linux/arch/s390/include/asm/pgtable.h
Heiko Carstens f4815ac6c9 s390/headers: replace __s390x__ with CONFIG_64BIT where possible
Replace __s390x__ with CONFIG_64BIT in all places that are not exported
to userspace or guarded with #ifdef __KERNEL__.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2012-05-24 10:10:10 +02:00

1249 lines
37 KiB
C

/*
* include/asm-s390/pgtable.h
*
* S390 version
* Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Hartmut Penner (hp@de.ibm.com)
* Ulrich Weigand (weigand@de.ibm.com)
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "include/asm-i386/pgtable.h"
*/
#ifndef _ASM_S390_PGTABLE_H
#define _ASM_S390_PGTABLE_H
/*
* The Linux memory management assumes a three-level page table setup. For
* s390 31 bit we "fold" the mid level into the top-level page table, so
* that we physically have the same two-level page table as the s390 mmu
* expects in 31 bit mode. For s390 64 bit we use three of the five levels
* the hardware provides (region first and region second tables are not
* used).
*
* The "pgd_xxx()" functions are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*
* This file contains the functions and defines necessary to modify and use
* the S390 page table tree.
*/
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <asm/bug.h>
#include <asm/page.h>
extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
extern void paging_init(void);
extern void vmem_map_init(void);
extern void fault_init(void);
/*
* The S390 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma, address, ptep) do { } while (0)
/*
* ZERO_PAGE is a global shared page that is always zero; used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;
#define ZERO_PAGE(vaddr) \
(virt_to_page((void *)(empty_zero_page + \
(((unsigned long)(vaddr)) &zero_page_mask))))
#define is_zero_pfn is_zero_pfn
static inline int is_zero_pfn(unsigned long pfn)
{
extern unsigned long zero_pfn;
unsigned long offset_from_zero_pfn = pfn - zero_pfn;
return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
}
#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
#endif /* !__ASSEMBLY__ */
/*
* PMD_SHIFT determines the size of the area a second-level page
* table can map
* PGDIR_SHIFT determines what a third-level page table entry can map
*/
#ifndef CONFIG_64BIT
# define PMD_SHIFT 20
# define PUD_SHIFT 20
# define PGDIR_SHIFT 20
#else /* CONFIG_64BIT */
# define PMD_SHIFT 20
# define PUD_SHIFT 31
# define PGDIR_SHIFT 42
#endif /* CONFIG_64BIT */
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the S390 is two-level, so
* we don't really have any PMD directory physically.
* for S390 segment-table entries are combined to one PGD
* that leads to 1024 pte per pgd
*/
#define PTRS_PER_PTE 256
#ifndef CONFIG_64BIT
#define PTRS_PER_PMD 1
#define PTRS_PER_PUD 1
#else /* CONFIG_64BIT */
#define PTRS_PER_PMD 2048
#define PTRS_PER_PUD 2048
#endif /* CONFIG_64BIT */
#define PTRS_PER_PGD 2048
#define FIRST_USER_ADDRESS 0
#define pte_ERROR(e) \
printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
#define pud_ERROR(e) \
printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
#ifndef __ASSEMBLY__
/*
* The vmalloc area will always be on the topmost area of the kernel
* mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
* which should be enough for any sane case.
* By putting vmalloc at the top, we maximise the gap between physical
* memory and vmalloc to catch misplaced memory accesses. As a side
* effect, this also makes sure that 64 bit module code cannot be used
* as system call address.
