linux/drivers/net/smc911x.c
Vitaly Wool 9b6d2efed2 [PATCH] smc911x: fix netpoll compilation faliure
Fix the compilation failure for smc911x.c when NET_POLL_CONTROLLER is set.

Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-22 08:55:48 -08:00

2307 lines
60 KiB
C

/*
* smc911x.c
* This is a driver for SMSC's LAN911{5,6,7,8} single-chip Ethernet devices.
*
* Copyright (C) 2005 Sensoria Corp
* Derived from the unified SMC91x driver by Nicolas Pitre
* and the smsc911x.c reference driver by SMSC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Arguments:
* watchdog = TX watchdog timeout
* tx_fifo_kb = Size of TX FIFO in KB
*
* History:
* 04/16/05 Dustin McIntire Initial version
*/
static const char version[] =
"smc911x.c: v1.0 04-16-2005 by Dustin McIntire <dustin@sensoria.com>\n";
/* Debugging options */
#define ENABLE_SMC_DEBUG_RX 0
#define ENABLE_SMC_DEBUG_TX 0
#define ENABLE_SMC_DEBUG_DMA 0
#define ENABLE_SMC_DEBUG_PKTS 0
#define ENABLE_SMC_DEBUG_MISC 0
#define ENABLE_SMC_DEBUG_FUNC 0
#define SMC_DEBUG_RX ((ENABLE_SMC_DEBUG_RX ? 1 : 0) << 0)
#define SMC_DEBUG_TX ((ENABLE_SMC_DEBUG_TX ? 1 : 0) << 1)
#define SMC_DEBUG_DMA ((ENABLE_SMC_DEBUG_DMA ? 1 : 0) << 2)
#define SMC_DEBUG_PKTS ((ENABLE_SMC_DEBUG_PKTS ? 1 : 0) << 3)
#define SMC_DEBUG_MISC ((ENABLE_SMC_DEBUG_MISC ? 1 : 0) << 4)
#define SMC_DEBUG_FUNC ((ENABLE_SMC_DEBUG_FUNC ? 1 : 0) << 5)
#ifndef SMC_DEBUG
#define SMC_DEBUG ( SMC_DEBUG_RX | \
SMC_DEBUG_TX | \
SMC_DEBUG_DMA | \
SMC_DEBUG_PKTS | \
SMC_DEBUG_MISC | \
SMC_DEBUG_FUNC \
)
#endif
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/io.h>
#include <asm/irq.h>
#include "smc911x.h"
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
static int tx_fifo_kb=8;
module_param(tx_fifo_kb, int, 0400);
MODULE_PARM_DESC(tx_fifo_kb,"transmit FIFO size in KB (1<x<15)(default=8)");
MODULE_LICENSE("GPL");
/*
* The internal workings of the driver. If you are changing anything
* here with the SMC stuff, you should have the datasheet and know
* what you are doing.
*/
#define CARDNAME "smc911x"
/*
* Use power-down feature of the chip
*/
#define POWER_DOWN 1
/* store this information for the driver.. */
struct smc911x_local {
/*
* If I have to wait until the DMA is finished and ready to reload a
* packet, I will store the skbuff here. Then, the DMA will send it
* out and free it.
*/
struct sk_buff *pending_tx_skb;
/*
* these are things that the kernel wants me to keep, so users
* can find out semi-useless statistics of how well the card is
* performing
*/
struct net_device_stats stats;
/* version/revision of the SMC911x chip */
u16 version;
u16 revision;
/* FIFO sizes */
int tx_fifo_kb;
int tx_fifo_size;
int rx_fifo_size;
int afc_cfg;
/* Contains the current active receive/phy mode */
int ctl_rfduplx;
int ctl_rspeed;
u32 msg_enable;
u32 phy_type;
struct mii_if_info mii;
/* work queue */
struct work_struct phy_configure;
int work_pending;
int tx_throttle;
spinlock_t lock;
#ifdef SMC_USE_DMA
/* DMA needs the physical address of the chip */
u_long physaddr;
int rxdma;
int txdma;
int rxdma_active;
int txdma_active;
struct sk_buff *current_rx_skb;
struct sk_buff *current_tx_skb;
struct device *dev;
#endif
};
#if SMC_DEBUG > 0
#define DBG(n, args...) \
do { \
if (SMC_DEBUG & (n)) \
printk(args); \
} while (0)
#define PRINTK(args...) printk(args)
#else
#define DBG(n, args...) do { } while (0)
#define PRINTK(args...) printk(KERN_DEBUG args)
#endif
#if SMC_DEBUG_PKTS > 0
static void PRINT_PKT(u_char *buf, int length)
{
int i;
int remainder;
int lines;
lines = length / 16;
remainder = length % 16;
for (i = 0; i < lines ; i ++) {
int cur;
for (cur = 0; cur < 8; cur++) {
u_char a, b;
a = *buf++;
b = *buf++;
printk("%02x%02x ", a, b);
}
printk("\n");
}
for (i = 0; i < remainder/2 ; i++) {
u_char a, b;
a = *buf++;
b = *buf++;
printk("%02x%02x ", a, b);
}
printk("\n");
}
#else
#define PRINT_PKT(x...) do { } while (0)
#endif
/* this enables an interrupt in the interrupt mask register */
#define SMC_ENABLE_INT(x) do { \
unsigned int __mask; \
unsigned long __flags; \
spin_lock_irqsave(&lp->lock, __flags); \
__mask = SMC_GET_INT_EN(); \
__mask |= (x); \
SMC_SET_INT_EN(__mask); \
spin_unlock_irqrestore(&lp->lock, __flags); \
} while (0)
/* this disables an interrupt from the interrupt mask register */
#define SMC_DISABLE_INT(x) do { \
unsigned int __mask; \
unsigned long __flags; \
spin_lock_irqsave(&lp->lock, __flags); \
__mask = SMC_GET_INT_EN(); \
__mask &= ~(x); \
SMC_SET_INT_EN(__mask); \
spin_unlock_irqrestore(&lp->lock, __flags); \
} while (0)
/*
* this does a soft reset on the device
*/
