentry validates *both* dentry counters,
* since we checked the sequence number of the parent after we got
* the child sequence number. So we know the parent must still
* be valid if the child sequence number is still valid.
*/
if (!dentry) {
if (read_seqcount_retry(&parent->d_seq, nd->seq))
goto out;
BUG_ON(nd->inode != parent->d_inode);
} else {
if (!lockref_get_not_dead(&dentry->d_lockref))
goto out;
if (read_seqcount_retry(&dentry->d_seq, seq))
goto drop_dentry;
}
/*
* Sequence counts matched. Now make sure that the root is
* still valid and get it if required.
*/
if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
rcu_read_unlock();
dput(dentry);
return -ECHILD;
}
}
rcu_read_unlock();
return 0;
drop_dentry:
rcu_read_unlock();
dput(dentry);
goto drop_root_mnt;
out2:
nd->path.mnt = NULL;
out1:
nd->path.dentry = NULL;
out:
rcu_read_unlock();
drop_root_mnt:
if (!(nd->flags & LOOKUP_ROOT))
nd->root.mnt = NULL;
return -ECHILD;
}
static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
{
if (unlikely(!legitimize_path(nd, link, seq))) {
drop_links(nd);
nd->depth = 0;
nd->flags &= ~LOOKUP_RCU;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
if (!(nd->flags & LOOKUP_ROOT))
nd->root.mnt = NULL;
rcu_read_unlock();
} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
return 0;
}
path_put(link);
return -ECHILD;
}
static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
{
return dentry->d_op->d_revalidate(dentry, flags);
}
/**
* complete_walk - successful completion of path walk
* @nd: pointer nameidata
*
* If we had been in RCU mode, drop out of it and legitimize nd->path.
* Revalidate the final result, unless we'd already done that during
* the path walk or the filesystem doesn't ask for it. Return 0 on
* success, -error on failure. In case of failure caller does not
* need to drop nd->path.
*/
static int complete_walk(struct nameidata *nd)
{
struct dentry *dentry = nd->path.dentry;
int status;
if (nd->flags & LOOKUP_RCU) {
if (!(nd->flags & LOOKUP_ROOT))
nd->root.mnt = NULL;
if (unlikely(unlazy_walk(nd, NULL, 0)))
return -ECHILD;
}
if (likely(!(nd->flags & LOOKUP_JUMPED)))
return 0;
if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
return 0;
status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
if (status > 0)
return 0;
if (!status)
status = -ESTALE;
return status;
}
static void set_root(struct nameidata *nd)
{
struct fs_struct *fs = current->fs;
if (nd->flags & LOOKUP_RCU) {
unsigned seq;
do {
seq = read_seqcount_begin(&fs->seq);
nd->root = fs->root;
nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
} while (read_seqcount_retry(&fs->seq, seq));
} else {
get_fs_root(fs, &nd->root);
}
}
static void path_put_conditional(struct path *path, struct nameidata *nd)
{
dput(path->dentry);
if (path->mnt != nd->path.mnt)
mntput(path->mnt);
}
static inline void path_to_nameidata(const struct path *path,
struct nameidata *nd)
{
if (!(nd->flags & LOOKUP_RCU)) {
dput(nd->path.dentry);
if (nd->path.mnt != path->mnt)
mntput(nd->path.mnt);
}
nd->path.mnt = path->mnt;
nd->path.dentry = path->dentry;
}
static int nd_jump_root(struct nameidata *nd)
{
if (nd->flags & LOOKUP_RCU) {
struct dentry *d;
nd->path = nd->root;
d = nd->path.dentry;
nd->inode = d->d_inode;
nd->seq = nd->root_seq;
if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
return -ECHILD;
} else {
path_put(&nd->path);
nd->path = nd->root;
path_get(&nd->path);
nd->inode = nd->path.dentry->d_inode;
}
nd->flags |= LOOKUP_JUMPED;
return 0;
}
/*
* Helper to directly jump to a known parsed path from ->get_link,
* caller must have taken a reference to path beforehand.
*/
void nd_jump_link(struct path *path)
{
struct nameidata *nd = current->nameidata;
path_put(&nd->path);
nd->path = *path;
nd->inode = nd->path.dentry->d_inode;
nd->flags |= LOOKUP_JUMPED;
}
static inline void put_link(struct nameidata *nd)
{
struct saved *last = nd->stack + --nd->depth;
do_delayed_call(&last->done);
if (!(nd->flags & LOOKUP_RCU))
path_put(&last->link);
}
int sysctl_protected_symlinks __read_mostly = 0;
int sysctl_protected_hardlinks __read_mostly = 0;
/**
* may_follow_link - Check symlink following for unsafe situations
* @nd: nameidata pathwalk data
*
* In the case of the sysctl_protected_symlinks sysctl being enabled,
* CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
* in a sticky world-writable directory. This is to protect privileged
* processes from failing races against path names that may change out
* from under them by way of other users creating malicious symlinks.
* It will permit symlinks to be followed only when outside a sticky
* world-writable directory, or when the uid of the symlink and follower
* match, or when the directory owner matches the symlink's owner.
*
* Returns 0 if following the symlink is allowed, -ve on error.
*/
static inline int may_follow_link(struct nameidata *nd)
{
const struct inode *inode;
const struct inode *parent;
if (!sysctl_protected_symlinks)
return 0;
/* Allowed if owner and follower match. */
inode = nd->link_inode;
if (uid_eq(current_cred()->fsuid, inode->i_uid))
return 0;
/* Allowed if parent directory not sticky and world-writable. */
parent = nd->inode;
if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
return 0;
/* Allowed if parent directory and link owner match. */
if (uid_eq(parent->i_uid, inode->i_uid))
return 0;
if (nd->flags & LOOKUP_RCU)
return -ECHILD;
audit_log_link_denied("follow_link", &nd->stack[0].link);
return -EACCES;
}
/**
* safe_hardlink_source - Check for safe hardlink conditions
* @inode: the source inode to hardlink from
*
* Return false if at least one of the following conditions:
* - inode is not a regular file
* - inode is setuid
* - inode is setgid and group-exec
* - access failure for read and write
*
* Otherwise returns true.
*/
static bool safe_hardlink_source(struct inode *inode)
{
umode_t mode = inode->i_mode;
/* Special files should not get pinned to the filesystem. */
if (!S_ISREG(mode))
return false;
/* Setuid files should not get pinned to the filesystem. */
if (mode & S_ISUID)
return false;
/* Executable setgid files should not get pinned to the filesystem. */
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
return false;
/* Hardlinking to unreadable or unwritable sources is dangerous. */
if (inode_permission(inode, MAY_READ | MAY_WRITE))
return false;
return true;
}
/**
* may_linkat - Check permissions for creating a hardlink
* @link: the source to hardlink from
*
* Block hardlink when all of:
* - sysctl_protected_hardlinks enabled
* - fsuid does not match inode
* - hardlink source is unsafe (see safe_hardlink_source() above)
* - not CAP_FOWNER in a namespace with the inode owner uid mapped
*
* Returns 0 if successful, -ve on error.
*/
static int may_linkat(struct path *link)
{
struct inode *inode;
if (!sysctl_protected_hardlinks)
return 0;
inode = link->dentry->d_inode;
/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
* otherwise, it must be a safe source.
*/
if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
return 0;
audit_log_link_denied("linkat", link);
return -EPERM;
}
static __always_inline
const char *get_link(struct nameidata *nd)
{
struct saved *last = nd->stack + nd->depth - 1;
struct dentry *dentry = last->link.dentry;
struct inode *inode = nd->link_inode;
int error;
const char *res;
if (!(nd->flags & LOOKUP_RCU)) {
touch_atime(&last->link);
cond_resched();
} else if (atime_needs_update(&last->link, inode)) {
if (unlikely(unlazy_walk(nd, NULL, 0)))
return ERR_PTR(-ECHILD);
touch_atime(&last->link);
}
error = security_inode_follow_link(dentry, inode,
nd->flags & LOOKUP_RCU);
if (unlikely(error))
return ERR_PTR(error);
nd->last_type = LAST_BIND;
res = inode->i_link;
if (!res) {
const char * (*get)(struct dentry *, struct inode *,
struct delayed_call *);
get = inode->i_op->get_link;
if (nd->flags & LOOKUP_RCU) {
res = get(NULL, inode, &last->done);
if (res == ERR_PTR(-ECHILD)) {
if (unlikely(unlazy_walk(nd, NULL, 0)))
return ERR_PTR(-ECHILD);
res = get(dentry, inode, &last->done);
}
} else {
res = get(dentry, inode, &last->done);
}
if (IS_ERR_OR_NULL(res))
return res;
}
if (*res == '/') {
if (!nd->root.mnt)
set_root(nd);
if (unlikely(nd_jump_root(nd)))
return ERR_PTR(-ECHILD);
while (unlikely(*++res == '/'))
;
}
if (!*res)
res = NULL;
return res;
}
/*
* follow_up - Find the mountpoint of path's vfsmount
*
* Given a path, find the mountpoint of its source file system.
* Replace @path with the path of the mountpoint in the parent mount.
* Up is towards /.
*
* Return 1 if we went up a level and 0 if we were already at the
* root.
*/
int follow_up(struct path *path)
{
struct mount *mnt = real_mount(path->mnt);
struct mount *parent;
struct dentry *mountpoint;
read_seqlock_excl(&mount_lock);
parent = mnt->mnt_parent;
if (parent == mnt) {
read_sequnlock_excl(&mount_lock);
return 0;
}
mntget(&parent->mnt);
mountpoint = dget(mnt->mnt_mountpoint);
read_sequnlock_excl(&mount_lock);
dput(path->dentry);
path->dentry = mountpoint;
mntput(path->mnt);
path->mnt = &parent->mnt;
return 1;
}
EXPORT_SYMBOL(follow_up);
/*
* Perform an automount
* - return -EISDIR to tell follow_managed() to stop and return the path we
* were called with.
*/
static int follow_automount(struct path *path, struct nameidata *nd,
bool *need_mntput)
{
struct vfsmount *mnt;
int err;
if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
return -EREMOTE;
/* We don't want to mount if someone's just doing a stat -
* unless they're stat'ing a directory and appended a '/' to
* the name.
*
* We do, however, want to mount if someone wants to open or
* create a file of any type under the mountpoint, wants to
* traverse through the mountpoint or wants to open the
* mounted directory. Also, autofs may mark negative dentries
* as being automount points. These will need the attentions
* of the daemon to instantiate them before they can be used.
*/
if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
path->dentry->d_inode)
return -EISDIR;
nd->total_link_count++;
if (nd->total_link_count >= 40)
return -ELOOP;
mnt = path->dentry->d_op->d_automount(path);
if (IS_ERR(mnt)) {
/*
* The filesystem is allowed to return -EISDIR here to indicate
* it doesn't want to automount. For instance, autofs would do
* this so that its userspace daemon can mount on this dentry.
*
* However, we can only permit this if it's a terminal point in
* the path being looked up; if it wasn't then the remainder of
* the path is inaccessible and we should say so.
*/
if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
return -EREMOTE;
return PTR_ERR(mnt);
}
if (!mnt) /* mount collision */
return 0;
if (!*need_mntput) {
/* lock_mount() may release path->mnt on error */
mntget(path->mnt);
*need_mntput = true;
}
err = finish_automount(mnt, path);
switch (err) {
case -EBUSY:
/* Someone else made a mount here whilst we were busy */
return 0;
case 0:
path_put(path);
path->mnt = mnt;
path->dentry = dget(mnt->mnt_root);
return 0;
default:
return err;
}
}
/*
* Handle a dentry that is managed in some way.
* - Flagged for transit management (autofs)
* - Flagged as mountpoint
* - Flagged as automount point
*
* This may only be called in refwalk mode.