*/
extern unsigned long VMALLOC_START;
extern unsigned long VMALLOC_END;
extern struct page *vmemmap;
#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
/*
* A 31 bit pagetable entry of S390 has following format:
* | PFRA | | OS |
* 0 0IP0
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* I Page-Invalid Bit: Page is not available for address-translation
* P Page-Protection Bit: Store access not possible for page
*
* A 31 bit segmenttable entry of S390 has following format:
* | P-table origin | |PTL
* 0 IC
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* C Common-Segment Bit: Segment is not private (PoP 3-30)
* PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
*
* The 31 bit segmenttable origin of S390 has following format:
*
* |S-table origin | | STL |
* X **GPS
* 00000000001111111111222222222233
* 01234567890123456789012345678901
*
* X Space-Switch event:
* G Segment-Invalid Bit: *
* P Private-Space Bit: Segment is not private (PoP 3-30)
* S Storage-Alteration:
* STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
*
* A 64 bit pagetable entry of S390 has following format:
* | PFRA |0IPC| OS |
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Page-Invalid Bit: Page is not available for address-translation
* P Page-Protection Bit: Store access not possible for page
* C Change-bit override: HW is not required to set change bit
*
* A 64 bit segmenttable entry of S390 has following format:
* | P-table origin | TT
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* C Common-Segment Bit: Segment is not private (PoP 3-30)
* P Page-Protection Bit: Store access not possible for page
* TT Type 00
*
* A 64 bit region table entry of S390 has following format:
* | S-table origin | TF TTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* TT Type 01
* TF
* TL Table length
*
* The 64 bit regiontable origin of S390 has following format:
* | region table origon | DTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* X Space-Switch event:
* G Segment-Invalid Bit:
* P Private-Space Bit:
* S Storage-Alteration:
* R Real space
* TL Table-Length:
*
* A storage key has the following format:
* | ACC |F|R|C|0|
* 0 3 4 5 6 7
* ACC: access key
* F : fetch protection bit
* R : referenced bit
* C : changed bit
*/
/* Hardware bits in the page table entry */
#define _PAGE_CO 0x100 /* HW Change-bit override */
#define _PAGE_RO 0x200 /* HW read-only bit */
#define _PAGE_INVALID 0x400 /* HW invalid bit */
/* Software bits in the page table entry */
#define _PAGE_SWT 0x001 /* SW pte type bit t */
#define _PAGE_SWX 0x002 /* SW pte type bit x */
#define _PAGE_SWC 0x004 /* SW pte changed bit (for KVM) */
#define _PAGE_SWR 0x008 /* SW pte referenced bit (for KVM) */
#define _PAGE_SPECIAL 0x010 /* SW associated with special page */
#define __HAVE_ARCH_PTE_SPECIAL
/* Set of bits not changed in pte_modify */
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
/* Six different types of pages. */
#define _PAGE_TYPE_EMPTY 0x400
#define _PAGE_TYPE_NONE 0x401
#define _PAGE_TYPE_SWAP 0x403
#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
#define _PAGE_TYPE_RO 0x200
#define _PAGE_TYPE_RW 0x000
/*
* Only four types for huge pages, using the invalid bit and protection bit
* of a segment table entry.
*/
#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
#define _HPAGE_TYPE_NONE 0x220
#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
#define _HPAGE_TYPE_RW 0x000
/*
* PTE type bits are rather complicated. handle_pte_fault uses pte_present,
* pte_none and pte_file to find out the pte type WITHOUT holding the page
* table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
* invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
* for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
* This change is done while holding the lock, but the intermediate step
* of a previously valid pte with the hw invalid bit set can be observed by
* handle_pte_fault. That makes it necessary that all valid pte types with
* the hw invalid bit set must be distinguishable from the four pte types
* empty, none, swap and file.