static void smc911x_reset(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned int reg, timeout=0, resets=1;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/* Take out of PM setting first */
if ((SMC_GET_PMT_CTRL() & PMT_CTRL_READY_) == 0) {
/* Write to the bytetest will take out of powerdown */
SMC_SET_BYTE_TEST(0);
timeout=10;
do {
udelay(10);
reg = SMC_GET_PMT_CTRL() & PMT_CTRL_READY_;
} while ( timeout-- && !reg);
if (timeout == 0) {
PRINTK("%s: smc911x_reset timeout waiting for PM restore\n", dev->name);
return;
}
}
/* Disable all interrupts */
spin_lock_irqsave(&lp->lock, flags);
SMC_SET_INT_EN(0);
spin_unlock_irqrestore(&lp->lock, flags);
while (resets--) {
SMC_SET_HW_CFG(HW_CFG_SRST_);
timeout=10;
do {
udelay(10);
reg = SMC_GET_HW_CFG();
/* If chip indicates reset timeout then try again */
if (reg & HW_CFG_SRST_TO_) {
PRINTK("%s: chip reset timeout, retrying...\n", dev->name);
resets++;
break;
}
} while ( timeout-- && (reg & HW_CFG_SRST_));
}
if (timeout == 0) {
PRINTK("%s: smc911x_reset timeout waiting for reset\n", dev->name);
return;
}
/* make sure EEPROM has finished loading before setting GPIO_CFG */
timeout=1000;
while ( timeout-- && (SMC_GET_E2P_CMD() & E2P_CMD_EPC_BUSY_)) {
udelay(10);
}
if (timeout == 0){
PRINTK("%s: smc911x_reset timeout waiting for EEPROM busy\n", dev->name);
return;
}
/* Initialize interrupts */
SMC_SET_INT_EN(0);
SMC_ACK_INT(-1);
/* Reset the FIFO level and flow control settings */
SMC_SET_HW_CFG((lp->tx_fifo_kb & 0xF) << 16);
//TODO: Figure out what appropriate pause time is
SMC_SET_FLOW(FLOW_FCPT_ | FLOW_FCEN_);
SMC_SET_AFC_CFG(lp->afc_cfg);
/* Set to LED outputs */
SMC_SET_GPIO_CFG(0x70070000);
/*
* Deassert IRQ for 1*10us for edge type interrupts
* and drive IRQ pin push-pull
*/
SMC_SET_IRQ_CFG( (1 << 24) | INT_CFG_IRQ_EN_ | INT_CFG_IRQ_TYPE_ );
/* clear anything saved */
if (lp->pending_tx_skb != NULL) {
dev_kfree_skb (lp->pending_tx_skb);
lp->pending_tx_skb = NULL;
lp->stats.tx_errors++;
lp->stats.tx_aborted_errors++;
}
}
/*
* Enable Interrupts, Receive, and Transmit
*/
static void smc911x_enable(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned mask, cfg, cr;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
SMC_SET_MAC_ADDR(dev->dev_addr);
/* Enable TX */
cfg = SMC_GET_HW_CFG();
cfg &= HW_CFG_TX_FIF_SZ_ | 0xFFF;
cfg |= HW_CFG_SF_;
SMC_SET_HW_CFG(cfg);
SMC_SET_FIFO_TDA(0xFF);
/* Update TX stats on every 64 packets received or every 1 sec */
SMC_SET_FIFO_TSL(64);
SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CR(cr);
cr |= MAC_CR_TXEN_ | MAC_CR_HBDIS_;
SMC_SET_MAC_CR(cr);
SMC_SET_TX_CFG(TX_CFG_TX_ON_);
spin_unlock_irqrestore(&lp->lock, flags);
/* Add 2 byte padding to start of packets */
SMC_SET_RX_CFG((2<<8) & RX_CFG_RXDOFF_);
/* Turn on receiver and enable RX */
if (cr & MAC_CR_RXEN_)
DBG(SMC_DEBUG_RX, "%s: Receiver already enabled\n", dev->name);
spin_lock_irqsave(&lp->lock, flags);
SMC_SET_MAC_CR( cr | MAC_CR_RXEN_ );
spin_unlock_irqrestore(&lp->lock, flags);
/* Interrupt on every received packet */
SMC_SET_FIFO_RSA(0x01);
SMC_SET_FIFO_RSL(0x00);
/* now, enable interrupts */
mask = INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_ | INT_EN_RSFL_EN_ |
INT_EN_GPT_INT_EN_ | INT_EN_RXDFH_INT_EN_ | INT_EN_RXE_EN_ |
INT_EN_PHY_INT_EN_;
if (IS_REV_A(lp->revision))
mask|=INT_EN_RDFL_EN_;
else {
mask|=INT_EN_RDFO_EN_;
}
SMC_ENABLE_INT(mask);
}
/*
* this puts the device in an inactive state
*/
static void smc911x_shutdown(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned cr;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", CARDNAME, __FUNCTION__);
/* Disable IRQ's */
SMC_SET_INT_EN(0);
/* Turn of Rx and TX */
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CR(cr);
cr &= ~(MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_);
SMC_SET_MAC_CR(cr);
SMC_SET_TX_CFG(TX_CFG_STOP_TX_);
spin_unlock_irqrestore(&lp->lock, flags);
}
static inline void smc911x_drop_pkt(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
unsigned int fifo_count, timeout, reg;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n", CARDNAME, __FUNCTION__);
fifo_count = SMC_GET_RX_FIFO_INF() & 0xFFFF;
if (fifo_count <= 4) {
/* Manually dump the packet data */
while (fifo_count--)
SMC_GET_RX_FIFO();
} else {
/* Fast forward through the bad packet */
SMC_SET_RX_DP_CTRL(RX_DP_CTRL_FFWD_BUSY_);
timeout=50;
do {
udelay(10);
reg = SMC_GET_RX_DP_CTRL() & RX_DP_CTRL_FFWD_BUSY_;
} while ( timeout-- && reg);
if (timeout == 0) {
PRINTK("%s: timeout waiting for RX fast forward\n", dev->name);
}
}
}
/*
* This is the procedure to handle the receipt of a packet.
* It should be called after checking for packet presence in
* the RX status FIFO. It must be called with the spin lock
* already held.