*
* Serialization is taken care of in namespace.c
*/
static int follow_managed(struct path *path, struct nameidata *nd)
{
struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
unsigned managed;
bool need_mntput = false;
int ret = 0;
/* Given that we're not holding a lock here, we retain the value in a
* local variable for each dentry as we look at it so that we don't see
* the components of that value change under us */
while (managed = ACCESS_ONCE(path->dentry->d_flags),
managed &= DCACHE_MANAGED_DENTRY,
unlikely(managed != 0)) {
/* Allow the filesystem to manage the transit without i_mutex
* being held. */
if (managed & DCACHE_MANAGE_TRANSIT) {
BUG_ON(!path->dentry->d_op);
BUG_ON(!path->dentry->d_op->d_manage);
ret = path->dentry->d_op->d_manage(path->dentry, false);
if (ret < 0)
break;
}
/* Transit to a mounted filesystem. */
if (managed & DCACHE_MOUNTED) {
struct vfsmount *mounted = lookup_mnt(path);
if (mounted) {
dput(path->dentry);
if (need_mntput)
mntput(path->mnt);
path->mnt = mounted;
path->dentry = dget(mounted->mnt_root);
need_mntput = true;
continue;
}
/* Something is mounted on this dentry in another
* namespace and/or whatever was mounted there in this
* namespace got unmounted before lookup_mnt() could
* get it */
}
/* Handle an automount point */
if (managed & DCACHE_NEED_AUTOMOUNT) {
ret = follow_automount(path, nd, &need_mntput);
if (ret < 0)
break;
continue;
}
/* We didn't change the current path point */
break;
}
if (need_mntput && path->mnt == mnt)
mntput(path->mnt);
if (ret == -EISDIR || !ret)
ret = 1;
if (need_mntput)
nd->flags |= LOOKUP_JUMPED;
if (unlikely(ret < 0))
path_put_conditional(path, nd);
return ret;
}
int follow_down_one(struct path *path)
{
struct vfsmount *mounted;
mounted = lookup_mnt(path);
if (mounted) {
dput(path->dentry);
mntput(path->mnt);
path->mnt = mounted;
path->dentry = dget(mounted->mnt_root);
return 1;
}
return 0;
}
EXPORT_SYMBOL(follow_down_one);
static inline int managed_dentry_rcu(struct dentry *dentry)
{
return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
dentry->d_op->d_manage(dentry, true) : 0;
}
/*
* Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
* we meet a managed dentry that would need blocking.
*/
static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
struct inode **inode, unsigned *seqp)
{
for (;;) {
struct mount *mounted;
/*
* Don't forget we might have a non-mountpoint managed dentry
* that wants to block transit.
*/
switch (managed_dentry_rcu(path->dentry)) {
case -ECHILD:
default:
return false;
case -EISDIR:
return true;
case 0:
break;
}
if (!d_mountpoint(path->dentry))
return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
mounted = __lookup_mnt(path->mnt, path->dentry);
if (!mounted)
break;
path->mnt = &mounted->mnt;
path->dentry = mounted->mnt.mnt_root;
nd->flags |= LOOKUP_JUMPED;
*seqp = read_seqcount_begin(&path->dentry->d_seq);
/*
* Update the inode too. We don't need to re-check the
* dentry sequence number here after this d_inode read,
* because a mount-point is always pinned.
*/
*inode = path->dentry->d_inode;
}
return !read_seqretry(&mount_lock, nd->m_seq) &&
!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
}
static int follow_dotdot_rcu(struct nameidata *nd)
{
struct inode *inode = nd->inode;
while (1) {
if (path_equal(&nd->path, &nd->root))
break;
if (nd->path.dentry != nd->path.mnt->mnt_root) {
struct dentry *old = nd->path.dentry;
struct dentry *parent = old->d_parent;
unsigned seq;
inode = parent->d_inode;
seq = read_seqcount_begin(&parent->d_seq);
if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
return -ECHILD;
nd->path.dentry = parent;
nd->seq = seq;
if (unlikely(!path_connected(&nd->path)))
return -ENOENT;
break;
} else {
struct mount *mnt = real_mount(nd->path.mnt);
struct mount *mparent = mnt->mnt_parent;
struct dentry *mountpoint = mnt->mnt_mountpoint;
struct inode *inode2 = mountpoint->d_inode;
unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
return -ECHILD;
if (&mparent->mnt == nd->path.mnt)
break;
/* we know that mountpoint was pinned */
nd->path.dentry = mountpoint;
nd->path.mnt = &mparent->mnt;
inode = inode2;
nd->seq = seq;
}
}
while (unlikely(d_mountpoint(nd->path.dentry))) {
struct mount *mounted;
mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
return -ECHILD;
if (!mounted)
break;
nd->path.mnt = &mounted->mnt;
nd->path.dentry = mounted->mnt.mnt_root;
inode = nd->path.dentry->d_inode;
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
}
nd->inode = inode;
return 0;
}
/*
* Follow down to the covering mount currently visible to userspace. At each
* point, the filesystem owning that dentry may be queried as to whether the
* caller is permitted to proceed or not.
*/
int follow_down(struct path *path)
{
unsigned managed;
int ret;
while (managed = ACCESS_ONCE(path->dentry->d_flags),
unlikely(managed & DCACHE_MANAGED_DENTRY)) {
/* Allow the filesystem to manage the transit without i_mutex
* being held.
*
* We indicate to the filesystem if someone is trying to mount
* something here. This gives autofs the chance to deny anyone
* other than its daemon the right to mount on its
* superstructure.
*
* The filesystem may sleep at this point.
*/
if (managed & DCACHE_MANAGE_TRANSIT) {
BUG_ON(!path->dentry->d_op);
BUG_ON(!path->dentry->d_op->d_manage);
ret = path->dentry->d_op->d_manage(
path->dentry, false);
if (ret < 0)
return ret == -EISDIR ? 0 : ret;
}
/* Transit to a mounted filesystem. */
if (managed & DCACHE_MOUNTED) {
struct vfsmount *mounted = lookup_mnt(path);
if (!mounted)
break;
dput(path->dentry);
mntput(path->mnt);
path->mnt = mounted;
path->dentry = dget(mounted->mnt_root);
continue;
}
/* Don't handle automount points here */
break;
}
return 0;
}
EXPORT_SYMBOL(follow_down);
/*
* Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
*/
static void follow_mount(struct path *path)
{
while (d_mountpoint(path->dentry)) {
struct vfsmount *mounted = lookup_mnt(path);
if (!mounted)
break;
dput(path->dentry);
mntput(path->mnt);
path->mnt = mounted;
path->dentry = dget(mounted->mnt_root);
}
}
static int follow_dotdot(struct nameidata *nd)
{
while(1) {
struct dentry *old = nd->path.dentry;
if (nd->path.dentry == nd->root.dentry &&
nd->path.mnt == nd->root.mnt) {
break;
}
if (nd->path.dentry != nd->path.mnt->mnt_root) {
/* rare case of legitimate dget_parent()... */
nd->path.dentry = dget_parent(nd->path.dentry);
dput(old);
if (unlikely(!path_connected(&nd->path)))
return -ENOENT;
break;
}
if (!follow_up(&nd->path))
break;
}
follow_mount(&nd->path);
nd->inode = nd->path.dentry->d_inode;
return 0;
}
/*
* This looks up the name in dcache, possibly revalidates the old dentry and
* allocates a new one if not found or not valid. In the need_lookup argument
* returns whether i_op->lookup is necessary.
*/
static struct dentry *lookup_dcache(const struct qstr *name,
struct dentry *dir,
unsigned int flags)
{
struct dentry *dentry;
int error;
dentry = d_lookup(dir, name);
if (dentry) {
if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
error = d_revalidate(dentry, flags);
if (unlikely(error <= 0)) {
if (!error)
d_invalidate(dentry);
dput(dentry);
return ERR_PTR(error);
}
}
}
return dentry;
}
/*
* Call i_op->lookup on the dentry. The dentry must be negative and
* unhashed.
*
* dir->d_inode->i_mutex must be held
*/
static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
struct dentry *old;
/* Don't create child dentry for a dead directory. */
if (unlikely(IS_DEADDIR(dir))) {
dput(dentry);
return ERR_PTR(-ENOENT);
}
old = dir->i_op->lookup(dir, dentry, flags);
if (unlikely(old)) {
dput(dentry);
dentry = old;
}
return dentry;
}
static struct dentry *__lookup_hash(const struct qstr *name,
struct dentry *base, unsigned int flags)
{
struct dentry *dentry = lookup_dcache(name, base, flags);
if (dentry)
return dentry;
dentry = d_alloc(base, name);
if (unlikely(!dentry))
return ERR_PTR(-ENOMEM);
return lookup_real(base->d_inode, dentry, flags);
}
static int lookup_fast(struct nameidata *nd,
struct path *path, struct inode **inode,
unsigned *seqp)
{
struct vfsmount *mnt = nd->path.mnt;
struct dentry *dentry, *parent = nd->path.dentry;
int status = 1;
int err;
/*
* Rename seqlock is not required here because in the off chance
* of a false negative due to a concurrent rename, the caller is
* going to fall back to non-racy lookup.
*/
if (nd->flags & LOOKUP_RCU) {
unsigned seq;
bool negative;
dentry = __d_lookup_rcu(parent, &nd->last, &seq);
if (unlikely(!dentry)) {
if (unlazy_walk(nd, NULL, 0))
return -ECHILD;
return 0;
}
/*
* This sequence count validates that the inode matches
* the dentry name information from lookup.
*/
*inode = d_backing_inode(dentry);
negative = d_is_negative(dentry);
if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
return -ECHILD;
/*
* This sequence count validates that the parent had no
* changes while we did the lookup of the dentry above.
*
* The memory barrier in read_seqcount_begin of child is
* enough, we can use __read_seqcount_retry here.
*/
if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
return -ECHILD;
*seqp = seq;
if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
status = d_revalidate(dentry, nd->flags);
if (unlikely(status <= 0)) {
if (unlazy_walk(nd, dentry, seq))
return -ECHILD;
if (status == -ECHILD)
status = d_revalidate(dentry, nd->flags);
} else {
/*
* Note: do negative dentry check after revalidation in
* case that drops it.
*/
if (unlikely(negative))
return -ENOENT;
path->mnt = mnt;
path->dentry = dentry;
if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
return 1;
if (unlazy_walk(nd, dentry, seq))
return -ECHILD;
}
} else {
dentry = __d_lookup(parent, &nd->last);
if (unlikely(!dentry))
return 0;
if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
status = d_revalidate(dentry, nd->flags);
}
if (unlikely(status <= 0)) {
if (!status)
d_invalidate(dentry);
dput(dentry);
return status;
}
if (unlikely(d_is_negative(dentry))) {
dput(dentry);
return -ENOENT;
}
path->mnt = mnt;
path->dentry = dentry;
err = follow_managed(path, nd);
if (likely(err > 0))
*inode = d_backing_inode(path->dentry);
return err;
}
/* Fast lookup failed, do it the slow way */
static struct dentry *lookup_slow(const struct qstr *name,
struct dentry *dir,
unsigned int flags)
{
struct dentry *dentry;
inode_lock(dir->d_inode);
dentry = d_lookup(dir, name);
if (unlikely(dentry)) {
if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
!(flags & LOOKUP_NO_REVAL)) {
int error = d_revalidate(dentry, flags);
if (unlikely(error <= 0)) {
if (!error)
d_invalidate(dentry);
dput(dentry);
dentry = ERR_PTR(error);
}
}
if (dentry) {
inode_unlock(dir->d_inode);
return dentry;
}
}
dentry = d_alloc(dir, name);
if (unlikely(!dentry)) {
inode_unlock(dir->d_inode);
return ERR_PTR(-ENOMEM);
}
dentry = lookup_real(dir->d_inode, dentry, flags);
inode_unlock(dir->d_inode);
return dentry;
}
static inline int may_lookup(struct nameidata *nd)
{
if (nd->flags & LOOKUP_RCU) {
int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
if (err != -ECHILD)
return err;
if (unlazy_walk(nd, NULL, 0))
return -ECHILD;
}
return inode_permission(nd->inode, MAY_EXEC);
}
static inline int handle_dots(struct nameidata *nd, int type)
{
if (type == LAST_DOTDOT) {
if (!nd->root.mnt)
set_root(nd);
if (nd->flags & LOOKUP_RCU) {
return follow_dotdot_rcu(nd);
} else
return follow_dotdot(nd);
}
return 0;
}
static int pick_link(struct nameidata *nd, struct path *link,
struct inode *inode, unsigned seq)
{
int error;
struct saved *last;
if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
path_to_nameidata(link, nd);
return -ELOOP;
}
if (!(nd->flags & LOOKUP_RCU)) {
if (link->mnt == nd->path.mnt)
mntget(link->mnt);
}
error = nd_alloc_stack(nd);
if (unlikely(error)) {
if (error == -ECHILD) {
if (unlikely(unlazy_link(nd, link, seq)))
return -ECHILD;
error = nd_alloc_stack(nd);
}
if (error) {
path_put(link);
return error;
}
}
last = nd->stack + nd->depth++;
last->link = *link;
clear_delayed_call(&last->done);
nd->link_inode = inode;
last->seq = seq;
return 1;
}
/*
* Do we need to follow links? We _really_ want to be able
* to do this check without having to look at inode->i_op,
* so we keep a cache of "no, this doesn't need follow_link"
* for the common case.