*
* irxt ipte irxt
* _PAGE_TYPE_EMPTY 1000 -> 1000
* _PAGE_TYPE_NONE 1001 -> 1001
* _PAGE_TYPE_SWAP 1011 -> 1011
* _PAGE_TYPE_FILE 11?1 -> 11?1
* _PAGE_TYPE_RO 0100 -> 1100
* _PAGE_TYPE_RW 0000 -> 1000
*
* pte_none is true for bits combinations 1000, 1010, 1100, 1110
* pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
* pte_file is true for bits combinations 1101, 1111
* swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
*/
#ifndef CONFIG_64BIT
/* Bits in the segment table address-space-control-element */
#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
/* Bits in the segment table entry */
#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
/* Page status table bits for virtualization */
#define RCP_ACC_BITS 0xf0000000UL
#define RCP_FP_BIT 0x08000000UL
#define RCP_PCL_BIT 0x00800000UL
#define RCP_HR_BIT 0x00400000UL
#define RCP_HC_BIT 0x00200000UL
#define RCP_GR_BIT 0x00040000UL
#define RCP_GC_BIT 0x00020000UL
/* User dirty / referenced bit for KVM's migration feature */
#define KVM_UR_BIT 0x00008000UL
#define KVM_UC_BIT 0x00004000UL
#else /* CONFIG_64BIT */
/* Bits in the segment/region table address-space-control-element */
#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
#define _ASCE_REAL_SPACE 0x20 /* real space control */
#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
/* Bits in the region table entry */
#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
/* Bits in the segment table entry */
#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
#define _SEGMENT_ENTRY (0)
#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
/* Page status table bits for virtualization */
#define RCP_ACC_BITS 0xf000000000000000UL
#define RCP_FP_BIT 0x0800000000000000UL
#define RCP_PCL_BIT 0x0080000000000000UL
#define RCP_HR_BIT 0x0040000000000000UL
#define RCP_HC_BIT 0x0020000000000000UL
#define RCP_GR_BIT 0x0004000000000000UL
#define RCP_GC_BIT 0x0002000000000000UL
/* User dirty / referenced bit for KVM's migration feature */
#define KVM_UR_BIT 0x0000800000000000UL
#define KVM_UC_BIT 0x0000400000000000UL
#endif /* CONFIG_64BIT */
/*
* A user page table pointer has the space-switch-event bit, the
* private-space-control bit and the storage-alteration-event-control
* bit set. A kernel page table pointer doesn't need them.
*/
#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
_ASCE_ALT_EVENT)
/*
* Page protection definitions.
*/
#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
#define PAGE_KERNEL PAGE_RW
#define PAGE_COPY PAGE_RO
/*
* On s390 the page table entry has an invalid bit and a read-only bit.
* Read permission implies execute permission and write permission
* implies read permission.
*/
/*xwr*/
#define __P000 PAGE_NONE
#define __P001 PAGE_RO
#define __P010 PAGE_RO
#define __P011 PAGE_RO
#define __P100 PAGE_RO
#define __P101 PAGE_RO
#define __P110 PAGE_RO
#define __P111 PAGE_RO
#define __S000 PAGE_NONE
#define __S001 PAGE_RO
#define __S010 PAGE_RW
#define __S011 PAGE_RW
#define __S100 PAGE_RO
#define __S101 PAGE_RO
#define __S110 PAGE_RW
#define __S111 PAGE_RW
static inline int mm_exclusive(struct mm_struct *mm)
{
return likely(mm == current->active_mm &&
atomic_read(&mm->context.attach_count) <= 1);
}
static inline int mm_has_pgste(struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
if (unlikely(mm->context.has_pgste))
return 1;
#endif
return 0;
}
/*
* pgd/pmd/pte query functions
*/
#ifndef CONFIG_64BIT
static inline int pgd_present(pgd_t pgd) { return 1; }
static inline int pgd_none(pgd_t pgd) { return 0; }
static inline int pgd_bad(pgd_t pgd) { return 0; }
static inline int pud_present(pud_t pud) { return 1; }
static inline int pud_none(pud_t pud) { return 0; }
static inline int pud_bad(pud_t pud) { return 0; }
#else /* CONFIG_64BIT */
static inline int pgd_present(pgd_t pgd)
{
if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
return 1;
return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int pgd_none(pgd_t pgd)
{
if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
return 0;
return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
}
static inline int pgd_bad(pgd_t pgd)
{
/*
* With dynamic page table levels the pgd can be a region table
* entry or a segment table entry. Check for the bit that are
* invalid for either table entry.
*/
unsigned long mask =
~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
return (pgd_val(pgd) & mask) != 0;
}
static inline int pud_present(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
return 1;
return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int pud_none(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
return 0;
return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
}
static inline int pud_bad(pud_t pud)
{
/*
* With dynamic page table levels the pud can be a region table
* entry or a segment table entry. Check for the bit that are
* invalid for either table entry.