*/
static inline void smc911x_rcv(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned int pkt_len, status;
struct sk_buff *skb;
unsigned char *data;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n",
dev->name, __FUNCTION__);
status = SMC_GET_RX_STS_FIFO();
DBG(SMC_DEBUG_RX, "%s: Rx pkt len %d status 0x%08x \n",
dev->name, (status & 0x3fff0000) >> 16, status & 0xc000ffff);
pkt_len = (status & RX_STS_PKT_LEN_) >> 16;
if (status & RX_STS_ES_) {
/* Deal with a bad packet */
lp->stats.rx_errors++;
if (status & RX_STS_CRC_ERR_)
lp->stats.rx_crc_errors++;
else {
if (status & RX_STS_LEN_ERR_)
lp->stats.rx_length_errors++;
if (status & RX_STS_MCAST_)
lp->stats.multicast++;
}
/* Remove the bad packet data from the RX FIFO */
smc911x_drop_pkt(dev);
} else {
/* Receive a valid packet */
/* Alloc a buffer with extra room for DMA alignment */
skb=dev_alloc_skb(pkt_len+32);
if (unlikely(skb == NULL)) {
PRINTK( "%s: Low memory, rcvd packet dropped.\n",
dev->name);
lp->stats.rx_dropped++;
smc911x_drop_pkt(dev);
return;
}
/* Align IP header to 32 bits
* Note that the device is configured to add a 2
* byte padding to the packet start, so we really
* want to write to the orignal data pointer */
data = skb->data;
skb_reserve(skb, 2);
skb_put(skb,pkt_len-4);
#ifdef SMC_USE_DMA
{
unsigned int fifo;
/* Lower the FIFO threshold if possible */
fifo = SMC_GET_FIFO_INT();
if (fifo & 0xFF) fifo--;
DBG(SMC_DEBUG_RX, "%s: Setting RX stat FIFO threshold to %d\n",
dev->name, fifo & 0xff);
SMC_SET_FIFO_INT(fifo);
/* Setup RX DMA */
SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN16_ | ((2<<8) & RX_CFG_RXDOFF_));
lp->rxdma_active = 1;
lp->current_rx_skb = skb;
SMC_PULL_DATA(data, (pkt_len+2+15) & ~15);
/* Packet processing deferred to DMA RX interrupt */
}
#else
SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN4_ | ((2<<8) & RX_CFG_RXDOFF_));
SMC_PULL_DATA(data, pkt_len+2+3);
DBG(SMC_DEBUG_PKTS, "%s: Received packet\n", dev->name,);
PRINT_PKT(data, ((pkt_len - 4) <= 64) ? pkt_len - 4 : 64);
dev->last_rx = jiffies;
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len-4;
#endif
}
}
/*
* This is called to actually send a packet to the chip.
*/
static void smc911x_hardware_send_pkt(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
struct sk_buff *skb;
unsigned int cmdA, cmdB, len;
unsigned char *buf;
unsigned long flags;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n", dev->name, __FUNCTION__);
BUG_ON(lp->pending_tx_skb == NULL);
skb = lp->pending_tx_skb;
lp->pending_tx_skb = NULL;
/* cmdA {25:24] data alignment [20:16] start offset [10:0] buffer length */
/* cmdB {31:16] pkt tag [10:0] length */
#ifdef SMC_USE_DMA
/* 16 byte buffer alignment mode */
buf = (char*)((u32)(skb->data) & ~0xF);
len = (skb->len + 0xF + ((u32)skb->data & 0xF)) & ~0xF;
cmdA = (1<<24) | (((u32)skb->data & 0xF)<<16) |
TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ |
skb->len;
#else
buf = (char*)((u32)skb->data & ~0x3);
len = (skb->len + 3 + ((u32)skb->data & 3)) & ~0x3;
cmdA = (((u32)skb->data & 0x3) << 16) |
TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ |
skb->len;
#endif
/* tag is packet length so we can use this in stats update later */
cmdB = (skb->len << 16) | (skb->len & 0x7FF);
DBG(SMC_DEBUG_TX, "%s: TX PKT LENGTH 0x%04x (%d) BUF 0x%p CMDA 0x%08x CMDB 0x%08x\n",
dev->name, len, len, buf, cmdA, cmdB);
SMC_SET_TX_FIFO(cmdA);
SMC_SET_TX_FIFO(cmdB);
DBG(SMC_DEBUG_PKTS, "%s: Transmitted packet\n", dev->name);
PRINT_PKT(buf, len <= 64 ? len : 64);
/* Send pkt via PIO or DMA */
#ifdef SMC_USE_DMA
lp->current_tx_skb = skb;
SMC_PUSH_DATA(buf, len);
/* DMA complete IRQ will free buffer and set jiffies */
#else
SMC_PUSH_DATA(buf, len);
dev->trans_start = jiffies;
dev_kfree_skb(skb);
#endif
spin_lock_irqsave(&lp->lock, flags);
if (!lp->tx_throttle) {
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
SMC_ENABLE_INT(INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_);
}
/*
* Since I am not sure if I will have enough room in the chip's ram
* to store the packet, I call this routine which either sends it
* now, or set the card to generates an interrupt when ready
* for the packet.
*/
static int smc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned int free;
unsigned long flags;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n",
dev->name, __FUNCTION__);
BUG_ON(lp->pending_tx_skb != NULL);
free = SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TDFREE_;
DBG(SMC_DEBUG_TX, "%s: TX free space %d\n", dev->name, free);
/* Turn off the flow when running out of space in FIFO */
if (free <= SMC911X_TX_FIFO_LOW_THRESHOLD) {
DBG(SMC_DEBUG_TX, "%s: Disabling data flow due to low FIFO space (%d)\n",
dev->name, free);
spin_lock_irqsave(&lp->lock, flags);
/* Reenable when at least 1 packet of size MTU present */
SMC_SET_FIFO_TDA((SMC911X_TX_FIFO_LOW_THRESHOLD)/64);
lp->tx_throttle = 1;
netif_stop_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
}
/* Drop packets when we run out of space in TX FIFO
* Account for overhead required for:
*
* Tx command words 8 bytes
* Start offset 15 bytes
* End padding 15 bytes
*/
if (unlikely(free < (skb->len + 8 + 15 + 15))) {
printk("%s: No Tx free space %d < %d\n",
dev->name, free, skb->len);
lp->pending_tx_skb = NULL;
lp->stats.tx_errors++;
lp->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
#ifdef SMC_USE_DMA
{
/* If the DMA is already running then defer this packet Tx until
* the DMA IRQ starts it
*/
spin_lock_irqsave(&lp->lock, flags);
if (lp->txdma_active) {
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Tx DMA running, deferring packet\n", dev->name);
lp->pending_tx_skb = skb;
netif_stop_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
} else {
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Activating Tx DMA\n", dev->name);
lp->txdma_active = 1;
}
spin_unlock_irqrestore(&lp->lock, flags);
}
#endif
lp->pending_tx_skb = skb;
smc911x_hardware_send_pkt(dev);
return 0;
}
/*
* This handles a TX status interrupt, which is only called when:
* - a TX error occurred, or
* - TX of a packet completed.