*/
static inline int should_follow_link(struct nameidata *nd, struct path *link,
int follow,
struct inode *inode, unsigned seq)
{
if (likely(!d_is_symlink(link->dentry)))
return 0;
if (!follow)
return 0;
/* make sure that d_is_symlink above matches inode */
if (nd->flags & LOOKUP_RCU) {
if (read_seqcount_retry(&link->dentry->d_seq, seq))
return -ECHILD;
}
return pick_link(nd, link, inode, seq);
}
enum {WALK_GET = 1, WALK_PUT = 2};
static int walk_component(struct nameidata *nd, int flags)
{
struct path path;
struct inode *inode;
unsigned seq;
int err;
/*
* "." and ".." are special - ".." especially so because it has
* to be able to know about the current root directory and
* parent relationships.
*/
if (unlikely(nd->last_type != LAST_NORM)) {
err = handle_dots(nd, nd->last_type);
if (flags & WALK_PUT)
put_link(nd);
return err;
}
err = lookup_fast(nd, &path, &inode, &seq);
if (unlikely(err <= 0)) {
if (err < 0)
return err;
path.dentry = lookup_slow(&nd->last, nd->path.dentry,
nd->flags);
if (IS_ERR(path.dentry))
return PTR_ERR(path.dentry);
path.mnt = nd->path.mnt;
err = follow_managed(&path, nd);
if (unlikely(err < 0))
return err;
if (unlikely(d_is_negative(path.dentry))) {
path_to_nameidata(&path, nd);
return -ENOENT;
}
seq = 0; /* we are already out of RCU mode */
inode = d_backing_inode(path.dentry);
}
if (flags & WALK_PUT)
put_link(nd);
err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
if (unlikely(err))
return err;
path_to_nameidata(&path, nd);
nd->inode = inode;
nd->seq = seq;
return 0;
}
/*
* We can do the critical dentry name comparison and hashing
* operations one word at a time, but we are limited to:
*
* - Architectures with fast unaligned word accesses. We could
* do a "get_unaligned()" if this helps and is sufficiently
* fast.
*
* - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
* do not trap on the (extremely unlikely) case of a page
* crossing operation.
*
* - Furthermore, we need an efficient 64-bit compile for the
* 64-bit case in order to generate the "number of bytes in
* the final mask". Again, that could be replaced with a
* efficient population count instruction or similar.
*/
#ifdef CONFIG_DCACHE_WORD_ACCESS
#include <asm/word-at-a-time.h>
#ifdef CONFIG_64BIT
static inline unsigned int fold_hash(unsigned long hash)
{
return hash_64(hash, 32);
}
#else /* 32-bit case */
#define fold_hash(x) (x)
#endif
unsigned int full_name_hash(const unsigned char *name, unsigned int len)
{
unsigned long a, mask;
unsigned long hash = 0;
for (;;) {
a = load_unaligned_zeropad(name);
if (len < sizeof(unsigned long))
break;
hash += a;
hash *= 9;
name += sizeof(unsigned long);
len -= sizeof(unsigned long);
if (!len)
goto done;
}
mask = bytemask_from_count(len);
hash += mask & a;
done:
return fold_hash(hash);
}
EXPORT_SYMBOL(full_name_hash);
/*
* Calculate the length and hash of the path component, and
* return the "hash_len" as the result.
*/
static inline u64 hash_name(const char *name)
{
unsigned long a, b, adata, bdata, mask, hash, len;
const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
hash = a = 0;
len = -sizeof(unsigned long);
do {
hash = (hash + a) * 9;
len += sizeof(unsigned long);
a = load_unaligned_zeropad(name+len);
b = a ^ REPEAT_BYTE('/');
} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
adata = prep_zero_mask(a, adata, &constants);
bdata = prep_zero_mask(b, bdata, &constants);
mask = create_zero_mask(adata | bdata);
hash += a & zero_bytemask(mask);
len += find_zero(mask);
return hashlen_create(fold_hash(hash), len);
}
#else
unsigned int full_name_hash(const unsigned char *name, unsigned int len)
{
unsigned long hash = init_name_hash();
while (len--)
hash = partial_name_hash(*name++, hash);
return end_name_hash(hash);
}
EXPORT_SYMBOL(full_name_hash);
/*
* We know there's a real path component here of at least
* one character.
*/
static inline u64 hash_name(const char *name)
{
unsigned long hash = init_name_hash();
unsigned long len = 0, c;
c = (unsigned char)*name;
do {
len++;
hash = partial_name_hash(c, hash);
c = (unsigned char)name[len];
} while (c && c != '/');
return hashlen_create(end_name_hash(hash), len);
}
#endif
/*
* Name resolution.
* This is the basic name resolution function, turning a pathname into
* the final dentry. We expect 'base' to be positive and a directory.
*
* Returns 0 and nd will have valid dentry and mnt on success.
* Returns error and drops reference to input namei data on failure.
*/
static int link_path_walk(const char *name, struct nameidata *nd)
{
int err;
while (*name=='/')
name++;
if (!*name)
return 0;
/* At this point we know we have a real path component. */
for(;;) {
u64 hash_len;
int type;
err = may_lookup(nd);
if (err)
return err;
hash_len = hash_name(name);
type = LAST_NORM;
if (name[0] == '.') switch (hashlen_len(hash_len)) {
case 2:
if (name[1] == '.') {
type = LAST_DOTDOT;
nd->flags |= LOOKUP_JUMPED;
}
break;
case 1:
type = LAST_DOT;
}
if (likely(type == LAST_NORM)) {
struct dentry *parent = nd->path.dentry;
nd->flags &= ~LOOKUP_JUMPED;
if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
struct qstr this = { { .hash_len = hash_len }, .name = name };
err = parent->d_op->d_hash(parent, &this);
if (err < 0)
return err;
hash_len = this.hash_len;
name = this.name;
}
}
nd->last.hash_len = hash_len;
nd->last.name = name;
nd->last_type = type;
name += hashlen_len(hash_len);
if (!*name)
goto OK;
/*
* If it wasn't NUL, we know it was '/'. Skip that
* slash, and continue until no more slashes.
*/
do {
name++;
} while (unlikely(*name == '/'));
if (unlikely(!*name)) {
OK:
/* pathname body, done */
if (!nd->depth)
return 0;
name = nd->stack[nd->depth - 1].name;
/* trailing symlink, done */
if (!name)
return 0;
/* last component of nested symlink */
err = walk_component(nd, WALK_GET | WALK_PUT);
} else {
err = walk_component(nd, WALK_GET);
}
if (err < 0)
return err;
if (err) {
const char *s = get_link(nd);
if (IS_ERR(s))
return PTR_ERR(s);
err = 0;
if (unlikely(!s)) {
/* jumped */
put_link(nd);
} else {
nd->stack[nd->depth - 1].name = name;
name = s;
continue;
}
}
if (unlikely(!d_can_lookup(nd->path.dentry))) {
if (nd->flags & LOOKUP_RCU) {
if (unlazy_walk(nd, NULL, 0))
return -ECHILD;
}
return -ENOTDIR;
}
}
}
static const char *path_init(struct nameidata *nd, unsigned flags)
{
int retval = 0;
const char *s = nd->name->name;
nd->last_type = LAST_ROOT; /* if there are only slashes... */
nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
nd->depth = 0;
if (flags & LOOKUP_ROOT) {
struct dentry *root = nd->root.dentry;
struct inode *inode = root->d_inode;
if (*s) {
if (!d_can_lookup(root))
return ERR_PTR(-ENOTDIR);
retval = inode_permission(inode, MAY_EXEC);
if (retval)
return ERR_PTR(retval);
}
nd->path = nd->root;
nd->inode = inode;
if (flags & LOOKUP_RCU) {
rcu_read_lock();
nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
nd->root_seq = nd->seq;
nd->m_seq = read_seqbegin(&mount_lock);
} else {
path_get(&nd->path);
}
return s;
}
nd->root.mnt = NULL;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
nd->m_seq = read_seqbegin(&mount_lock);
if (*s == '/') {
if (flags & LOOKUP_RCU)
rcu_read_lock();
set_root(nd);
if (likely(!nd_jump_root(nd)))
return s;
nd->root.mnt = NULL;
rcu_read_unlock();
return ERR_PTR(-ECHILD);
} else if (nd->dfd == AT_FDCWD) {
if (flags & LOOKUP_RCU) {
struct fs_struct *fs = current->fs;
unsigned seq;
rcu_read_lock();
do {
seq = read_seqcount_begin(&fs->seq);
nd->path = fs->pwd;
nd->inode = nd->path.dentry->d_inode;
nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
} while (read_seqcount_retry(&fs->seq, seq));
} else {
get_fs_pwd(current->fs, &nd->path);
nd->inode = nd->path.dentry->d_inode;
}
return s;
} else {
/* Caller must check execute permissions on the starting path component */
struct fd f = fdget_raw(nd->dfd);
struct dentry *dentry;
if (!f.file)
return ERR_PTR(-EBADF);
dentry = f.file->f_path.dentry;
if (*s) {
if (!d_can_lookup(dentry)) {
fdput(f);
return ERR_PTR(-ENOTDIR);
}
}
nd->path = f.file->f_path;
if (flags & LOOKUP_RCU) {
rcu_read_lock();
nd->inode = nd->path.dentry->d_inode;
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
} else {
path_get(&nd->path);
nd->inode = nd->path.dentry->d_inode;
}
fdput(f);
return s;
}
}
static const char *trailing_symlink(struct nameidata *nd)
{
const char *s;
int error = may_follow_link(nd);
if (unlikely(error))
return ERR_PTR(error);
nd->flags |= LOOKUP_PARENT;
nd->stack[0].name = NULL;
s = get_link(nd);
return s ? s : "";
}
static inline int lookup_last(struct nameidata *nd)
{
if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
nd->flags &= ~LOOKUP_PARENT;
return walk_component(nd,
nd->flags & LOOKUP_FOLLOW
? nd->depth
? WALK_PUT | WALK_GET
: WALK_GET
: 0);
}
/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
{
const char *s = path_init(nd, flags);
int err;
if (IS_ERR(s))
return PTR_ERR(s);
while (!(err = link_path_walk(s, nd))
&& ((err = lookup_last(nd)) > 0)) {
s = trailing_symlink(nd);
if (IS_ERR(s)) {
err = PTR_ERR(s);
break;
}
}
if (!err)
err = complete_walk(nd);
if (!err && nd->flags & LOOKUP_DIRECTORY)
if (!d_can_lookup(nd->path.dentry))
err = -ENOTDIR;
if (!err) {
*path = nd->path;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
}
terminate_walk(nd);
return err;
}
static int filename_lookup(int dfd, struct filename *name, unsigned flags,
struct path *path, struct path *root)
{
int retval;
struct nameidata nd;
if (IS_ERR(name))
return PTR_ERR(name);
if (unlikely(root)) {
nd.root = *root;
flags |= LOOKUP_ROOT;
}
set_nameidata(&nd, dfd, name);
retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
if (unlikely(retval == -ECHILD))
retval = path_lookupat(&nd, flags, path);
if (unlikely(retval == -ESTALE))
retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
if (likely(!retval))
audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
restore_nameidata();
putname(name);
return retval;
}
/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
static int path_parentat(struct nameidata *nd, unsigned flags,
struct path *parent)
{
const char *s = path_init(nd, flags);
int err;
if (IS_ERR(s))
return PTR_ERR(s);
err = link_path_walk(s, nd);
if (!err)
err = complete_walk(nd);
if (!err) {
*parent = nd->path;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
}
terminate_walk(nd);
return err;
}
static struct filename *filename_parentat(int dfd, struct filename *name,
unsigned int flags, struct path *parent,
struct qstr *last, int *type)
{