*/
unsigned long mask =
~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
return (pud_val(pud) & mask) != 0;
}
#endif /* CONFIG_64BIT */
static inline int pmd_present(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
}
static inline int pmd_none(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
}
static inline int pmd_bad(pmd_t pmd)
{
unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
}
static inline int pte_none(pte_t pte)
{
return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
}
static inline int pte_present(pte_t pte)
{
unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
(!(pte_val(pte) & _PAGE_INVALID) &&
!(pte_val(pte) & _PAGE_SWT));
}
static inline int pte_file(pte_t pte)
{
unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
}
static inline int pte_special(pte_t pte)
{
return (pte_val(pte) & _PAGE_SPECIAL);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t a, pte_t b)
{
return pte_val(a) == pte_val(b);
}
static inline pgste_t pgste_get_lock(pte_t *ptep)
{
unsigned long new = 0;
#ifdef CONFIG_PGSTE
unsigned long old;
preempt_disable();
asm(
" lg %0,%2\n"
"0: lgr %1,%0\n"
" nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
" oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
" csg %0,%1,%2\n"
" jl 0b\n"
: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
: "Q" (ptep[PTRS_PER_PTE]) : "cc");
#endif
return __pgste(new);
}
static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
{
#ifdef CONFIG_PGSTE
asm(
" nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
" stg %1,%0\n"
: "=Q" (ptep[PTRS_PER_PTE])
: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
preempt_enable();
#endif
}
static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
{
#ifdef CONFIG_PGSTE
unsigned long address, bits;
unsigned char skey;
if (!pte_present(*ptep))
return pgste;
address = pte_val(*ptep) & PAGE_MASK;
skey = page_get_storage_key(address);
bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
/* Clear page changed & referenced bit in the storage key */
if (bits & _PAGE_CHANGED)
page_set_storage_key(address, skey ^ bits, 1);
else if (bits)
page_reset_referenced(address);
/* Transfer page changed & referenced bit to guest bits in pgste */
pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
/* Get host changed & referenced bits from pgste */
bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
/* Clear host bits in pgste. */
pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
/* Copy page access key and fetch protection bit to pgste */
pgste_val(pgste) |=
(unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
/* Transfer changed and referenced to kvm user bits */
pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
/* Transfer changed & referenced to pte sofware bits */
pte_val(*ptep) |= bits << 1; /* _PAGE_SWR & _PAGE_SWC */
#endif
return pgste;
}
static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
{
#ifdef CONFIG_PGSTE
int young;
if (!pte_present(*ptep))
return pgste;
young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
/* Transfer page referenced bit to pte software bit (host view) */
if (young || (pgste_val(pgste) & RCP_HR_BIT))
pte_val(*ptep) |= _PAGE_SWR;
/* Clear host referenced bit in pgste. */
pgste_val(pgste) &= ~RCP_HR_BIT;
/* Transfer page referenced bit to guest bit in pgste */
pgste_val(pgste) |= (unsigned long) young << 50; /* set RCP_GR_BIT */
#endif
return pgste;
}
static inline void pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
{
#ifdef CONFIG_PGSTE
unsigned long address;
unsigned long okey, nkey;
if (!pte_present(entry))
return;
address = pte_val(entry) & PAGE_MASK;
okey = nkey = page_get_storage_key(address);
nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
/* Set page access key and fetch protection bit from pgste */
nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
if (okey != nkey)
page_set_storage_key(address, nkey, 1);
#endif
}
/**
* struct gmap_struct - guest address space
* @mm: pointer to the parent mm_struct
* @table: pointer to the page directory
* @asce: address space control element for gmap page table
* @crst_list: list of all crst tables used in the guest address space
*/
struct gmap {
struct list_head list;
struct mm_struct *mm;
unsigned long *table;
unsigned long asce;
struct list_head crst_list;
};
/**
* struct gmap_rmap - reverse mapping for segment table entries
* @next: pointer to the next gmap_rmap structure in the list
* @entry: pointer to a segment table entry
*/
struct gmap_rmap {
struct list_head list;
unsigned long *entry;
};
/**
* struct gmap_pgtable - gmap information attached to a page table
* @vmaddr: address of the 1MB segment in the process virtual memory
* @mapper: list of segment table entries maping a page table
*/
struct gmap_pgtable {
unsigned long vmaddr;
struct list_head mapper;
};
struct gmap *gmap_alloc(struct mm_struct *mm);
void gmap_free(struct gmap *gmap);
void gmap_enable(struct gmap *gmap);
void gmap_disable(struct gmap *gmap);
int gmap_map_segment(struct gmap *gmap, unsigned long from,
unsigned long to, unsigned long length);
int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
unsigned long __gmap_fault(unsigned long address, struct gmap *);
unsigned long gmap_fault(unsigned long address, struct gmap *);
void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t entry)
{
pgste_t pgste;
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste_set_pte(ptep, pgste, entry);
*ptep = entry;
pgste_set_unlock(ptep, pgste);
} else
*ptep = entry;
}
/*
* query functions pte_write/pte_dirty/pte_young only work if
* pte_present() is true. Undefined behaviour if not..