*/
static void smc911x_tx(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned int tx_status;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n",
dev->name, __FUNCTION__);
/* Collect the TX status */
while (((SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16) != 0) {
DBG(SMC_DEBUG_TX, "%s: Tx stat FIFO used 0x%04x\n",
dev->name,
(SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16);
tx_status = SMC_GET_TX_STS_FIFO();
lp->stats.tx_packets++;
lp->stats.tx_bytes+=tx_status>>16;
DBG(SMC_DEBUG_TX, "%s: Tx FIFO tag 0x%04x status 0x%04x\n",
dev->name, (tx_status & 0xffff0000) >> 16,
tx_status & 0x0000ffff);
/* count Tx errors, but ignore lost carrier errors when in
* full-duplex mode */
if ((tx_status & TX_STS_ES_) && !(lp->ctl_rfduplx &&
!(tx_status & 0x00000306))) {
lp->stats.tx_errors++;
}
if (tx_status & TX_STS_MANY_COLL_) {
lp->stats.collisions+=16;
lp->stats.tx_aborted_errors++;
} else {
lp->stats.collisions+=(tx_status & TX_STS_COLL_CNT_) >> 3;
}
/* carrier error only has meaning for half-duplex communication */
if ((tx_status & (TX_STS_LOC_ | TX_STS_NO_CARR_)) &&
!lp->ctl_rfduplx) {
lp->stats.tx_carrier_errors++;
}
if (tx_status & TX_STS_LATE_COLL_) {
lp->stats.collisions++;
lp->stats.tx_aborted_errors++;
}
}
}
/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
/*
* Reads a register from the MII Management serial interface
*/
static int smc911x_phy_read(struct net_device *dev, int phyaddr, int phyreg)
{
unsigned long ioaddr = dev->base_addr;
unsigned int phydata;
SMC_GET_MII(phyreg, phyaddr, phydata);
DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%02x, phydata=0x%04x\n",
__FUNCTION__, phyaddr, phyreg, phydata);
return phydata;
}
/*
* Writes a register to the MII Management serial interface
*/
static void smc911x_phy_write(struct net_device *dev, int phyaddr, int phyreg,
int phydata)
{
unsigned long ioaddr = dev->base_addr;
DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
__FUNCTION__, phyaddr, phyreg, phydata);
SMC_SET_MII(phyreg, phyaddr, phydata);
}
/*
* Finds and reports the PHY address (115 and 117 have external
* PHY interface 118 has internal only
*/
static void smc911x_phy_detect(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
int phyaddr;
unsigned int cfg, id1, id2;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
lp->phy_type = 0;
/*
* Scan all 32 PHY addresses if necessary, starting at
* PHY#1 to PHY#31, and then PHY#0 last.
*/
switch(lp->version) {
case 0x115:
case 0x117:
cfg = SMC_GET_HW_CFG();
if (cfg & HW_CFG_EXT_PHY_DET_) {
cfg &= ~HW_CFG_PHY_CLK_SEL_;
cfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_;
SMC_SET_HW_CFG(cfg);
udelay(10); /* Wait for clocks to stop */
cfg |= HW_CFG_EXT_PHY_EN_;
SMC_SET_HW_CFG(cfg);
udelay(10); /* Wait for clocks to stop */
cfg &= ~HW_CFG_PHY_CLK_SEL_;
cfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_;
SMC_SET_HW_CFG(cfg);
udelay(10); /* Wait for clocks to stop */
cfg |= HW_CFG_SMI_SEL_;
SMC_SET_HW_CFG(cfg);
for (phyaddr = 1; phyaddr < 32; ++phyaddr) {
/* Read the PHY identifiers */
SMC_GET_PHY_ID1(phyaddr & 31, id1);
SMC_GET_PHY_ID2(phyaddr & 31, id2);
/* Make sure it is a valid identifier */
if (id1 != 0x0000 && id1 != 0xffff &&
id1 != 0x8000 && id2 != 0x0000 &&
id2 != 0xffff && id2 != 0x8000) {
/* Save the PHY's address */
lp->mii.phy_id = phyaddr & 31;
lp->phy_type = id1 << 16 | id2;
break;
}
}
}
default:
/* Internal media only */
SMC_GET_PHY_ID1(1, id1);
SMC_GET_PHY_ID2(1, id2);
/* Save the PHY's address */
lp->mii.phy_id = 1;
lp->phy_type = id1 << 16 | id2;
}
DBG(SMC_DEBUG_MISC, "%s: phy_id1=0x%x, phy_id2=0x%x phyaddr=0x%d\n",
dev->name, id1, id2, lp->mii.phy_id);
}
/*
* Sets the PHY to a configuration as determined by the user.
* Called with spin_lock held.
*/
static int smc911x_phy_fixed(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
int bmcr;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/* Enter Link Disable state */
SMC_GET_PHY_BMCR(phyaddr, bmcr);
bmcr |= BMCR_PDOWN;
SMC_SET_PHY_BMCR(phyaddr, bmcr);
/*
* Set our fixed capabilities
* Disable auto-negotiation
*/
bmcr &= ~BMCR_ANENABLE;
if (lp->ctl_rfduplx)
bmcr |= BMCR_FULLDPLX;
if (lp->ctl_rspeed == 100)
bmcr |= BMCR_SPEED100;
/* Write our capabilities to the phy control register */
SMC_SET_PHY_BMCR(phyaddr, bmcr);
/* Re-Configure the Receive/Phy Control register */
bmcr &= ~BMCR_PDOWN;
SMC_SET_PHY_BMCR(phyaddr, bmcr);
return 1;
}
/*
* smc911x_phy_reset - reset the phy
* @dev: net device
* @phy: phy address
*
* Issue a software reset for the specified PHY and
* wait up to 100ms for the reset to complete. We should
* not access the PHY for 50ms after issuing the reset.
*
* The time to wait appears to be dependent on the PHY.
*
*/
static int smc911x_phy_reset(struct net_device *dev, int phy)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int timeout;
unsigned long flags;
unsigned int reg;
DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
reg = SMC_GET_PMT_CTRL();
reg &= ~0xfffff030;
reg |= PMT_CTRL_PHY_RST_;
SMC_SET_PMT_CTRL(reg);
spin_unlock_irqrestore(&lp->lock, flags);
for (timeout = 2; timeout; timeout--) {
msleep(50);
spin_lock_irqsave(&lp->lock, flags);
reg = SMC_GET_PMT_CTRL();
spin_unlock_irqrestore(&lp->lock, flags);
if (!(reg & PMT_CTRL_PHY_RST_)) {
/* extra delay required because the phy may
* not be completed with its reset
* when PHY_BCR_RESET_ is cleared. 256us
* should suffice, but use 500us to be safe
*/
udelay(500);
break;
}
}
return reg & PMT_CTRL_PHY_RST_;
}
/*
* smc911x_phy_powerdown - powerdown phy
* @dev: net device
* @phy: phy address
*
* Power down the specified PHY
*/
static void smc911x_phy_powerdown(struct net_device *dev, int phy)
{
unsigned long ioaddr = dev->base_addr;
unsigned int bmcr;
/* Enter Link Disable state */
SMC_GET_PHY_BMCR(phy, bmcr);
bmcr |= BMCR_PDOWN;
SMC_SET_PHY_BMCR(phy, bmcr);
}
/*
* smc911x_phy_check_media - check the media status and adjust BMCR
* @dev: net device
* @init: set true for initialisation
*
* Select duplex mode depending on negotiation state. This
* also updates our carrier state.
