621b195515
This change adds support for a new "super" bit in the PTE, using the new arch_make_huge_pte() method. The Tilera hypervisor sees the bit set at a given level of the page table and gangs together 4, 16, or 64 consecutive pages from that level of the hierarchy to create a larger TLB entry. One extra "super" page size can be specified at each of the three levels of the page table hierarchy on tilegx, using the "hugepagesz" argument on the boot command line. A new hypervisor API is added to allow Linux to tell the hypervisor how many PTEs to gang together at each level of the page table. To allow pre-allocating huge pages larger than the buddy allocator can handle, this change modifies the Tilera bootmem support to put all of memory on tilegx platforms into bootmem. As part of this change I eliminate the vestigial CONFIG_HIGHPTE support, which never worked anyway, and eliminate the hv_page_size() API in favor of the standard vma_kernel_pagesize() API. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
545 lines
16 KiB
C
545 lines
16 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* This file contains the functions and defines necessary to modify and use
|
|
* the TILE page table tree.
|
|
*/
|
|
|
|
#ifndef _ASM_TILE_PGTABLE_H
|
|
#define _ASM_TILE_PGTABLE_H
|
|
|
|
#include <hv/hypervisor.h>
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/pfn.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/page.h>
|
|
|
|
struct mm_struct;
|
|
struct vm_area_struct;
|
|
|
|
/*
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
|
* for zero-mapped memory areas etc..
|
|
*/
|
|
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
|
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
|
|
|
extern pgd_t swapper_pg_dir[];
|
|
extern pgprot_t swapper_pgprot;
|
|
extern struct kmem_cache *pgd_cache;
|
|
extern spinlock_t pgd_lock;
|
|
extern struct list_head pgd_list;
|
|
|
|
/*
|
|
* The very last slots in the pgd_t are for addresses unusable by Linux
|
|
* (pgd_addr_invalid() returns true). So we use them for the list structure.
|
|
* The x86 code we are modelled on uses the page->private/index fields
|
|
* (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
|
|
* our pgds are so much smaller than a page, it seems a waste to
|
|
* spend a whole page on each pgd.
|
|
*/
|
|
#define PGD_LIST_OFFSET \
|
|
((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
|
|
#define pgd_to_list(pgd) \
|
|
((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
|
|
#define list_to_pgd(list) \
|
|
((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
|
|
|
|
extern void pgtable_cache_init(void);
|
|
extern void paging_init(void);
|
|
extern void set_page_homes(void);
|
|
|
|
#define FIRST_USER_ADDRESS 0
|
|
|
|
#define _PAGE_PRESENT HV_PTE_PRESENT
|
|
#define _PAGE_HUGE_PAGE HV_PTE_PAGE
|
|
#define _PAGE_SUPER_PAGE HV_PTE_SUPER
|
|
#define _PAGE_READABLE HV_PTE_READABLE
|
|
#define _PAGE_WRITABLE HV_PTE_WRITABLE
|
|
#define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE
|
|
#define _PAGE_ACCESSED HV_PTE_ACCESSED
|
|
#define _PAGE_DIRTY HV_PTE_DIRTY
|
|
#define _PAGE_GLOBAL HV_PTE_GLOBAL
|
|
#define _PAGE_USER HV_PTE_USER
|
|
|
|
/*
|
|
* All the "standard" bits. Cache-control bits are managed elsewhere.
|
|
* This is used to test for valid level-2 page table pointers by checking
|
|
* all the bits, and to mask away the cache control bits for mprotect.