int retval;
struct nameidata nd;
if (IS_ERR(name))
return name;
set_nameidata(&nd, dfd, name);
retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
if (unlikely(retval == -ECHILD))
retval = path_parentat(&nd, flags, parent);
if (unlikely(retval == -ESTALE))
retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
if (likely(!retval)) {
*last = nd.last;
*type = nd.last_type;
audit_inode(name, parent->dentry, LOOKUP_PARENT);
} else {
putname(name);
name = ERR_PTR(retval);
}
restore_nameidata();
return name;
}
/* does lookup, returns the object with parent locked */
struct dentry *kern_path_locked(const char *name, struct path *path)
{
struct filename *filename;
struct dentry *d;
struct qstr last;
int type;
filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
&last, &type);
if (IS_ERR(filename))
return ERR_CAST(filename);
if (unlikely(type != LAST_NORM)) {
path_put(path);
putname(filename);
return ERR_PTR(-EINVAL);
}
inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
d = __lookup_hash(&last, path->dentry, 0);
if (IS_ERR(d)) {
inode_unlock(path->dentry->d_inode);
path_put(path);
}
putname(filename);
return d;
}
int kern_path(const char *name, unsigned int flags, struct path *path)
{
return filename_lookup(AT_FDCWD, getname_kernel(name),
flags, path, NULL);
}
EXPORT_SYMBOL(kern_path);
/**
* vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
* @dentry: pointer to dentry of the base directory
* @mnt: pointer to vfs mount of the base directory
* @name: pointer to file name
* @flags: lookup flags
* @path: pointer to struct path to fill
*/
int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
const char *name, unsigned int flags,
struct path *path)
{
struct path root = {.mnt = mnt, .dentry = dentry};
/* the first argument of filename_lookup() is ignored with root */
return filename_lookup(AT_FDCWD, getname_kernel(name),
flags , path, &root);
}
EXPORT_SYMBOL(vfs_path_lookup);
/**
* lookup_one_len - filesystem helper to lookup single pathname component
* @name: pathname component to lookup
* @base: base directory to lookup from
* @len: maximum length @len should be interpreted to
*
* Note that this routine is purely a helper for filesystem usage and should
* not be called by generic code.
*
* The caller must hold base->i_mutex.
*/
struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
{
struct qstr this;
unsigned int c;
int err;
WARN_ON_ONCE(!inode_is_locked(base->d_inode));
this.name = name;
this.len = len;
this.hash = full_name_hash(name, len);
if (!len)
return ERR_PTR(-EACCES);
if (unlikely(name[0] == '.')) {
if (len < 2 || (len == 2 && name[1] == '.'))
return ERR_PTR(-EACCES);
}
while (len--) {
c = *(const unsigned char *)name++;
if (c == '/' || c == '\0')
return ERR_PTR(-EACCES);
}
/*
* See if the low-level filesystem might want
* to use its own hash..
*/
if (base->d_flags & DCACHE_OP_HASH) {
int err = base->d_op->d_hash(base, &this);
if (err < 0)
return ERR_PTR(err);
}
err = inode_permission(base->d_inode, MAY_EXEC);
if (err)
return ERR_PTR(err);
return __lookup_hash(&this, base, 0);
}
EXPORT_SYMBOL(lookup_one_len);
/**
* lookup_one_len_unlocked - filesystem helper to lookup single pathname component
* @name: pathname component to lookup
* @base: base directory to lookup from
* @len: maximum length @len should be interpreted to
*
* Note that this routine is purely a helper for filesystem usage and should
* not be called by generic code.
*
* Unlike lookup_one_len, it should be called without the parent
* i_mutex held, and will take the i_mutex itself if necessary.
*/
struct dentry *lookup_one_len_unlocked(const char *name,
struct dentry *base, int len)
{
struct qstr this;
unsigned int c;
int err;
struct dentry *ret;
this.name = name;
this.len = len;
this.hash = full_name_hash(name, len);
if (!len)
return ERR_PTR(-EACCES);
if (unlikely(name[0] == '.')) {
if (len < 2 || (len == 2 && name[1] == '.'))
return ERR_PTR(-EACCES);
}
while (len--) {
c = *(const unsigned char *)name++;
if (c == '/' || c == '\0')
return ERR_PTR(-EACCES);
}
/*
* See if the low-level filesystem might want
* to use its own hash..
*/
if (base->d_flags & DCACHE_OP_HASH) {
int err = base->d_op->d_hash(base, &this);
if (err < 0)
return ERR_PTR(err);
}
err = inode_permission(base->d_inode, MAY_EXEC);
if (err)
return ERR_PTR(err);
ret = lookup_dcache(&this, base, 0);
if (!ret)
ret = lookup_slow(&this, base, 0);
return ret;
}
EXPORT_SYMBOL(lookup_one_len_unlocked);
int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
struct path *path, int *empty)
{
return filename_lookup(dfd, getname_flags(name, flags, empty),
flags, path, NULL);
}
EXPORT_SYMBOL(user_path_at_empty);
/*
* NB: most callers don't do anything directly with the reference to the
* to struct filename, but the nd->last pointer points into the name string
* allocated by getname. So we must hold the reference to it until all
* path-walking is complete.
*/
static inline struct filename *
user_path_parent(int dfd, const char __user *path,
struct path *parent,
struct qstr *last,
int *type,
unsigned int flags)
{
/* only LOOKUP_REVAL is allowed in extra flags */
return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
parent, last, type);
}
/**
* mountpoint_last - look up last component for umount
* @nd: pathwalk nameidata - currently pointing at parent directory of "last"
* @path: pointer to container for result
*
* This is a special lookup_last function just for umount. In this case, we
* need to resolve the path without doing any revalidation.
*
* The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
* mountpoints are always pinned in the dcache, their ancestors are too. Thus,
* in almost all cases, this lookup will be served out of the dcache. The only
* cases where it won't are if nd->last refers to a symlink or the path is
* bogus and it doesn't exist.
*
* Returns:
* -error: if there was an error during lookup. This includes -ENOENT if the
* lookup found a negative dentry. The nd->path reference will also be
* put in this case.
*
* 0: if we successfully resolved nd->path and found it to not to be a
* symlink that needs to be followed. "path" will also be populated.
* The nd->path reference will also be put.
*
* 1: if we successfully resolved nd->last and found it to be a symlink
* that needs to be followed. "path" will be populated with the path
* to the link, and nd->path will *not* be put.
*/
static int
mountpoint_last(struct nameidata *nd, struct path *path)
{
int error = 0;
struct dentry *dentry;
struct dentry *dir = nd->path.dentry;
/* If we're in rcuwalk, drop out of it to handle last component */
if (nd->flags & LOOKUP_RCU) {
if (unlazy_walk(nd, NULL, 0))
return -ECHILD;
}
nd->flags &= ~LOOKUP_PARENT;
if (unlikely(nd->last_type != LAST_NORM)) {
error = handle_dots(nd, nd->last_type);
if (error)
return error;
dentry = dget(nd->path.dentry);
} else {
dentry = d_lookup(dir, &nd->last);
if (!dentry) {
/*
* No cached dentry. Mounted dentries are pinned in the
* cache, so that means that this dentry is probably
* a symlink or the path doesn't actually point
* to a mounted dentry.
*/
dentry = lookup_slow(&nd->last, dir,
nd->flags | LOOKUP_NO_REVAL);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
}
}
if (d_is_negative(dentry)) {
dput(dentry);
return -ENOENT;
}
if (nd->depth)
put_link(nd);
path->dentry = dentry;
path->mnt = nd->path.mnt;
error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
d_backing_inode(dentry), 0);
if (unlikely(error))
return error;
mntget(path->mnt);
follow_mount(path);
return 0;
}
/**
* path_mountpoint - look up a path to be umounted
* @nd: lookup context
* @flags: lookup flags
* @path: pointer to container for result
*
* Look up the given name, but don't attempt to revalidate the last component.
* Returns 0 and "path" will be valid on success; Returns error otherwise.
*/
static int
path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
{
const char *s = path_init(nd, flags);
int err;
if (IS_ERR(s))
return PTR_ERR(s);
while (!(err = link_path_walk(s, nd)) &&
(err = mountpoint_last(nd, path)) > 0) {
s = trailing_symlink(nd);
if (IS_ERR(s)) {
err = PTR_ERR(s);
break;
}
}
terminate_walk(nd);
return err;
}
static int
filename_mountpoint(int dfd, struct filename *name, struct path *path,
unsigned int flags)
{
struct nameidata nd;
int error;
if (IS_ERR(name))
return PTR_ERR(name);
set_nameidata(&nd, dfd, name);
error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
if (unlikely(error == -ECHILD))
error = path_mountpoint(&nd, flags, path);
if (unlikely(error == -ESTALE))
error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
if (likely(!error))
audit_inode(name, path->dentry, 0);
restore_nameidata();
putname(name);
return error;
}
/**
* user_path_mountpoint_at - lookup a path from userland in order to umount it
* @dfd: directory file descriptor
* @name: pathname from userland
* @flags: lookup flags
* @path: pointer to container to hold result
*
* A umount is a special case for path walking. We're not actually interested
* in the inode in this situation, and ESTALE errors can be a problem. We
* simply want track down the dentry and vfsmount attached at the mountpoint
* and avoid revalidating the last component.
*
* Returns 0 and populates "path" on success.
*/
int
user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
struct path *path)
{
return filename_mountpoint(dfd, getname(name), path, flags);
}
int
kern_path_mountpoint(int dfd, const char *name, struct path *path,
unsigned int flags)
{
return filename_mountpoint(dfd, getname_kernel(name), path, flags);
}
EXPORT_SYMBOL(kern_path_mountpoint);
int __check_sticky(struct inode *dir, struct inode *inode)
{
kuid_t fsuid = current_fsuid();
if (uid_eq(inode->i_uid, fsuid))
return 0;
if (uid_eq(dir->i_uid, fsuid))
return 0;
return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
}
EXPORT_SYMBOL(__check_sticky);
/*
* Check whether we can remove a link victim from directory dir, check
* whether the type of victim is right.
* 1. We can't do it if dir is read-only (done in permission())
* 2. We should have write and exec permissions on dir
* 3. We can't remove anything from append-only dir
* 4. We can't do anything with immutable dir (done in permission())
* 5. If the sticky bit on dir is set we should either
* a. be owner of dir, or
* b. be owner of victim, or
* c. have CAP_FOWNER capability
* 6. If the victim is append-only or immutable we can't do antyhing with
* links pointing to it.