*/
static void smc911x_phy_check_media(struct net_device *dev, int init)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
unsigned int bmcr, cr;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
/* duplex state has changed */
SMC_GET_PHY_BMCR(phyaddr, bmcr);
SMC_GET_MAC_CR(cr);
if (lp->mii.full_duplex) {
DBG(SMC_DEBUG_MISC, "%s: Configuring for full-duplex mode\n", dev->name);
bmcr |= BMCR_FULLDPLX;
cr |= MAC_CR_RCVOWN_;
} else {
DBG(SMC_DEBUG_MISC, "%s: Configuring for half-duplex mode\n", dev->name);
bmcr &= ~BMCR_FULLDPLX;
cr &= ~MAC_CR_RCVOWN_;
}
SMC_SET_PHY_BMCR(phyaddr, bmcr);
SMC_SET_MAC_CR(cr);
}
}
/*
* Configures the specified PHY through the MII management interface
* using Autonegotiation.
* Calls smc911x_phy_fixed() if the user has requested a certain config.
* If RPC ANEG bit is set, the media selection is dependent purely on
* the selection by the MII (either in the MII BMCR reg or the result
* of autonegotiation.) If the RPC ANEG bit is cleared, the selection
* is controlled by the RPC SPEED and RPC DPLX bits.
*/
static void smc911x_phy_configure(void *data)
{
struct net_device *dev = data;
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
int my_phy_caps; /* My PHY capabilities */
int my_ad_caps; /* My Advertised capabilities */
int status;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__);
/*
* We should not be called if phy_type is zero.
*/
if (lp->phy_type == 0)
goto smc911x_phy_configure_exit;
if (smc911x_phy_reset(dev, phyaddr)) {
printk("%s: PHY reset timed out\n", dev->name);
goto smc911x_phy_configure_exit;
}
spin_lock_irqsave(&lp->lock, flags);
/*
* Enable PHY Interrupts (for register 18)
* Interrupts listed here are enabled
*/
SMC_SET_PHY_INT_MASK(phyaddr, PHY_INT_MASK_ENERGY_ON_ |
PHY_INT_MASK_ANEG_COMP_ | PHY_INT_MASK_REMOTE_FAULT_ |
PHY_INT_MASK_LINK_DOWN_);
/* If the user requested no auto neg, then go set his request */
if (lp->mii.force_media) {
smc911x_phy_fixed(dev);
goto smc911x_phy_configure_exit;
}
/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
SMC_GET_PHY_BMSR(phyaddr, my_phy_caps);
if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
printk(KERN_INFO "Auto negotiation NOT supported\n");
smc911x_phy_fixed(dev);
goto smc911x_phy_configure_exit;
}
/* CSMA capable w/ both pauses */
my_ad_caps = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
if (my_phy_caps & BMSR_100BASE4)
my_ad_caps |= ADVERTISE_100BASE4;
if (my_phy_caps & BMSR_100FULL)
my_ad_caps |= ADVERTISE_100FULL;
if (my_phy_caps & BMSR_100HALF)
my_ad_caps |= ADVERTISE_100HALF;
if (my_phy_caps & BMSR_10FULL)
my_ad_caps |= ADVERTISE_10FULL;
if (my_phy_caps & BMSR_10HALF)
my_ad_caps |= ADVERTISE_10HALF;
/* Disable capabilities not selected by our user */
if (lp->ctl_rspeed != 100)
my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
if (!lp->ctl_rfduplx)
my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
/* Update our Auto-Neg Advertisement Register */
SMC_SET_PHY_MII_ADV(phyaddr, my_ad_caps);
lp->mii.advertising = my_ad_caps;
/*
* Read the register back. Without this, it appears that when
* auto-negotiation is restarted, sometimes it isn't ready and
* the link does not come up.
*/
udelay(10);
SMC_GET_PHY_MII_ADV(phyaddr, status);
DBG(SMC_DEBUG_MISC, "%s: phy caps=0x%04x\n", dev->name, my_phy_caps);
DBG(SMC_DEBUG_MISC, "%s: phy advertised caps=0x%04x\n", dev->name, my_ad_caps);
/* Restart auto-negotiation process in order to advertise my caps */
SMC_SET_PHY_BMCR(phyaddr, BMCR_ANENABLE | BMCR_ANRESTART);
smc911x_phy_check_media(dev, 1);
smc911x_phy_configure_exit:
spin_unlock_irqrestore(&lp->lock, flags);
lp->work_pending = 0;
}
/*
* smc911x_phy_interrupt
*
* Purpose: Handle interrupts relating to PHY register 18. This is
* called from the "hard" interrupt handler under our private spinlock.
*/
static void smc911x_phy_interrupt(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
int status;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
if (lp->phy_type == 0)
return;
smc911x_phy_check_media(dev, 0);
/* read to clear status bits */
SMC_GET_PHY_INT_SRC(phyaddr,status);
DBG(SMC_DEBUG_MISC, "%s: PHY interrupt status 0x%04x\n",
dev->name, status & 0xffff);
DBG(SMC_DEBUG_MISC, "%s: AFC_CFG 0x%08x\n",
dev->name, SMC_GET_AFC_CFG());
}
/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
/*
* This is the main routine of the driver, to handle the device when
* it needs some attention.