|
|
*/
|
|
#define _PAGE_ALL (\
|
|
_PAGE_PRESENT | \
|
|
_PAGE_HUGE_PAGE | \
|
|
_PAGE_SUPER_PAGE | \
|
|
_PAGE_READABLE | \
|
|
_PAGE_WRITABLE | \
|
|
_PAGE_EXECUTABLE | \
|
|
_PAGE_ACCESSED | \
|
|
_PAGE_DIRTY | \
|
|
_PAGE_GLOBAL | \
|
|
_PAGE_USER \
|
|
)
|
|
|
|
#define PAGE_NONE \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
|
|
#define PAGE_SHARED \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
|
|
_PAGE_USER | _PAGE_ACCESSED)
|
|
|
|
#define PAGE_SHARED_EXEC \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
|
|
_PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
|
|
#define PAGE_COPY_NOEXEC \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
|
|
#define PAGE_COPY_EXEC \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
|
|
_PAGE_READABLE | _PAGE_EXECUTABLE)
|
|
#define PAGE_COPY \
|
|
PAGE_COPY_NOEXEC
|
|
#define PAGE_READONLY \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
|
|
#define PAGE_READONLY_EXEC \
|
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
|
|
_PAGE_READABLE | _PAGE_EXECUTABLE)
|
|
|
|
#define _PAGE_KERNEL_RO \
|
|
(_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
|
|
#define _PAGE_KERNEL \
|
|
(_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
|
|
#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
|
|
|
|
#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
|
|
#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
|
|
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
|
|
|
|
#define page_to_kpgprot(p) PAGE_KERNEL
|
|
|
|
/*
|
|
* We could tighten these up, but for now writable or executable
|
|
* implies readable.
|
|
*/
|
|
#define __P000 PAGE_NONE
|
|
#define __P001 PAGE_READONLY
|
|
#define __P010 PAGE_COPY /* this is write-only, which we won't support */
|
|
#define __P011 PAGE_COPY
|
|
#define __P100 PAGE_READONLY_EXEC
|
|
#define __P101 PAGE_READONLY_EXEC
|
|
#define __P110 PAGE_COPY_EXEC
|
|
#define __P111 PAGE_COPY_EXEC
|
|
|
|
#define __S000 PAGE_NONE
|
|
#define __S001 PAGE_READONLY
|
|
#define __S010 PAGE_SHARED
|
|
#define __S011 PAGE_SHARED
|
|
#define __S100 PAGE_READONLY_EXEC
|
|
#define __S101 PAGE_READONLY_EXEC
|
|
#define __S110 PAGE_SHARED_EXEC
|
|
#define __S111 PAGE_SHARED_EXEC
|
|
|
|
/*
|
|
* All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
|
|
* and PAGE_HUGE_PAGE, which must be one and zero, respectively.
|
|
* We set the ignored bits to zero.
|
|
*/
|
|
#define _PAGE_TABLE _PAGE_PRESENT
|
|
|
|
/* Inherit the caching flags from the old protection bits. */
|
|
#define pgprot_modify(oldprot, newprot) \
|
|
(pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
|
|
|
|
/* Just setting the PFN to zero suffices. */
|
|
#define pte_pgprot(x) hv_pte_set_pa((x), 0)
|
|
|
|
/*
|
|
* For PTEs and PDEs, we must clear the Present bit first when
|
|
* clearing a page table entry, so clear the bottom half first and
|
|
* enforce ordering with a barrier.
|
|
*/
|
|
static inline void __pte_clear(pte_t *ptep)
|
|
{
|
|
#ifdef __tilegx__
|
|
ptep->val = 0;
|
|
#else
|
|
u32 *tmp = (u32 *)ptep;
|
|
tmp[0] = 0;
|
|
barrier();
|
|
tmp[1] = 0;
|
|
#endif
|
|
}
|
|
#define pte_clear(mm, addr, ptep) __pte_clear(ptep)
|
|
|
|
/*
|
|
* The following only work if pte_present() is true.
|
|
* Undefined behaviour if not..