*/
static inline int pte_write(pte_t pte)
{
return (pte_val(pte) & _PAGE_RO) == 0;
}
static inline int pte_dirty(pte_t pte)
{
#ifdef CONFIG_PGSTE
if (pte_val(pte) & _PAGE_SWC)
return 1;
#endif
return 0;
}
static inline int pte_young(pte_t pte)
{
#ifdef CONFIG_PGSTE
if (pte_val(pte) & _PAGE_SWR)
return 1;
#endif
return 0;
}
/*
* pgd/pmd/pte modification functions
*/
static inline void pgd_clear(pgd_t *pgd)
{
#ifdef CONFIG_64BIT
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
#endif
}
static inline void pud_clear(pud_t *pud)
{
#ifdef CONFIG_64BIT
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pud_val(*pud) = _REGION3_ENTRY_EMPTY;
#endif
}
static inline void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_val(*ptep) = _PAGE_TYPE_EMPTY;
}
/*
* The following pte modification functions only work if
* pte_present() is true. Undefined behaviour if not..
*/
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) &= _PAGE_CHG_MASK;
pte_val(pte) |= pgprot_val(newprot);
return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
/* Do not clobber _PAGE_TYPE_NONE pages! */
if (!(pte_val(pte) & _PAGE_INVALID))
pte_val(pte) |= _PAGE_RO;
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) &= ~_PAGE_RO;
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
#ifdef CONFIG_PGSTE
pte_val(pte) &= ~_PAGE_SWC;
#endif
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
#ifdef CONFIG_PGSTE
pte_val(pte) &= ~_PAGE_SWR;
#endif
return pte;
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return pte;
}
static inline pte_t pte_mkspecial(pte_t pte)
{
pte_val(pte) |= _PAGE_SPECIAL;
return pte;
}
#ifdef CONFIG_HUGETLB_PAGE
static inline pte_t pte_mkhuge(pte_t pte)
{
/*
* PROT_NONE needs to be remapped from the pte type to the ste type.
* The HW invalid bit is also different for pte and ste. The pte
* invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
* bit, so we don't have to clear it.
*/
if (pte_val(pte) & _PAGE_INVALID) {
if (pte_val(pte) & _PAGE_SWT)
pte_val(pte) |= _HPAGE_TYPE_NONE;
pte_val(pte) |= _SEGMENT_ENTRY_INV;
}
/*
* Clear SW pte bits SWT and SWX, there are no SW bits in a segment
* table entry.
*/
pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
/*
* Also set the change-override bit because we don't need dirty bit
* tracking for hugetlbfs pages.
*/
pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
return pte;
}
#endif
/*
* Get (and clear) the user dirty bit for a pte.
*/
static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
pte_t *ptep)
{
pgste_t pgste;
int dirty = 0;
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_update_all(ptep, pgste);
dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
pgste_val(pgste) &= ~KVM_UC_BIT;
pgste_set_unlock(ptep, pgste);
return dirty;
}
return dirty;
}
/*
* Get (and clear) the user referenced bit for a pte.