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
* 9. We can't remove a root or mountpoint.
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
* nfs_async_unlink().
*/
static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
{
struct inode *inode = d_backing_inode(victim);
int error;
if (d_is_negative(victim))
return -ENOENT;
BUG_ON(!inode);
BUG_ON(victim->d_parent->d_inode != dir);
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
if (error)
return error;
if (IS_APPEND(dir))
return -EPERM;
if (check_sticky(dir, inode) || IS_APPEND(inode) ||
IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
return -EPERM;
if (isdir) {
if (!d_is_dir(victim))
return -ENOTDIR;
if (IS_ROOT(victim))
return -EBUSY;
} else if (d_is_dir(victim))
return -EISDIR;
if (IS_DEADDIR(dir))
return -ENOENT;
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
return -EBUSY;
return 0;
}
/* Check whether we can create an object with dentry child in directory
* dir.
* 1. We can't do it if child already exists (open has special treatment for
* this case, but since we are inlined it's OK)
* 2. We can't do it if dir is read-only (done in permission())
* 3. We should have write and exec permissions on dir
* 4. We can't do it if dir is immutable (done in permission())
*/
static inline int may_create(struct inode *dir, struct dentry *child)
{
audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
if (child->d_inode)
return -EEXIST;
if (IS_DEADDIR(dir))
return -ENOENT;
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
}
/*
* p1 and p2 should be directories on the same fs.
*/
struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
{
struct dentry *p;
if (p1 == p2) {
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
return NULL;
}
mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
p = d_ancestor(p2, p1);
if (p) {
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
return p;
}
p = d_ancestor(p1, p2);
if (p) {
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
return p;
}
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
return NULL;
}
EXPORT_SYMBOL(lock_rename);
void unlock_rename(struct dentry *p1, struct dentry *p2)
{
inode_unlock(p1->d_inode);
if (p1 != p2) {
inode_unlock(p2->d_inode);
mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
}
}
EXPORT_SYMBOL(unlock_rename);
int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool want_excl)
{
int error = may_create(dir, dentry);
if (error)
return error;
if (!dir->i_op->create)
return -EACCES; /* shouldn't it be ENOSYS? */
mode &= S_IALLUGO;
mode |= S_IFREG;
error = security_inode_create(dir, dentry, mode);
if (error)
return error;
error = dir->i_op->create(dir, dentry, mode, want_excl);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_create);
static int may_open(struct path *path, int acc_mode, int flag)
{
struct dentry *dentry = path->dentry;
struct inode *inode = dentry->d_inode;
int error;
if (!inode)
return -ENOENT;
switch (inode->i_mode & S_IFMT) {
case S_IFLNK:
return -ELOOP;
case S_IFDIR:
if (acc_mode & MAY_WRITE)
return -EISDIR;
break;
case S_IFBLK:
case S_IFCHR:
if (path->mnt->mnt_flags & MNT_NODEV)
return -EACCES;
/*FALLTHRU*/
case S_IFIFO:
case S_IFSOCK:
flag &= ~O_TRUNC;
break;
}
error = inode_permission(inode, MAY_OPEN | acc_mode);
if (error)
return error;
/*
* An append-only file must be opened in append mode for writing.
*/
if (IS_APPEND(inode)) {
if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
return -EPERM;
if (flag & O_TRUNC)
return -EPERM;
}
/* O_NOATIME can only be set by the owner or superuser */
if (flag & O_NOATIME && !inode_owner_or_capable(inode))
return -EPERM;
return 0;
}
static int handle_truncate(struct file *filp)
{
struct path *path = &filp->f_path;
struct inode *inode = path->dentry->d_inode;
int error = get_write_access(inode);
if (error)
return error;
/*
* Refuse to truncate files with mandatory locks held on them.
*/
error = locks_verify_locked(filp);
if (!error)
error = security_path_truncate(path);
if (!error) {
error = do_truncate(path->dentry, 0,
ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
filp);
}
put_write_access(inode);
return error;
}
static inline int open_to_namei_flags(int flag)
{
if ((flag & O_ACCMODE) == 3)
flag--;
return flag;
}
static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
{
int error = security_path_mknod(dir, dentry, mode, 0);
if (error)
return error;
error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
if (error)
return error;
return security_inode_create(dir->dentry->d_inode, dentry, mode);
}
/*
* Attempt to atomically look up, create and open a file from a negative
* dentry.
*
* Returns 0 if successful. The file will have been created and attached to
* @file by the filesystem calling finish_open().
*
* Returns 1 if the file was looked up only or didn't need creating. The
* caller will need to perform the open themselves. @path will have been
* updated to point to the new dentry. This may be negative.
*
* Returns an error code otherwise.
*/
static int atomic_open(struct nameidata *nd, struct dentry *dentry,
struct path *path, struct file *file,
const struct open_flags *op,
bool got_write, bool need_lookup,
int *opened)
{
struct inode *dir = nd->path.dentry->d_inode;
unsigned open_flag = open_to_namei_flags(op->open_flag);
umode_t mode;
int error;
int acc_mode;
int create_error = 0;
struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
bool excl;
BUG_ON(dentry->d_inode);
/* Don't create child dentry for a dead directory. */
if (unlikely(IS_DEADDIR(dir))) {
error = -ENOENT;
goto out;
}
mode = op->mode;
if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
mode &= ~current_umask();
excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
if (excl)
open_flag &= ~O_TRUNC;
/*
* Checking write permission is tricky, bacuse we don't know if we are
* going to actually need it: O_CREAT opens should work as long as the
* file exists. But checking existence breaks atomicity. The trick is
* to check access and if not granted clear O_CREAT from the flags.
*
* Another problem is returing the "right" error value (e.g. for an
* O_EXCL open we want to return EEXIST not EROFS).
*/
if (((open_flag & (O_CREAT | O_TRUNC)) ||
(open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
if (!(open_flag & O_CREAT)) {
/*
* No O_CREATE -> atomicity not a requirement -> fall
* back to lookup + open
*/
goto no_open;
} else if (open_flag & (O_EXCL | O_TRUNC)) {
/* Fall back and fail with the right error */
create_error = -EROFS;
goto no_open;
} else {
/* No side effects, safe to clear O_CREAT */
create_error = -EROFS;
open_flag &= ~O_CREAT;
}
}
if (open_flag & O_CREAT) {
error = may_o_create(&nd->path, dentry, mode);
if (error) {
create_error = error;
if (open_flag & O_EXCL)
goto no_open;
open_flag &= ~O_CREAT;
}
}
if (nd->flags & LOOKUP_DIRECTORY)
open_flag |= O_DIRECTORY;
file->f_path.dentry = DENTRY_NOT_SET;
file->f_path.mnt = nd->path.mnt;
error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
opened);
if (error < 0) {
if (create_error && error == -ENOENT)
error = create_error;
goto out;
}
if (error) { /* returned 1, that is */
if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
error = -EIO;
goto out;
}
if (file->f_path.dentry) {
dput(dentry);
dentry = file->f_path.dentry;
}
if (*opened & FILE_CREATED)
fsnotify_create(dir, dentry);
if (!dentry->d_inode) {
WARN_ON(*opened & FILE_CREATED);
if (create_error) {
error = create_error;
goto out;
}
} else {
if (excl && !(*opened & FILE_CREATED)) {
error = -EEXIST;
goto out;
}
}
goto looked_up;
}
/*
* We didn't have the inode before the open, so check open permission
* here.
*/
acc_mode = op->acc_mode;
if (*opened & FILE_CREATED) {
WARN_ON(!(open_flag & O_CREAT));
fsnotify_create(dir, dentry);
acc_mode = 0;
}
error = may_open(&file->f_path, acc_mode, open_flag);
if (error)
fput(file);
out:
dput(dentry);
return error;
no_open:
if (need_lookup) {
dentry = lookup_real(dir, dentry, nd->flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
if (create_error) {
int open_flag = op->open_flag;
error = create_error;
if ((open_flag & O_EXCL)) {
if (!dentry->d_inode)
goto out;
} else if (!dentry->d_inode) {
goto out;
} else if ((open_flag & O_TRUNC) &&
d_is_reg(dentry)) {
goto out;
}
/* will fail later, go on to get the right error */
}
}
looked_up:
path->dentry = dentry;
path->mnt = nd->path.mnt;
return 1;
}
/*
* Look up and maybe create and open the last component.
*
* Must be called with i_mutex held on parent.
*
* Returns 0 if the file was successfully atomically created (if necessary) and
* opened. In this case the file will be returned attached to @file.
*
* Returns 1 if the file was not completely opened at this time, though lookups
* and creations will have been performed and the dentry returned in @path will
* be positive upon return if O_CREAT was specified. If O_CREAT wasn't
* specified then a negative dentry may be returned.
*
* An error code is returned otherwise.
*
* FILE_CREATE will be set in @*opened if the dentry was created and will be
* cleared otherwise prior to returning.
*/
static int lookup_open(struct nameidata *nd, struct path *path,
struct file *file,
const struct open_flags *op,
bool got_write, int *opened)
{
struct dentry *dir = nd->path.dentry;
struct inode *dir_inode = dir->d_inode;
struct dentry *dentry;
int error;
bool need_lookup = false;
*opened &= ~FILE_CREATED;
dentry = lookup_dcache(&nd->last, dir, nd->flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
if (!dentry) {
dentry = d_alloc(dir, &nd->last);
if (unlikely(!dentry))
return -ENOMEM;
need_lookup = true;
} else if (dentry->d_inode) {
/* Cached positive dentry: will open in f_op->open */
goto out_no_open;
}
if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
return atomic_open(nd, dentry, path, file, op, got_write,
need_lookup, opened);
}
if (need_lookup) {
BUG_ON(dentry->d_inode);
dentry = lookup_real(dir_inode, dentry, nd->flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
}
/* Negative dentry, just create the file */
if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
umode_t mode = op->mode;
if (!IS_POSIXACL(dir->d_inode))
mode &= ~current_umask();
/*
* This write is needed to ensure that a
* rw->ro transition does not occur between
* the time when the file is created and when
* a permanent write count is taken through
* the 'struct file' in finish_open().
*/
if (!got_write) {
error = -EROFS;
goto out_dput;
}
*opened |= FILE_CREATED;
error = security_path_mknod(&nd->path, dentry, mode, 0);
if (error)
goto out_dput;
error = vfs_create(dir->d_inode, dentry, mode,
nd->flags & LOOKUP_EXCL);
if (error)
goto out_dput;
}
out_no_open:
path->dentry = dentry;
path->mnt = nd->path.mnt;
return 1;
out_dput:
dput(dentry);
return error;
}
/*
* Handle the last step of open()
*/
static int do_last(struct nameidata *nd,
struct file *file, const struct open_flags *op,
int *opened)
{
struct dentry *dir = nd->path.dentry;
int open_flag = op->open_flag;
bool will_truncate = (open_flag & O_TRUNC) != 0;
bool got_write = false;
int acc_mode = op->acc_mode;
unsigned seq;
struct inode *inode;
struct path save_parent = { .dentry = NULL, .mnt = NULL };
struct path path;
bool retried = false;
int error;
nd->flags &= ~LOOKUP_PARENT;
nd->flags |= op->intent;
if (nd->last_type != LAST_NORM) {
error = handle_dots(nd, nd->last_type);
if (unlikely(error))
return error;
goto finish_open;
}
if (!(open_flag & O_CREAT)) {
if (nd->last.name[nd->last.len])
nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
/* we _can_ be in RCU mode here */
error = lookup_fast(nd, &path, &inode, &seq);
if (likely(error > 0))
goto finish_lookup;
if (error < 0)
return error;
BUG_ON(nd->inode != dir->d_inode);
BUG_ON(nd->flags & LOOKUP_RCU);
} else {
/* create side of things */
/*
* This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
* has been cleared when we got to the last component we are
* about to look up
*/
error = complete_walk(nd);
if (error)
return error;
audit_inode(nd->name, dir, LOOKUP_PARENT);
/* trailing slashes? */
if (unlikely(nd->last.name[nd->last.len]))
return -EISDIR;
}
retry_lookup:
if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
error = mnt_want_write(nd->path.mnt);
if (!error)
got_write = true;
/*
* do _not_ fail yet - we might not need that or fail with
* a different error; let lookup_open() decide; we'll be
* dropping this one anyway.