*/
static irqreturn_t smc911x_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned int status, mask, timeout;
unsigned int rx_overrun=0, cr, pkts;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
/* Spurious interrupt check */
if ((SMC_GET_IRQ_CFG() & (INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) !=
(INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) {
spin_unlock_irqrestore(&lp->lock, flags);
return IRQ_NONE;
}
mask = SMC_GET_INT_EN();
SMC_SET_INT_EN(0);
/* set a timeout value, so I don't stay here forever */
timeout = 8;
do {
status = SMC_GET_INT();
DBG(SMC_DEBUG_MISC, "%s: INT 0x%08x MASK 0x%08x OUTSIDE MASK 0x%08x\n",
dev->name, status, mask, status & ~mask);
status &= mask;
if (!status)
break;
/* Handle SW interrupt condition */
if (status & INT_STS_SW_INT_) {
SMC_ACK_INT(INT_STS_SW_INT_);
mask &= ~INT_EN_SW_INT_EN_;
}
/* Handle various error conditions */
if (status & INT_STS_RXE_) {
SMC_ACK_INT(INT_STS_RXE_);
lp->stats.rx_errors++;
}
if (status & INT_STS_RXDFH_INT_) {
SMC_ACK_INT(INT_STS_RXDFH_INT_);
lp->stats.rx_dropped+=SMC_GET_RX_DROP();
}
/* Undocumented interrupt-what is the right thing to do here? */
if (status & INT_STS_RXDF_INT_) {
SMC_ACK_INT(INT_STS_RXDF_INT_);
}
/* Rx Data FIFO exceeds set level */
if (status & INT_STS_RDFL_) {
if (IS_REV_A(lp->revision)) {
rx_overrun=1;
SMC_GET_MAC_CR(cr);
cr &= ~MAC_CR_RXEN_;
SMC_SET_MAC_CR(cr);
DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name);
lp->stats.rx_errors++;
lp->stats.rx_fifo_errors++;
}
SMC_ACK_INT(INT_STS_RDFL_);
}
if (status & INT_STS_RDFO_) {
if (!IS_REV_A(lp->revision)) {
SMC_GET_MAC_CR(cr);
cr &= ~MAC_CR_RXEN_;
SMC_SET_MAC_CR(cr);
rx_overrun=1;
DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name);
lp->stats.rx_errors++;
lp->stats.rx_fifo_errors++;
}
SMC_ACK_INT(INT_STS_RDFO_);
}
/* Handle receive condition */
if ((status & INT_STS_RSFL_) || rx_overrun) {
unsigned int fifo;
DBG(SMC_DEBUG_RX, "%s: RX irq\n", dev->name);
fifo = SMC_GET_RX_FIFO_INF();
pkts = (fifo & RX_FIFO_INF_RXSUSED_) >> 16;
DBG(SMC_DEBUG_RX, "%s: Rx FIFO pkts %d, bytes %d\n",
dev->name, pkts, fifo & 0xFFFF );
if (pkts != 0) {
#ifdef SMC_USE_DMA
unsigned int fifo;
if (lp->rxdma_active){
DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA,
"%s: RX DMA active\n", dev->name);
/* The DMA is already running so up the IRQ threshold */
fifo = SMC_GET_FIFO_INT() & ~0xFF;
fifo |= pkts & 0xFF;
DBG(SMC_DEBUG_RX,
"%s: Setting RX stat FIFO threshold to %d\n",
dev->name, fifo & 0xff);
SMC_SET_FIFO_INT(fifo);
} else
#endif
smc911x_rcv(dev);
}
SMC_ACK_INT(INT_STS_RSFL_);
}
/* Handle transmit FIFO available */
if (status & INT_STS_TDFA_) {
DBG(SMC_DEBUG_TX, "%s: TX data FIFO space available irq\n", dev->name);
SMC_SET_FIFO_TDA(0xFF);
lp->tx_throttle = 0;
#ifdef SMC_USE_DMA
if (!lp->txdma_active)
#endif
netif_wake_queue(dev);
SMC_ACK_INT(INT_STS_TDFA_);
}
/* Handle transmit done condition */
#if 1
if (status & (INT_STS_TSFL_ | INT_STS_GPT_INT_)) {
DBG(SMC_DEBUG_TX | SMC_DEBUG_MISC,
"%s: Tx stat FIFO limit (%d) /GPT irq\n",
dev->name, (SMC_GET_FIFO_INT() & 0x00ff0000) >> 16);
smc911x_tx(dev);
SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
SMC_ACK_INT(INT_STS_TSFL_);
SMC_ACK_INT(INT_STS_TSFL_ | INT_STS_GPT_INT_);
}
#else
if (status & INT_STS_TSFL_) {
DBG(SMC_DEBUG_TX, "%s: TX status FIFO limit (%d) irq \n", dev->name, );
smc911x_tx(dev);
SMC_ACK_INT(INT_STS_TSFL_);
}
if (status & INT_STS_GPT_INT_) {
DBG(SMC_DEBUG_RX, "%s: IRQ_CFG 0x%08x FIFO_INT 0x%08x RX_CFG 0x%08x\n",
dev->name,
SMC_GET_IRQ_CFG(),
SMC_GET_FIFO_INT(),
SMC_GET_RX_CFG());
DBG(SMC_DEBUG_RX, "%s: Rx Stat FIFO Used 0x%02x "
"Data FIFO Used 0x%04x Stat FIFO 0x%08x\n",
dev->name,
(SMC_GET_RX_FIFO_INF() & 0x00ff0000) >> 16,
SMC_GET_RX_FIFO_INF() & 0xffff,
SMC_GET_RX_STS_FIFO_PEEK());
SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
SMC_ACK_INT(INT_STS_GPT_INT_);
}
#endif
/* Handle PHY interupt condition */
if (status & INT_STS_PHY_INT_) {
DBG(SMC_DEBUG_MISC, "%s: PHY irq\n", dev->name);
smc911x_phy_interrupt(dev);
SMC_ACK_INT(INT_STS_PHY_INT_);
}
} while (--timeout);
/* restore mask state */
SMC_SET_INT_EN(mask);
DBG(SMC_DEBUG_MISC, "%s: Interrupt done (%d loops)\n",
dev->name, 8-timeout);
spin_unlock_irqrestore(&lp->lock, flags);
DBG(3, "%s: Interrupt done (%d loops)\n", dev->name, 8-timeout);
return IRQ_HANDLED;
}
#ifdef SMC_USE_DMA
static void
smc911x_tx_dma_irq(int dma, void *data)
{
struct net_device *dev = (struct net_device *)data;
struct smc911x_local *lp = netdev_priv(dev);
struct sk_buff *skb = lp->current_tx_skb;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: TX DMA irq handler\n", dev->name);
/* Clear the DMA interrupt sources */
SMC_DMA_ACK_IRQ(dev, dma);
BUG_ON(skb == NULL);
dma_unmap_single(NULL, tx_dmabuf, tx_dmalen, DMA_TO_DEVICE);
dev->trans_start = jiffies;
dev_kfree_skb_irq(skb);
lp->current_tx_skb = NULL;
if (lp->pending_tx_skb != NULL)
smc911x_hardware_send_pkt(dev);
else {
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA,
"%s: No pending Tx packets. DMA disabled\n", dev->name);
spin_lock_irqsave(&lp->lock, flags);
lp->txdma_active = 0;
if (!lp->tx_throttle) {
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA,
"%s: TX DMA irq completed\n", dev->name);
}
static void
smc911x_rx_dma_irq(int dma, void *data)
{
struct net_device *dev = (struct net_device *)data;
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
struct sk_buff *skb = lp->current_rx_skb;
unsigned long flags;
unsigned int pkts;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA, "%s: RX DMA irq handler\n", dev->name);
/* Clear the DMA interrupt sources */
SMC_DMA_ACK_IRQ(dev, dma);
dma_unmap_single(NULL, rx_dmabuf, rx_dmalen, DMA_FROM_DEVICE);
BUG_ON(skb == NULL);
lp->current_rx_skb = NULL;
PRINT_PKT(skb->data, skb->len);
dev->last_rx = jiffies;
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
lp->stats.rx_packets++;
lp->stats.rx_bytes += skb->len;
spin_lock_irqsave(&lp->lock, flags);
pkts = (SMC_GET_RX_FIFO_INF() & RX_FIFO_INF_RXSUSED_) >> 16;
if (pkts != 0) {
smc911x_rcv(dev);
}else {
lp->rxdma_active = 0;
}
spin_unlock_irqrestore(&lp->lock, flags);
DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA,
"%s: RX DMA irq completed. DMA RX FIFO PKTS %d\n",
dev->name, pkts);
}
#endif /* SMC_USE_DMA */
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling receive - used by netconsole and other diagnostic tools
* to allow network i/o with interrupts disabled.