|
|
*/
|
|
#define pte_present hv_pte_get_present
|
|
#define pte_mknotpresent hv_pte_clear_present
|
|
#define pte_user hv_pte_get_user
|
|
#define pte_read hv_pte_get_readable
|
|
#define pte_dirty hv_pte_get_dirty
|
|
#define pte_young hv_pte_get_accessed
|
|
#define pte_write hv_pte_get_writable
|
|
#define pte_exec hv_pte_get_executable
|
|
#define pte_huge hv_pte_get_page
|
|
#define pte_super hv_pte_get_super
|
|
#define pte_rdprotect hv_pte_clear_readable
|
|
#define pte_exprotect hv_pte_clear_executable
|
|
#define pte_mkclean hv_pte_clear_dirty
|
|
#define pte_mkold hv_pte_clear_accessed
|
|
#define pte_wrprotect hv_pte_clear_writable
|
|
#define pte_mksmall hv_pte_clear_page
|
|
#define pte_mkread hv_pte_set_readable
|
|
#define pte_mkexec hv_pte_set_executable
|
|
#define pte_mkdirty hv_pte_set_dirty
|
|
#define pte_mkyoung hv_pte_set_accessed
|
|
#define pte_mkwrite hv_pte_set_writable
|
|
#define pte_mkhuge hv_pte_set_page
|
|
#define pte_mksuper hv_pte_set_super
|
|
|
|
#define pte_special(pte) 0
|
|
#define pte_mkspecial(pte) (pte)
|
|
|
|
/*
|
|
* Use some spare bits in the PTE for user-caching tags.
|
|
*/
|
|
#define pte_set_forcecache hv_pte_set_client0
|
|
#define pte_get_forcecache hv_pte_get_client0
|
|
#define pte_clear_forcecache hv_pte_clear_client0
|
|
#define pte_set_anyhome hv_pte_set_client1
|
|
#define pte_get_anyhome hv_pte_get_client1
|
|
#define pte_clear_anyhome hv_pte_clear_client1
|
|
|
|
/*
|
|
* A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
|
|
*/
|
|
#define pte_migrating hv_pte_get_migrating
|
|
#define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
|
|
#define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
|
|
|
|
#define pte_ERROR(e) \
|
|
pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
|
|
#define pgd_ERROR(e) \
|
|
pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
/* Return PA and protection info for a given kernel VA. */
|
|
int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte);
|
|
|
|
/*
|
|
* __set_pte() ensures we write the 64-bit PTE with 32-bit words in
|
|
* the right order on 32-bit platforms and also allows us to write
|
|
* hooks to check valid PTEs, etc., if we want.
|
|
*/
|
|
void __set_pte(pte_t *ptep, pte_t pte);
|
|
|
|
/*
|
|
* set_pte() sets the given PTE and also sanity-checks the
|
|
* requested PTE against the page homecaching. Unspecified parts
|
|
* of the PTE are filled in when it is written to memory, i.e. all
|
|
* caching attributes if "!forcecache", or the home cpu if "anyhome".
|
|
*/
|
|
extern void set_pte(pte_t *ptep, pte_t pte);
|
|
#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
|
|
#define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
|
|
|
|
#define pte_page(x) pfn_to_page(pte_pfn(x))
|
|
|
|
static inline int pte_none(pte_t pte)
|
|
{
|
|
return !pte.val;
|
|
}
|
|
|
|
static inline unsigned long pte_pfn(pte_t pte)
|
|
{
|
|
return PFN_DOWN(hv_pte_get_pa(pte));
|
|
}
|
|
|
|
/* Set or get the remote cache cpu in a pgprot with remote caching. */
|
|
extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
|
|
extern int get_remote_cache_cpu(pgprot_t prot);
|
|
|
|
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
|
|
{
|
|
return hv_pte_set_pa(prot, PFN_PHYS(pfn));
|
|
}
|
|
|
|
/* Support for priority mappings. */
|
|
extern void start_mm_caching(struct mm_struct *mm);
|
|
extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
|
|
|
|
/*
|
|
* Support non-linear file mappings (see sys_remap_file_pages).