*/
}
inode_lock(dir->d_inode);
error = lookup_open(nd, &path, file, op, got_write, opened);
inode_unlock(dir->d_inode);
if (error <= 0) {
if (error)
goto out;
if ((*opened & FILE_CREATED) ||
!S_ISREG(file_inode(file)->i_mode))
will_truncate = false;
audit_inode(nd->name, file->f_path.dentry, 0);
goto opened;
}
if (*opened & FILE_CREATED) {
/* Don't check for write permission, don't truncate */
open_flag &= ~O_TRUNC;
will_truncate = false;
acc_mode = 0;
path_to_nameidata(&path, nd);
goto finish_open_created;
}
/*
* If atomic_open() acquired write access it is dropped now due to
* possible mount and symlink following (this might be optimized away if
* necessary...)
*/
if (got_write) {
mnt_drop_write(nd->path.mnt);
got_write = false;
}
if (unlikely(d_is_negative(path.dentry))) {
path_to_nameidata(&path, nd);
return -ENOENT;
}
/*
* create/update audit record if it already exists.
*/
audit_inode(nd->name, path.dentry, 0);
if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
path_to_nameidata(&path, nd);
return -EEXIST;
}
error = follow_managed(&path, nd);
if (unlikely(error < 0))
return error;
seq = 0; /* out of RCU mode, so the value doesn't matter */
inode = d_backing_inode(path.dentry);
finish_lookup:
if (nd->depth)
put_link(nd);
error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
inode, seq);
if (unlikely(error))
return error;
if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
path_to_nameidata(&path, nd);
} else {
save_parent.dentry = nd->path.dentry;
save_parent.mnt = mntget(path.mnt);
nd->path.dentry = path.dentry;
}
nd->inode = inode;
nd->seq = seq;
/* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
finish_open:
error = complete_walk(nd);
if (error) {
path_put(&save_parent);
return error;
}
audit_inode(nd->name, nd->path.dentry, 0);
if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
error = -ELOOP;
goto out;
}
error = -EISDIR;
if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
goto out;
error = -ENOTDIR;
if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
goto out;
if (!d_is_reg(nd->path.dentry))
will_truncate = false;
if (will_truncate) {
error = mnt_want_write(nd->path.mnt);
if (error)
goto out;
got_write = true;
}
finish_open_created:
if (likely(!(open_flag & O_PATH))) {
error = may_open(&nd->path, acc_mode, open_flag);
if (error)
goto out;
}
BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
error = vfs_open(&nd->path, file, current_cred());
if (!error) {
*opened |= FILE_OPENED;
} else {
if (error == -EOPENSTALE)
goto stale_open;
goto out;
}
opened:
error = open_check_o_direct(file);
if (error)
goto exit_fput;
error = ima_file_check(file, op->acc_mode, *opened);
if (error)
goto exit_fput;
if (will_truncate) {
error = handle_truncate(file);
if (error)
goto exit_fput;
}
out:
if (unlikely(error > 0)) {
WARN_ON(1);
error = -EINVAL;
}
if (got_write)
mnt_drop_write(nd->path.mnt);
path_put(&save_parent);
return error;
exit_fput:
fput(file);
goto out;
stale_open:
/* If no saved parent or already retried then can't retry */
if (!save_parent.dentry || retried)
goto out;
BUG_ON(save_parent.dentry != dir);
path_put(&nd->path);
nd->path = save_parent;
nd->inode = dir->d_inode;
save_parent.mnt = NULL;
save_parent.dentry = NULL;
if (got_write) {
mnt_drop_write(nd->path.mnt);
got_write = false;
}
retried = true;
goto retry_lookup;
}
static int do_tmpfile(struct nameidata *nd, unsigned flags,
const struct open_flags *op,
struct file *file, int *opened)
{
static const struct qstr name = QSTR_INIT("/", 1);
struct dentry *child;
struct inode *dir;
struct path path;
int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
if (unlikely(error))
return error;
error = mnt_want_write(path.mnt);
if (unlikely(error))
goto out;
dir = path.dentry->d_inode;
/* we want directory to be writable */
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
if (error)
goto out2;
if (!dir->i_op->tmpfile) {
error = -EOPNOTSUPP;
goto out2;
}
child = d_alloc(path.dentry, &name);
if (unlikely(!child)) {
error = -ENOMEM;
goto out2;
}
dput(path.dentry);
path.dentry = child;
error = dir->i_op->tmpfile(dir, child, op->mode);
if (error)
goto out2;
audit_inode(nd->name, child, 0);
/* Don't check for other permissions, the inode was just created */
error = may_open(&path, 0, op->open_flag);
if (error)
goto out2;
file->f_path.mnt = path.mnt;
error = finish_open(file, child, NULL, opened);
if (error)
goto out2;
error = open_check_o_direct(file);
if (error) {
fput(file);
} else if (!(op->open_flag & O_EXCL)) {
struct inode *inode = file_inode(file);
spin_lock(&inode->i_lock);
inode->i_state |= I_LINKABLE;
spin_unlock(&inode->i_lock);
}
out2:
mnt_drop_write(path.mnt);
out:
path_put(&path);
return error;
}
static struct file *path_openat(struct nameidata *nd,
const struct open_flags *op, unsigned flags)
{
const char *s;
struct file *file;
int opened = 0;
int error;
file = get_empty_filp();
if (IS_ERR(file))
return file;
file->f_flags = op->open_flag;
if (unlikely(file->f_flags & __O_TMPFILE)) {
error = do_tmpfile(nd, flags, op, file, &opened);
goto out2;
}
s = path_init(nd, flags);
if (IS_ERR(s)) {
put_filp(file);
return ERR_CAST(s);
}
while (!(error = link_path_walk(s, nd)) &&
(error = do_last(nd, file, op, &opened)) > 0) {
nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
s = trailing_symlink(nd);
if (IS_ERR(s)) {
error = PTR_ERR(s);
break;
}
}
terminate_walk(nd);
out2:
if (!(opened & FILE_OPENED)) {
BUG_ON(!error);
put_filp(file);
}
if (unlikely(error)) {
if (error == -EOPENSTALE) {
if (flags & LOOKUP_RCU)
error = -ECHILD;
else
error = -ESTALE;
}
file = ERR_PTR(error);
}
return file;
}
struct file *do_filp_open(int dfd, struct filename *pathname,
const struct open_flags *op)
{
struct nameidata nd;
int flags = op->lookup_flags;
struct file *filp;
set_nameidata(&nd, dfd, pathname);
filp = path_openat(&nd, op, flags | LOOKUP_RCU);
if (unlikely(filp == ERR_PTR(-ECHILD)))
filp = path_openat(&nd, op, flags);
if (unlikely(filp == ERR_PTR(-ESTALE)))
filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
restore_nameidata();
return filp;
}
struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
const char *name, const struct open_flags *op)
{
struct nameidata nd;
struct file *file;
struct filename *filename;
int flags = op->lookup_flags | LOOKUP_ROOT;
nd.root.mnt = mnt;
nd.root.dentry = dentry;
if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
return ERR_PTR(-ELOOP);
filename = getname_kernel(name);
if (IS_ERR(filename))
return ERR_CAST(filename);
set_nameidata(&nd, -1, filename);
file = path_openat(&nd, op, flags | LOOKUP_RCU);
if (unlikely(file == ERR_PTR(-ECHILD)))
file = path_openat(&nd, op, flags);
if (unlikely(file == ERR_PTR(-ESTALE)))
file = path_openat(&nd, op, flags | LOOKUP_REVAL);
restore_nameidata();
putname(filename);
return file;
}
static struct dentry *filename_create(int dfd, struct filename *name,
struct path *path, unsigned int lookup_flags)
{
struct dentry *dentry = ERR_PTR(-EEXIST);
struct qstr last;
int type;
int err2;
int error;
bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
/*
* Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
* other flags passed in are ignored!
*/
lookup_flags &= LOOKUP_REVAL;
name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
if (IS_ERR(name))
return ERR_CAST(name);
/*
* Yucky last component or no last component at all?
* (foo/., foo/.., /////)
*/
if (unlikely(type != LAST_NORM))
goto out;
/* don't fail immediately if it's r/o, at least try to report other errors */
err2 = mnt_want_write(path->mnt);
/*
* Do the final lookup.
*/
lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
dentry = __lookup_hash(&last, path->dentry, lookup_flags);
if (IS_ERR(dentry))
goto unlock;
error = -EEXIST;
if (d_is_positive(dentry))
goto fail;
/*
* Special case - lookup gave negative, but... we had foo/bar/
* From the vfs_mknod() POV we just have a negative dentry -
* all is fine. Let's be bastards - you had / on the end, you've
* been asking for (non-existent) directory. -ENOENT for you.