*/
static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
pte_t *ptep)
{
pgste_t pgste;
int young = 0;
if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_update_young(ptep, pgste);
young = !!(pgste_val(pgste) & KVM_UR_BIT);
pgste_val(pgste) &= ~KVM_UR_BIT;
pgste_set_unlock(ptep, pgste);
}
return young;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
if (mm_has_pgste(vma->vm_mm)) {
pgste = pgste_get_lock(ptep);
pgste = pgste_update_young(ptep, pgste);
pte = *ptep;
*ptep = pte_mkold(pte);
pgste_set_unlock(ptep, pgste);
return pte_young(pte);
}
return 0;
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
/* No need to flush TLB
* On s390 reference bits are in storage key and never in TLB
* With virtualization we handle the reference bit, without we
* we can simply return */
return ptep_test_and_clear_young(vma, address, ptep);
}
static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
{
if (!(pte_val(*ptep) & _PAGE_INVALID)) {
#ifndef CONFIG_64BIT
/* pto must point to the start of the segment table */
pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
#else
/* ipte in zarch mode can do the math */
pte_t *pto = ptep;
#endif
asm volatile(
" ipte %2,%3"
: "=m" (*ptep) : "m" (*ptep),
"a" (pto), "a" (address));
}
}
/*
* This is hard to understand. ptep_get_and_clear and ptep_clear_flush
* both clear the TLB for the unmapped pte. The reason is that
* ptep_get_and_clear is used in common code (e.g. change_pte_range)
* to modify an active pte. The sequence is
* 1) ptep_get_and_clear
* 2) set_pte_at
* 3) flush_tlb_range
* On s390 the tlb needs to get flushed with the modification of the pte
* if the pte is active. The only way how this can be implemented is to
* have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
* is a nop.
*/
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
mm->context.flush_mm = 1;
if (mm_has_pgste(mm))
pgste = pgste_get_lock(ptep);
pte = *ptep;
if (!mm_exclusive(mm))
__ptep_ipte(address, ptep);
pte_val(*ptep) = _PAGE_TYPE_EMPTY;
if (mm_has_pgste(mm)) {
pgste = pgste_update_all(&pte, pgste);
pgste_set_unlock(ptep, pgste);
}
return pte;
}
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
unsigned long address,
pte_t *ptep)
{
pte_t pte;
mm->context.flush_mm = 1;
if (mm_has_pgste(mm))
pgste_get_lock(ptep);
pte = *ptep;
if (!mm_exclusive(mm))
__ptep_ipte(address, ptep);
return pte;
}
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
unsigned long address,
pte_t *ptep, pte_t pte)
{
*ptep = pte;
if (mm_has_pgste(mm))
pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
}
#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pgste_t pgste;
pte_t pte;
if (mm_has_pgste(vma->vm_mm))
pgste = pgste_get_lock(ptep);
pte = *ptep;
__ptep_ipte(address, ptep);
pte_val(*ptep) = _PAGE_TYPE_EMPTY;
if (mm_has_pgste(vma->vm_mm)) {
pgste = pgste_update_all(&pte, pgste);
pgste_set_unlock(ptep, pgste);
}
return pte;
}
/*
* The batched pte unmap code uses ptep_get_and_clear_full to clear the
* ptes. Here an optimization is possible. tlb_gather_mmu flushes all
* tlbs of an mm if it can guarantee that the ptes of the mm_struct
* cannot be accessed while the batched unmap is running. In this case
* full==1 and a simple pte_clear is enough. See tlb.h.