*/
static void smc911x_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smc911x_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* Our watchdog timed out. Called by the networking layer */
static void smc911x_timeout(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int status, mask;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
status = SMC_GET_INT();
mask = SMC_GET_INT_EN();
spin_unlock_irqrestore(&lp->lock, flags);
DBG(SMC_DEBUG_MISC, "%s: INT 0x%02x MASK 0x%02x \n",
dev->name, status, mask);
/* Dump the current TX FIFO contents and restart */
mask = SMC_GET_TX_CFG();
SMC_SET_TX_CFG(mask | TX_CFG_TXS_DUMP_ | TX_CFG_TXD_DUMP_);
/*
* Reconfiguring the PHY doesn't seem like a bad idea here, but
* smc911x_phy_configure() calls msleep() which calls schedule_timeout()
* which calls schedule(). Hence we use a work queue.
*/
if (lp->phy_type != 0) {
if (schedule_work(&lp->phy_configure)) {
lp->work_pending = 1;
}
}
/* We can accept TX packets again */
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* This routine will, depending on the values passed to it,
* either make it accept multicast packets, go into
* promiscuous mode (for TCPDUMP and cousins) or accept
* a select set of multicast packets
*/
static void smc911x_set_multicast_list(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned int multicast_table[2];
unsigned int mcr, update_multicast = 0;
unsigned long flags;
/* table for flipping the order of 5 bits */
static const unsigned char invert5[] =
{0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0C, 0x1C,
0x02, 0x12, 0x0A, 0x1A, 0x06, 0x16, 0x0E, 0x1E,
0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0D, 0x1D,
0x03, 0x13, 0x0B, 0x1B, 0x07, 0x17, 0x0F, 0x1F};
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CR(mcr);
spin_unlock_irqrestore(&lp->lock, flags);
if (dev->flags & IFF_PROMISC) {
DBG(SMC_DEBUG_MISC, "%s: RCR_PRMS\n", dev->name);
mcr |= MAC_CR_PRMS_;
}
/*
* Here, I am setting this to accept all multicast packets.
* I don't need to zero the multicast table, because the flag is
* checked before the table is
*/
else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
DBG(SMC_DEBUG_MISC, "%s: RCR_ALMUL\n", dev->name);
mcr |= MAC_CR_MCPAS_;
}
/*
* This sets the internal hardware table to filter out unwanted
* multicast packets before they take up memory.
*
* The SMC chip uses a hash table where the high 6 bits of the CRC of
* address are the offset into the table. If that bit is 1, then the
* multicast packet is accepted. Otherwise, it's dropped silently.
*
* To use the 6 bits as an offset into the table, the high 1 bit is
* the number of the 32 bit register, while the low 5 bits are the bit
* within that register.
*/
else if (dev->mc_count) {
int i;
struct dev_mc_list *cur_addr;
/* Set the Hash perfec mode */
mcr |= MAC_CR_HPFILT_;
/* start with a table of all zeros: reject all */
memset(multicast_table, 0, sizeof(multicast_table));
cur_addr = dev->mc_list;
for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
int position;
/* do we have a pointer here? */
if (!cur_addr)
break;
/* make sure this is a multicast address -
shouldn't this be a given if we have it here ? */
if (!(*cur_addr->dmi_addr & 1))
continue;
/* only use the low order bits */
position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
/* do some messy swapping to put the bit in the right spot */
multicast_table[invert5[position&0x1F]&0x1] |=
(1<<invert5[(position>>1)&0x1F]);
}
/* be sure I get rid of flags I might have set */
mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
/* now, the table can be loaded into the chipset */
update_multicast = 1;
} else {
DBG(SMC_DEBUG_MISC, "%s: ~(MAC_CR_PRMS_|MAC_CR_MCPAS_)\n",
dev->name);
mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
/*
* since I'm disabling all multicast entirely, I need to
* clear the multicast list
*/
memset(multicast_table, 0, sizeof(multicast_table));
update_multicast = 1;
}
spin_lock_irqsave(&lp->lock, flags);
SMC_SET_MAC_CR(mcr);
if (update_multicast) {
DBG(SMC_DEBUG_MISC,
"%s: update mcast hash table 0x%08x 0x%08x\n",
dev->name, multicast_table[0], multicast_table[1]);
SMC_SET_HASHL(multicast_table[0]);
SMC_SET_HASHH(multicast_table[1]);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
/*
* Open and Initialize the board
*
* Set up everything, reset the card, etc..
*/
static int
smc911x_open(struct net_device *dev)
{
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/*
* Check that the address is valid. If its not, refuse
* to bring the device up. The user must specify an
* address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
*/
if (!is_valid_ether_addr(dev->dev_addr)) {
PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
return -EINVAL;
}
/* reset the hardware */
smc911x_reset(dev);
/* Configure the PHY, initialize the link state */
smc911x_phy_configure(dev);
/* Turn on Tx + Rx */
smc911x_enable(dev);
netif_start_queue(dev);
return 0;
}
/*
* smc911x_close
*
* this makes the board clean up everything that it can
* and not talk to the outside world. Caused by
* an 'ifconfig ethX down'
*/
static int smc911x_close(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
netif_stop_queue(dev);
netif_carrier_off(dev);
/* clear everything */
smc911x_shutdown(dev);
if (lp->phy_type != 0) {
/* We need to ensure that no calls to
* smc911x_phy_configure are pending.