|
|
* This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
|
|
* file offset in the 32 high bits.
|
|
*/
|
|
#define _PAGE_FILE HV_PTE_CLIENT1
|
|
#define PTE_FILE_MAX_BITS 32
|
|
#define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
|
|
#define pte_to_pgoff(pte) ((pte).val >> 32)
|
|
#define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
|
|
|
|
/*
|
|
* Encode and de-code a swap entry (see <linux/swapops.h>).
|
|
* We put the swap file type+offset in the 32 high bits;
|
|
* I believe we can just leave the low bits clear.
|
|
*/
|
|
#define __swp_type(swp) ((swp).val & 0x1f)
|
|
#define __swp_offset(swp) ((swp).val >> 5)
|
|
#define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
|
|
#define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*/
|
|
|
|
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
|
|
|
|
/*
|
|
* If we are doing an mprotect(), just accept the new vma->vm_page_prot
|
|
* value and combine it with the PFN from the old PTE to get a new PTE.
|
|
*/
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
return pfn_pte(pte_pfn(pte), newprot);
|
|
}
|
|
|
|
/*
|
|
* The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
|
|
*
|
|
* This macro returns the index of the entry in the pgd page which would
|
|
* control the given virtual address.
|
|
*/
|
|
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
|
|
|
|
/*
|
|
* pgd_offset() returns a (pgd_t *)
|
|
* pgd_index() is used get the offset into the pgd page's array of pgd_t's.
|
|
*/
|
|
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
|
|
|
|
/*
|
|
* A shortcut which implies the use of the kernel's pgd, instead
|
|
* of a process's.
|
|
*/
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
|
#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
|
|
#define pte_unmap(pte) do { } while (0)
|
|
|
|
/* Clear a non-executable kernel PTE and flush it from the TLB. */
|
|
#define kpte_clear_flush(ptep, vaddr) \
|
|
do { \
|
|
pte_clear(&init_mm, (vaddr), (ptep)); \
|
|
local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
|
|
} while (0)
|
|
|
|
/*
|
|
* The kernel page tables contain what we need, and we flush when we
|
|
* change specific page table entries.
|
|
*/
|
|
#define update_mmu_cache(vma, address, pte) do { } while (0)
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
#define kern_addr_valid(addr) (1)
|
|
#endif /* CONFIG_FLATMEM */
|
|
|
|
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
|
|
remap_pfn_range(vma, vaddr, pfn, size, prot)
|
|
|
|
extern void vmalloc_sync_all(void);
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#ifdef __tilegx__
|
|
#include <asm/pgtable_64.h>
|
|
#else
|
|
#include <asm/pgtable_32.h>
|
|
#endif
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
static inline int pmd_none(pmd_t pmd)
|
|
{
|
|
/*
|
|
* Only check low word on 32-bit platforms, since it might be
|
|
* out of sync with upper half.
|
|
*/
|
|
return (unsigned long)pmd_val(pmd) == 0;
|
|
}
|
|
|
|
static inline int pmd_present(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) & _PAGE_PRESENT;
|
|
}
|
|
|
|
static inline int pmd_bad(pmd_t pmd)
|
|
{
|
|
return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
|
|
}
|
|
|
|
static inline unsigned long pages_to_mb(unsigned long npg)
|
|
{
|
|
return npg >> (20 - PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
|
|
*
|
|
* This function returns the index of the entry in the pmd which would
|
|
* control the given virtual address.