*/
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long address,
pte_t *ptep, int full)
{
pgste_t pgste;
pte_t pte;
if (mm_has_pgste(mm))
pgste = pgste_get_lock(ptep);
pte = *ptep;
if (!full)
__ptep_ipte(address, ptep);
pte_val(*ptep) = _PAGE_TYPE_EMPTY;
if (mm_has_pgste(mm)) {
pgste = pgste_update_all(&pte, pgste);
pgste_set_unlock(ptep, pgste);
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pgste_t pgste;
pte_t pte = *ptep;
if (pte_write(pte)) {
mm->context.flush_mm = 1;
if (mm_has_pgste(mm))
pgste = pgste_get_lock(ptep);
if (!mm_exclusive(mm))
__ptep_ipte(address, ptep);
*ptep = pte_wrprotect(pte);
if (mm_has_pgste(mm))
pgste_set_unlock(ptep, pgste);
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty)
{
pgste_t pgste;
if (pte_same(*ptep, entry))
return 0;
if (mm_has_pgste(vma->vm_mm))
pgste = pgste_get_lock(ptep);
__ptep_ipte(address, ptep);
*ptep = entry;
if (mm_has_pgste(vma->vm_mm))
pgste_set_unlock(ptep, pgste);
return 1;
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t __pte;
pte_val(__pte) = physpage + pgprot_val(pgprot);
return __pte;
}
static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
{
unsigned long physpage = page_to_phys(page);
return mk_pte_phys(physpage, pgprot);
}
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
#ifndef CONFIG_64BIT
#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
#define pud_deref(pmd) ({ BUG(); 0UL; })
#define pgd_deref(pmd) ({ BUG(); 0UL; })
#define pud_offset(pgd, address) ((pud_t *) pgd)
#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
#else /* CONFIG_64BIT */
#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
{
pud_t *pud = (pud_t *) pgd;
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
pud = (pud_t *) pgd_deref(*pgd);
return pud + pud_index(address);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
pmd_t *pmd = (pmd_t *) pud;
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pmd = (pmd_t *) pud_deref(*pud);
return pmd + pmd_index(address);
}
#endif /* CONFIG_64BIT */
#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
/* Find an entry in the lowest level page table.. */
#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
#define pte_unmap(pte) do { } while (0)
/*
* 31 bit swap entry format:
* A page-table entry has some bits we have to treat in a special way.
* Bits 0, 20 and bit 23 have to be zero, otherwise an specification
* exception will occur instead of a page translation exception. The
* specifiation exception has the bad habit not to store necessary
* information in the lowcore.
* Bit 21 and bit 22 are the page invalid bit and the page protection
* bit. We set both to indicate a swapped page.
* Bit 30 and 31 are used to distinguish the different page types. For
* a swapped page these bits need to be zero.
* This leaves the bits 1-19 and bits 24-29 to store type and offset.
* We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
* plus 24 for the offset.
* 0| offset |0110|o|type |00|
* 0 0000000001111111111 2222 2 22222 33
* 0 1234567890123456789 0123 4 56789 01
*
* 64 bit swap entry format:
* A page-table entry has some bits we have to treat in a special way.
* Bits 52 and bit 55 have to be zero, otherwise an specification
* exception will occur instead of a page translation exception. The
* specifiation exception has the bad habit not to store necessary
* information in the lowcore.
* Bit 53 and bit 54 are the page invalid bit and the page protection
* bit. We set both to indicate a swapped page.
* Bit 62 and 63 are used to distinguish the different page types. For
* a swapped page these bits need to be zero.
* This leaves the bits 0-51 and bits 56-61 to store type and offset.
* We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
* plus 56 for the offset.
* | offset |0110|o|type |00|
* 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
* 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
*/
#ifndef CONFIG_64BIT
#define __SWP_OFFSET_MASK (~0UL >> 12)
#else
#define __SWP_OFFSET_MASK (~0UL >> 11)
#endif
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{
pte_t pte;
offset &= __SWP_OFFSET_MASK;
pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
return pte;
}
#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#ifndef CONFIG_64BIT
# define PTE_FILE_MAX_BITS 26
#else /* CONFIG_64BIT */
# define PTE_FILE_MAX_BITS 59
#endif /* CONFIG_64BIT */
#define pte_to_pgoff(__pte) \
((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
#define pgoff_to_pte(__off) \
((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
| _PAGE_TYPE_FILE })
#endif /* !__ASSEMBLY__ */
#define kern_addr_valid(addr) (1)
extern int vmem_add_mapping(unsigned long start, unsigned long size);
extern int vmem_remove_mapping(unsigned long start, unsigned long size);
extern int s390_enable_sie(void);
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
#include <asm-generic/pgtable.h>
#endif /* _S390_PAGE_H */