*/
if (unlikely(!is_dir && last.name[last.len])) {
error = -ENOENT;
goto fail;
}
if (unlikely(err2)) {
error = err2;
goto fail;
}
putname(name);
return dentry;
fail:
dput(dentry);
dentry = ERR_PTR(error);
unlock:
inode_unlock(path->dentry->d_inode);
if (!err2)
mnt_drop_write(path->mnt);
out:
path_put(path);
putname(name);
return dentry;
}
struct dentry *kern_path_create(int dfd, const char *pathname,
struct path *path, unsigned int lookup_flags)
{
return filename_create(dfd, getname_kernel(pathname),
path, lookup_flags);
}
EXPORT_SYMBOL(kern_path_create);
void done_path_create(struct path *path, struct dentry *dentry)
{
dput(dentry);
inode_unlock(path->dentry->d_inode);
mnt_drop_write(path->mnt);
path_put(path);
}
EXPORT_SYMBOL(done_path_create);
inline struct dentry *user_path_create(int dfd, const char __user *pathname,
struct path *path, unsigned int lookup_flags)
{
return filename_create(dfd, getname(pathname), path, lookup_flags);
}
EXPORT_SYMBOL(user_path_create);
int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
int error = may_create(dir, dentry);
if (error)
return error;
if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
return -EPERM;
if (!dir->i_op->mknod)
return -EPERM;
error = devcgroup_inode_mknod(mode, dev);
if (error)
return error;
error = security_inode_mknod(dir, dentry, mode, dev);
if (error)
return error;
error = dir->i_op->mknod(dir, dentry, mode, dev);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_mknod);
static int may_mknod(umode_t mode)
{
switch (mode & S_IFMT) {
case S_IFREG:
case S_IFCHR:
case S_IFBLK:
case S_IFIFO:
case S_IFSOCK:
case 0: /* zero mode translates to S_IFREG */
return 0;
case S_IFDIR:
return -EPERM;
default:
return -EINVAL;
}
}
SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
unsigned, dev)
{
struct dentry *dentry;
struct path path;
int error;
unsigned int lookup_flags = 0;
error = may_mknod(mode);
if (error)
return error;
retry:
dentry = user_path_create(dfd, filename, &path, lookup_flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
if (!IS_POSIXACL(path.dentry->d_inode))
mode &= ~current_umask();
error = security_path_mknod(&path, dentry, mode, dev);
if (error)
goto out;
switch (mode & S_IFMT) {
case 0: case S_IFREG:
error = vfs_create(path.dentry->d_inode,dentry,mode,true);
break;
case S_IFCHR: case S_IFBLK:
error = vfs_mknod(path.dentry->d_inode,dentry,mode,
new_decode_dev(dev));
break;
case S_IFIFO: case S_IFSOCK:
error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
break;
}
out:
done_path_create(&path, dentry);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
{
return sys_mknodat(AT_FDCWD, filename, mode, dev);
}
int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int error = may_create(dir, dentry);
unsigned max_links = dir->i_sb->s_max_links;
if (error)
return error;
if (!dir->i_op->mkdir)
return -EPERM;
mode &= (S_IRWXUGO|S_ISVTX);
error = security_inode_mkdir(dir, dentry, mode);
if (error)
return error;
if (max_links && dir->i_nlink >= max_links)
return -EMLINK;
error = dir->i_op->mkdir(dir, dentry, mode);
if (!error)
fsnotify_mkdir(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_mkdir);
SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
{
struct dentry *dentry;
struct path path;
int error;
unsigned int lookup_flags = LOOKUP_DIRECTORY;
retry:
dentry = user_path_create(dfd, pathname, &path, lookup_flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
if (!IS_POSIXACL(path.dentry->d_inode))
mode &= ~current_umask();
error = security_path_mkdir(&path, dentry, mode);
if (!error)
error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
done_path_create(&path, dentry);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
{
return sys_mkdirat(AT_FDCWD, pathname, mode);
}
int vfs_rmdir(struct inode *dir, struct dentry *dentry)
{
int error = may_delete(dir, dentry, 1);
if (error)
return error;
if (!dir->i_op->rmdir)
return -EPERM;
dget(dentry);
inode_lock(dentry->d_inode);
error = -EBUSY;
if (is_local_mountpoint(dentry))
goto out;
error = security_inode_rmdir(dir, dentry);
if (error)
goto out;
shrink_dcache_parent(dentry);
error = dir->i_op->rmdir(dir, dentry);
if (error)
goto out;
dentry->d_inode->i_flags |= S_DEAD;
dont_mount(dentry);
detach_mounts(dentry);
out:
inode_unlock(dentry->d_inode);
dput(dentry);
if (!error)
d_delete(dentry);
return error;
}
EXPORT_SYMBOL(vfs_rmdir);
static long do_rmdir(int dfd, const char __user *pathname)
{
int error = 0;
struct filename *name;
struct dentry *dentry;
struct path path;
struct qstr last;
int type;
unsigned int lookup_flags = 0;
retry:
name = user_path_parent(dfd, pathname,
&path, &last, &type, lookup_flags);
if (IS_ERR(name))
return PTR_ERR(name);
switch (type) {
case LAST_DOTDOT:
error = -ENOTEMPTY;
goto exit1;
case LAST_DOT:
error = -EINVAL;
goto exit1;
case LAST_ROOT:
error = -EBUSY;
goto exit1;
}
error = mnt_want_write(path.mnt);
if (error)
goto exit1;
inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
dentry = __lookup_hash(&last, path.dentry, lookup_flags);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto exit2;
if (!dentry->d_inode) {
error = -ENOENT;
goto exit3;
}
error = security_path_rmdir(&path, dentry);
if (error)
goto exit3;
error = vfs_rmdir(path.dentry->d_inode, dentry);
exit3:
dput(dentry);
exit2:
inode_unlock(path.dentry->d_inode);
mnt_drop_write(path.mnt);
exit1:
path_put(&path);
putname(name);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
{
return do_rmdir(AT_FDCWD, pathname);
}
/**
* vfs_unlink - unlink a filesystem object
* @dir: parent directory
* @dentry: victim
* @delegated_inode: returns victim inode, if the inode is delegated.
*
* The caller must hold dir->i_mutex.
*
* If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
* return a reference to the inode in delegated_inode. The caller
* should then break the delegation on that inode and retry. Because
* breaking a delegation may take a long time, the caller should drop
* dir->i_mutex before doing so.
*
* Alternatively, a caller may pass NULL for delegated_inode. This may
* be appropriate for callers that expect the underlying filesystem not
* to be NFS exported.
*/
int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
{
struct inode *target = dentry->d_inode;
int error = may_delete(dir, dentry, 0);
if (error)
return error;
if (!dir->i_op->unlink)
return -EPERM;
inode_lock(target);
if (is_local_mountpoint(dentry))
error = -EBUSY;
else {
error = security_inode_unlink(dir, dentry);
if (!error) {
error = try_break_deleg(target, delegated_inode);
if (error)
goto out;
error = dir->i_op->unlink(dir, dentry);
if (!error) {
dont_mount(dentry);
detach_mounts(dentry);
}
}
}
out:
inode_unlock(target);
/* We don't d_delete() NFS sillyrenamed files--they still exist. */
if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
fsnotify_link_count(target);
d_delete(dentry);
}
return error;
}
EXPORT_SYMBOL(vfs_unlink);
/*
* Make sure that the actual truncation of the file will occur outside its
* directory's i_mutex. Truncate can take a long time if there is a lot of
* writeout happening, and we don't want to prevent access to the directory
* while waiting on the I/O.
*/
static long do_unlinkat(int dfd, const char __user *pathname)
{
int error;
struct filename *name;
struct dentry *dentry;
struct path path;
struct qstr last;
int type;
struct inode *inode = NULL;
struct inode *delegated_inode = NULL;
unsigned int lookup_flags = 0;
retry:
name = user_path_parent(dfd, pathname,
&path, &last, &type, lookup_flags);
if (IS_ERR(name))
return PTR_ERR(name);
error = -EISDIR;
if (type != LAST_NORM)
goto exit1;
error = mnt_want_write(path.mnt);
if (error)
goto exit1;
retry_deleg:
inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
dentry = __lookup_hash(&last, path.dentry, lookup_flags);
error = PTR_ERR(dentry);
if (!IS_ERR(dentry)) {
/* Why not before? Because we want correct error value */
if (last.name[last.len])
goto slashes;
inode = dentry->d_inode;
if (d_is_negative(dentry))
goto slashes;
ihold(inode);
error = security_path_unlink(&path, dentry);
if (error)
goto exit2;
error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
exit2:
dput(dentry);
}
inode_unlock(path.dentry->d_inode);
if (inode)
iput(inode); /* truncate the inode here */
inode = NULL;
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
mnt_drop_write(path.mnt);
exit1:
path_put(&path);
putname(name);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
inode = NULL;
goto retry;
}
return error;
slashes:
if (d_is_negative(dentry))
error = -ENOENT;
else if (d_is_dir(dentry))
error = -EISDIR;
else
error = -ENOTDIR;
goto exit2;
}
SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
{
if ((flag & ~AT_REMOVEDIR) != 0)
return -EINVAL;
if (flag & AT_REMOVEDIR)
return do_rmdir(dfd, pathname);
return do_unlinkat(dfd, pathname);
}
SYSCALL_DEFINE1(unlink, const char __user *, pathname)
{
return do_unlinkat(AT_FDCWD, pathname);
}
int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
{
int error = may_create(dir, dentry);
if (error)
return error;
if (!dir->i_op->symlink)
return -EPERM;
error = security_inode_symlink(dir, dentry, oldname);
if (error)
return error;
error = dir->i_op->symlink(dir, dentry, oldname);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_symlink);
SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
int, newdfd, const char __user *, newname)
{
int error;
struct filename *from;
struct dentry *dentry;
struct path path;
unsigned int lookup_flags = 0;
from = getname(oldname);
if (IS_ERR(from))
return PTR_ERR(from);
retry:
dentry = user_path_create(newdfd, newname, &path, lookup_flags);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto out_putname;
error = security_path_symlink(&path, dentry, from->name);
if (!error)
error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
done_path_create(&path, dentry);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
out_putname:
putname(from);
return error;
}
SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
{
return sys_symlinkat(oldname, AT_FDCWD, newname);
}
/**
* vfs_link - create a new link
* @old_dentry: object to be linked
* @dir: new parent
* @new_dentry: where to create the new link
* @delegated_inode: returns inode needing a delegation break
*
* The caller must hold dir->i_mutex
*
* If vfs_link discovers a delegation on the to-be-linked file in need
* of breaking, it will return -EWOULDBLOCK and return a reference to the
* inode in delegated_inode. The caller should then break the delegation
* and retry. Because breaking a delegation may take a long time, the
* caller should drop the i_mutex before doing so.
*
* Alternatively, a caller may pass NULL for delegated_inode. This may
* be appropriate for callers that expect the underlying filesystem not
* to be NFS exported.
*/
int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
{
struct inode *inode = old_dentry->d_inode;
unsigned max_links = dir->i_sb->s_max_links;
int error;
if (!inode)
return -ENOENT;
error = may_create(dir, new_dentry);
if (error)
return error;
if (dir->i_sb != inode->i_sb)
return -EXDEV;
/*
* A link to an append-only or immutable file cannot be created.
*/
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return -EPERM;
if (!dir->i_op->link)
return -EPERM;
if (S_ISDIR(inode->i_mode))
return -EPERM;
error = security_inode_link(old_dentry, dir, new_dentry);
if (error)
return error;
inode_lock(inode);
/* Make sure we don't allow creating hardlink to an unlinked file */
if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
error = -ENOENT;
else if (max_links && inode->i_nlink >= max_links)
error = -EMLINK;
else {
error = try_break_deleg(inode, delegated_inode);
if (!error)
error = dir->i_op->link(old_dentry, dir, new_dentry);
}
if (!error && (inode->i_state & I_LINKABLE)) {
spin_lock(&inode->i_lock);
inode->i_state &= ~I_LINKABLE;
spin_unlock(&inode->i_lock);
}
inode_unlock(inode);
if (!error)
fsnotify_link(dir, inode, new_dentry);
return error;
}
EXPORT_SYMBOL(vfs_link);
/*
* Hardlinks are often used in delicate situations. We avoid
* security-related surprises by not following symlinks on the
* newname. --KAB
*
* We don't follow them on the oldname either to be compatible
* with linux 2.0, and to avoid hard-linking to directories
* and other special files. --ADM
*/
SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
int, newdfd, const char __user *, newname, int, flags)
{
struct dentry *new_dentry;
struct path old_path, new_path;
struct inode *delegated_inode = NULL;
int how = 0;
int error;
if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
return -EINVAL;
/*
* To use null names we require CAP_DAC_READ_SEARCH
* This ensures that not everyone will be able to create
* handlink using the passed filedescriptor.
*/
if (flags & AT_EMPTY_PATH) {
if (!capable(CAP_DAC_READ_SEARCH))
return -ENOENT;
how = LOOKUP_EMPTY;
}
if (flags & AT_SYMLINK_FOLLOW)
how |= LOOKUP_FOLLOW;
retry:
error = user_path_at(olddfd, oldname, how, &old_path);
if (error)
return error;
new_dentry = user_path_create(newdfd, newname, &new_path,
(how & LOOKUP_REVAL));
error = PTR_ERR(new_dentry);
if (IS_ERR(new_dentry))
goto out;
error = -EXDEV;
if (old_path.mnt != new_path.mnt)
goto out_dput;
error = may_linkat(&old_path);
if (unlikely(error))
goto out_dput;
error = security_path_link(old_path.dentry, &new_path, new_dentry);
if (error)
goto out_dput;
error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
out_dput:
done_path_create(&new_path, new_dentry);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error) {
path_put(&old_path);
goto retry;
}
}
if (retry_estale(error, how)) {
path_put(&old_path);
how |= LOOKUP_REVAL;
goto retry;
}
out:
path_put(&old_path);
return error;
}
SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
{
return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
}
/**
* vfs_rename - rename a filesystem object
* @old_dir: parent of source
* @old_dentry: source
* @new_dir: parent of destination
* @new_dentry: destination
* @delegated_inode: returns an inode needing a delegation break
* @flags: rename flags
*
* The caller must hold multiple mutexes--see lock_rename()).