|
|
*/
|
|
static inline unsigned long pmd_index(unsigned long address)
|
|
{
|
|
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
return ptep_test_and_clear_young(vma, address, pmdp_ptep(pmdp));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
ptep_set_wrprotect(mm, address, pmdp_ptep(pmdp));
|
|
}
|
|
|
|
|
|
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
|
|
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
return pte_pmd(ptep_get_and_clear(mm, address, pmdp_ptep(pmdp)));
|
|
}
|
|
|
|
static inline void __set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
|
{
|
|
set_pte(pmdp_ptep(pmdp), pmd_pte(pmdval));
|
|
}
|
|
|
|
#define set_pmd_at(mm, addr, pmdp, pmdval) __set_pmd(pmdp, pmdval)
|
|
|
|
/* Create a pmd from a PTFN. */
|
|
static inline pmd_t ptfn_pmd(unsigned long ptfn, pgprot_t prot)
|
|
{
|
|
return pte_pmd(hv_pte_set_ptfn(prot, ptfn));
|
|
}
|
|
|
|
/* Return the page-table frame number (ptfn) that a pmd_t points at. */
|
|
#define pmd_ptfn(pmd) hv_pte_get_ptfn(pmd_pte(pmd))
|
|
|
|
/*
|
|
* A given kernel pmd_t maps to a specific virtual address (either a
|
|
* kernel huge page or a kernel pte_t table). Since kernel pte_t
|
|
* tables can be aligned at sub-page granularity, this function can
|
|
* return non-page-aligned pointers, despite its name.
|
|
*/
|
|
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
|
|
{
|
|
phys_addr_t pa =
|
|
(phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
|
|
return (unsigned long)__va(pa);
|
|
}
|
|
|
|
/*
|
|
* A pmd_t points to the base of a huge page or to a pte_t array.
|
|
* If a pte_t array, since we can have multiple per page, we don't
|
|
* have a one-to-one mapping of pmd_t's to pages. However, this is
|
|
* OK for pte_lockptr(), since we just end up with potentially one
|
|
* lock being used for several pte_t arrays.
|
|
*/
|
|
#define pmd_page(pmd) pfn_to_page(PFN_DOWN(HV_PTFN_TO_CPA(pmd_ptfn(pmd))))
|
|
|
|
static inline void pmd_clear(pmd_t *pmdp)
|
|
{
|
|
__pte_clear(pmdp_ptep(pmdp));
|
|
}
|
|
|
|
#define pmd_mknotpresent(pmd) pte_pmd(pte_mknotpresent(pmd_pte(pmd)))
|
|
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
|
|
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
|
|
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
|
|
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
|
|
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
|
|
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
|
|
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
|
|
#define pmd_huge_page(pmd) pte_huge(pmd_pte(pmd))
|
|
#define pmd_mkhuge(pmd) pte_pmd(pte_mkhuge(pmd_pte(pmd)))
|
|
#define __HAVE_ARCH_PMD_WRITE
|
|
|
|
#define pfn_pmd(pfn, pgprot) pte_pmd(pfn_pte((pfn), (pgprot)))
|
|
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
|
|
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
|
|
|
|
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
|
{
|
|
return pfn_pmd(pmd_pfn(pmd), newprot);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define has_transparent_hugepage() 1
|
|
#define pmd_trans_huge pmd_huge_page
|
|
|
|
static inline pmd_t pmd_mksplitting(pmd_t pmd)
|
|
{
|
|
return pte_pmd(hv_pte_set_client2(pmd_pte(pmd)));
|
|
}
|
|
|
|
static inline int pmd_trans_splitting(pmd_t pmd)
|
|
{
|
|
return hv_pte_get_client2(pmd_pte(pmd));
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/*
|
|
* The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
|
|
*
|
|
* This macro returns the index of the entry in the pte page which would
|
|
* control the given virtual address.
|
|
*/
|
|
static inline unsigned long pte_index(unsigned long address)
|
|
{
|
|
return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
|
}
|
|
|
|
static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
|
|
{
|
|
return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
|
|
}
|
|
|
|
#include <asm-generic/pgtable.h>
|
|
|
|
/* Support /proc/NN/pgtable API. */
|
|
struct seq_file;
|
|
int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
|
|
unsigned long vaddr, unsigned long pagesize,
|
|
pte_t *ptep, void **datap);
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_TILE_PGTABLE_H */
|