*
* If vfs_rename discovers a delegation in need of breaking at either
* the source or destination, it will return -EWOULDBLOCK and return a
* reference to the inode in delegated_inode. The caller should then
* break the delegation and retry. Because breaking a delegation may
* take a long time, the caller should drop all locks before doing
* so.
*
* Alternatively, a caller may pass NULL for delegated_inode. This may
* be appropriate for callers that expect the underlying filesystem not
* to be NFS exported.
*
* The worst of all namespace operations - renaming directory. "Perverted"
* doesn't even start to describe it. Somebody in UCB had a heck of a trip...
* Problems:
* a) we can get into loop creation.
* b) race potential - two innocent renames can create a loop together.
* That's where 4.4 screws up. Current fix: serialization on
* sb->s_vfs_rename_mutex. We might be more accurate, but that's another
* story.
* c) we have to lock _four_ objects - parents and victim (if it exists),
* and source (if it is not a directory).
* And that - after we got ->i_mutex on parents (until then we don't know
* whether the target exists). Solution: try to be smart with locking
* order for inodes. We rely on the fact that tree topology may change
* only under ->s_vfs_rename_mutex _and_ that parent of the object we
* move will be locked. Thus we can rank directories by the tree
* (ancestors first) and rank all non-directories after them.
* That works since everybody except rename does "lock parent, lookup,
* lock child" and rename is under ->s_vfs_rename_mutex.
* HOWEVER, it relies on the assumption that any object with ->lookup()
* has no more than 1 dentry. If "hybrid" objects will ever appear,
* we'd better make sure that there's no link(2) for them.
* d) conversion from fhandle to dentry may come in the wrong moment - when
* we are removing the target. Solution: we will have to grab ->i_mutex
* in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
* ->i_mutex on parents, which works but leads to some truly excessive
* locking].
*/
int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
struct inode **delegated_inode, unsigned int flags)
{
int error;
bool is_dir = d_is_dir(old_dentry);
const unsigned char *old_name;
struct inode *source = old_dentry->d_inode;
struct inode *target = new_dentry->d_inode;
bool new_is_dir = false;
unsigned max_links = new_dir->i_sb->s_max_links;
/*
* Check source == target.
* On overlayfs need to look at underlying inodes.
*/
if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
return 0;
error = may_delete(old_dir, old_dentry, is_dir);
if (error)
return error;
if (!target) {
error = may_create(new_dir, new_dentry);
} else {
new_is_dir = d_is_dir(new_dentry);
if (!(flags & RENAME_EXCHANGE))
error = may_delete(new_dir, new_dentry, is_dir);
else
error = may_delete(new_dir, new_dentry, new_is_dir);
}
if (error)
return error;
if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
return -EPERM;
if (flags && !old_dir->i_op->rename2)
return -EINVAL;
/*
* If we are going to change the parent - check write permissions,
* we'll need to flip '..'.
*/
if (new_dir != old_dir) {
if (is_dir) {
error = inode_permission(source, MAY_WRITE);
if (error)
return error;
}
if ((flags & RENAME_EXCHANGE) && new_is_dir) {
error = inode_permission(target, MAY_WRITE);
if (error)
return error;
}
}
error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
flags);
if (error)
return error;
old_name = fsnotify_oldname_init(old_dentry->d_name.name);
dget(new_dentry);
if (!is_dir || (flags & RENAME_EXCHANGE))
lock_two_nondirectories(source, target);
else if (target)
inode_lock(target);
error = -EBUSY;
if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
goto out;
if (max_links && new_dir != old_dir) {
error = -EMLINK;
if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
goto out;
if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
old_dir->i_nlink >= max_links)
goto out;
}
if (is_dir && !(flags & RENAME_EXCHANGE) && target)
shrink_dcache_parent(new_dentry);
if (!is_dir) {
error = try_break_deleg(source, delegated_inode);
if (error)
goto out;
}
if (target && !new_is_dir) {
error = try_break_deleg(target, delegated_inode);
if (error)
goto out;
}
if (!old_dir->i_op->rename2) {
error = old_dir->i_op->rename(old_dir, old_dentry,
new_dir, new_dentry);
} else {
WARN_ON(old_dir->i_op->rename != NULL);
error = old_dir->i_op->rename2(old_dir, old_dentry,
new_dir, new_dentry, flags);
}
if (error)
goto out;
if (!(flags & RENAME_EXCHANGE) && target) {
if (is_dir)
target->i_flags |= S_DEAD;
dont_mount(new_dentry);
detach_mounts(new_dentry);
}
if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
if (!(flags & RENAME_EXCHANGE))
d_move(old_dentry, new_dentry);
else
d_exchange(old_dentry, new_dentry);
}
out:
if (!is_dir || (flags & RENAME_EXCHANGE))
unlock_two_nondirectories(source, target);
else if (target)
inode_unlock(target);
dput(new_dentry);
if (!error) {
fsnotify_move(old_dir, new_dir, old_name, is_dir,
!(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
if (flags & RENAME_EXCHANGE) {
fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
new_is_dir, NULL, new_dentry);
}
}
fsnotify_oldname_free(old_name);
return error;
}
EXPORT_SYMBOL(vfs_rename);
SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
int, newdfd, const char __user *, newname, unsigned int, flags)
{
struct dentry *old_dentry, *new_dentry;
struct dentry *trap;
struct path old_path, new_path;
struct qstr old_last, new_last;
int old_type, new_type;
struct inode *delegated_inode = NULL;
struct filename *from;
struct filename *to;
unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
bool should_retry = false;
int error;
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
(flags & RENAME_EXCHANGE))
return -EINVAL;
if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
return -EPERM;
if (flags & RENAME_EXCHANGE)
target_flags = 0;
retry:
from = user_path_parent(olddfd, oldname,
&old_path, &old_last, &old_type, lookup_flags);
if (IS_ERR(from)) {
error = PTR_ERR(from);
goto exit;
}
to = user_path_parent(newdfd, newname,
&new_path, &new_last, &new_type, lookup_flags);
if (IS_ERR(to)) {
error = PTR_ERR(to);
goto exit1;
}
error = -EXDEV;
if (old_path.mnt != new_path.mnt)
goto exit2;
error = -EBUSY;
if (old_type != LAST_NORM)
goto exit2;
if (flags & RENAME_NOREPLACE)
error = -EEXIST;
if (new_type != LAST_NORM)
goto exit2;
error = mnt_want_write(old_path.mnt);
if (error)
goto exit2;
retry_deleg:
trap = lock_rename(new_path.dentry, old_path.dentry);
old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
error = PTR_ERR(old_dentry);
if (IS_ERR(old_dentry))
goto exit3;
/* source must exist */
error = -ENOENT;
if (d_is_negative(old_dentry))
goto exit4;
new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
error = PTR_ERR(new_dentry);
if (IS_ERR(new_dentry))
goto exit4;
error = -EEXIST;
if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
goto exit5;
if (flags & RENAME_EXCHANGE) {
error = -ENOENT;
if (d_is_negative(new_dentry))
goto exit5;
if (!d_is_dir(new_dentry)) {
error = -ENOTDIR;
if (new_last.name[new_last.len])
goto exit5;
}
}
/* unless the source is a directory trailing slashes give -ENOTDIR */
if (!d_is_dir(old_dentry)) {
error = -ENOTDIR;
if (old_last.name[old_last.len])
goto exit5;
if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
goto exit5;
}
/* source should not be ancestor of target */
error = -EINVAL;
if (old_dentry == trap)
goto exit5;
/* target should not be an ancestor of source */
if (!(flags & RENAME_EXCHANGE))
error = -ENOTEMPTY;
if (new_dentry == trap)
goto exit5;
error = security_path_rename(&old_path, old_dentry,
&new_path, new_dentry, flags);
if (error)
goto exit5;
error = vfs_rename(old_path.dentry->d_inode, old_dentry,
new_path.dentry->d_inode, new_dentry,
&delegated_inode, flags);
exit5:
dput(new_dentry);
exit4:
dput(old_dentry);
exit3:
unlock_rename(new_path.dentry, old_path.dentry);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
mnt_drop_write(old_path.mnt);
exit2:
if (retry_estale(error, lookup_flags))
should_retry = true;
path_put(&new_path);
putname(to);
exit1:
path_put(&old_path);
putname(from);
if (should_retry) {
should_retry = false;
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
exit:
return error;
}
SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
int, newdfd, const char __user *, newname)
{
return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
}
SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
{
return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
}
int vfs_whiteout(struct inode *dir, struct dentry *dentry)
{
int error = may_create(dir, dentry);
if (error)
return error;
if (!dir->i_op->mknod)
return -EPERM;
return dir->i_op->mknod(dir, dentry,
S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
}
EXPORT_SYMBOL(vfs_whiteout);
int readlink_copy(char __user *buffer, int buflen, const char *link)
{
int len = PTR_ERR(link);
if (IS_ERR(link))
goto out;
len = strlen(link);
if (len > (unsigned) buflen)
len = buflen;
if (copy_to_user(buffer, link, len))
len = -EFAULT;
out:
return len;
}
EXPORT_SYMBOL(readlink_copy);
/*
* A helper for ->readlink(). This should be used *ONLY* for symlinks that
* have ->get_link() not calling nd_jump_link(). Using (or not using) it
* for any given inode is up to filesystem.
*/
int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
{
DEFINE_DELAYED_CALL(done);
struct inode *inode = d_inode(dentry);
const char *link = inode->i_link;
int res;
if (!link) {
link = inode->i_op->get_link(dentry, inode, &done);
if (IS_ERR(link))
return PTR_ERR(link);
}
res = readlink_copy(buffer, buflen, link);
do_delayed_call(&done);
return res;
}
EXPORT_SYMBOL(generic_readlink);
/* get the link contents into pagecache */
const char *page_get_link(struct dentry *dentry, struct inode *inode,
struct delayed_call *callback)
{
char *kaddr;
struct page *page;
struct address_space *mapping = inode->i_mapping;
if (!dentry) {
page = find_get_page(mapping, 0);
if (!page)
return ERR_PTR(-ECHILD);
if (!PageUptodate(page)) {
put_page(page);
return ERR_PTR(-ECHILD);
}
} else {
page = read_mapping_page(mapping, 0, NULL);
if (IS_ERR(page))
return (char*)page;
}
set_delayed_call(callback, page_put_link, page);
BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
kaddr = page_address(page);
nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
return kaddr;
}
EXPORT_SYMBOL(page_get_link);
void page_put_link(void *arg)
{
put_page(arg);
}
EXPORT_SYMBOL(page_put_link);
int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
{
DEFINE_DELAYED_CALL(done);
int res = readlink_copy(buffer, buflen,
page_get_link(dentry, d_inode(dentry),
&done));
do_delayed_call(&done);
return res;
}
EXPORT_SYMBOL(page_readlink);
/*
* The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
*/
int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
void *fsdata;
int err;
unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
if (nofs)
flags |= AOP_FLAG_NOFS;
retry:
err = pagecache_write_begin(NULL, mapping, 0, len-1,
flags, &page, &fsdata);
if (err)
goto fail;
memcpy(page_address(page), symname, len-1);
err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
page, fsdata);
if (err < 0)
goto fail;
if (err < len-1)
goto retry;
mark_inode_dirty(inode);
return 0;
fail:
return err;
}
EXPORT_SYMBOL(__page_symlink);
int page_symlink(struct inode *inode, const char *symname, int len)
{
return __page_symlink(inode, symname, len,
!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
}
EXPORT_SYMBOL(page_symlink);
const struct inode_operations page_symlink_inode_operations = {
.readlink = generic_readlink,
.get_link = page_get_link,
};
EXPORT_SYMBOL(page_symlink_inode_operations);