* flush_scheduled_work() cannot be called because we
* are running with the netlink semaphore held (from
* devinet_ioctl()) and the pending work queue
* contains linkwatch_event() (scheduled by
* netif_carrier_off() above). linkwatch_event() also
* wants the netlink semaphore.
*/
while (lp->work_pending)
schedule();
smc911x_phy_powerdown(dev, lp->mii.phy_id);
}
if (lp->pending_tx_skb) {
dev_kfree_skb(lp->pending_tx_skb);
lp->pending_tx_skb = NULL;
}
return 0;
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *smc911x_query_statistics(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
return &lp->stats;
}
/*
* Ethtool support
*/
static int
smc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int ret, status;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
if (lp->phy_type != 0) {
spin_lock_irqsave(&lp->lock, flags);
ret = mii_ethtool_gset(&lp->mii, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
} else {
cmd->supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_TP | SUPPORTED_AUI;
if (lp->ctl_rspeed == 10)
cmd->speed = SPEED_10;
else if (lp->ctl_rspeed == 100)
cmd->speed = SPEED_100;
cmd->autoneg = AUTONEG_DISABLE;
if (lp->mii.phy_id==1)
cmd->transceiver = XCVR_INTERNAL;
else
cmd->transceiver = XCVR_EXTERNAL;
cmd->port = 0;
SMC_GET_PHY_SPECIAL(lp->mii.phy_id, status);
cmd->duplex =
(status & (PHY_SPECIAL_SPD_10FULL_ | PHY_SPECIAL_SPD_100FULL_)) ?
DUPLEX_FULL : DUPLEX_HALF;
ret = 0;
}
return ret;
}
static int
smc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smc911x_local *lp = netdev_priv(dev);
int ret;
unsigned long flags;
if (lp->phy_type != 0) {
spin_lock_irqsave(&lp->lock, flags);
ret = mii_ethtool_sset(&lp->mii, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
} else {
if (cmd->autoneg != AUTONEG_DISABLE ||
cmd->speed != SPEED_10 ||
(cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
(cmd->port != PORT_TP && cmd->port != PORT_AUI))
return -EINVAL;
lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
ret = 0;
}
return ret;
}
static void
smc911x_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strncpy(info->driver, CARDNAME, sizeof(info->driver));
strncpy(info->version, version, sizeof(info->version));
strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
}
static int smc911x_ethtool_nwayreset(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
int ret = -EINVAL;
unsigned long flags;
if (lp->phy_type != 0) {
spin_lock_irqsave(&lp->lock, flags);
ret = mii_nway_restart(&lp->mii);
spin_unlock_irqrestore(&lp->lock, flags);
}
return ret;
}
static u32 smc911x_ethtool_getmsglevel(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
return lp->msg_enable;
}
static void smc911x_ethtool_setmsglevel(struct net_device *dev, u32 level)
{
struct smc911x_local *lp = netdev_priv(dev);
lp->msg_enable = level;
}
static int smc911x_ethtool_getregslen(struct net_device *dev)
{
/* System regs + MAC regs + PHY regs */
return (((E2P_CMD - ID_REV)/4 + 1) +
(WUCSR - MAC_CR)+1 + 32) * sizeof(u32);
}
static void smc911x_ethtool_getregs(struct net_device *dev,
struct ethtool_regs* regs, void *buf)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned long flags;
u32 reg,i,j=0;
u32 *data = (u32*)buf;
regs->version = lp->version;
for(i=ID_REV;i<=E2P_CMD;i+=4) {
data[j++] = SMC_inl(ioaddr,i);
}
for(i=MAC_CR;i<=WUCSR;i++) {
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CSR(i, reg);
spin_unlock_irqrestore(&lp->lock, flags);
data[j++] = reg;
}
for(i=0;i<=31;i++) {
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MII(i, lp->mii.phy_id, reg);
spin_unlock_irqrestore(&lp->lock, flags);
data[j++] = reg & 0xFFFF;
}
}
static int smc911x_ethtool_wait_eeprom_ready(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
unsigned int timeout;
int e2p_cmd;
e2p_cmd = SMC_GET_E2P_CMD();
for(timeout=10;(e2p_cmd & E2P_CMD_EPC_BUSY_) && timeout; timeout--) {
if (e2p_cmd & E2P_CMD_EPC_TIMEOUT_) {
PRINTK("%s: %s timeout waiting for EEPROM to respond\n",
dev->name, __FUNCTION__);
return -EFAULT;
}
mdelay(1);
e2p_cmd = SMC_GET_E2P_CMD();
}
if (timeout == 0) {
PRINTK("%s: %s timeout waiting for EEPROM CMD not busy\n",
dev->name, __FUNCTION__);
return -ETIMEDOUT;
}
return 0;
}
static inline int smc911x_ethtool_write_eeprom_cmd(struct net_device *dev,
int cmd, int addr)
{
unsigned long ioaddr = dev->base_addr;
int ret;
if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
return ret;
SMC_SET_E2P_CMD(E2P_CMD_EPC_BUSY_ |
((cmd) & (0x7<<28)) |
((addr) & 0xFF));
return 0;
}
static inline int smc911x_ethtool_read_eeprom_byte(struct net_device *dev,
u8 *data)
{
unsigned long ioaddr = dev->base_addr;
int ret;
if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
return ret;
*data = SMC_GET_E2P_DATA();
return 0;
}
static inline int smc911x_ethtool_write_eeprom_byte(struct net_device *dev,
u8 data)
{
unsigned long ioaddr = dev->base_addr;
int ret;
if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
return ret;
SMC_SET_E2P_DATA(data);
return 0;
}
static int smc911x_ethtool_geteeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
u8 eebuf[SMC911X_EEPROM_LEN];
int i, ret;
for(i=0;i<SMC911X_EEPROM_LEN;i++) {
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_READ_, i ))!=0)
return ret;
if ((ret=smc911x_ethtool_read_eeprom_byte(dev, &eebuf[i]))!=0)
return ret;
}
memcpy(data, eebuf+eeprom->offset, eeprom->len);
return 0;
}
static int smc911x_ethtool_seteeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int i, ret;
/* Enable erase */
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_EWEN_, 0 ))!=0)
return ret;
for(i=eeprom->offset;i<(eeprom->offset+eeprom->len);i++) {
/* erase byte */
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_ERASE_, i ))!=0)
return ret;
/* write byte */
if ((ret=smc911x_ethtool_write_eeprom_byte(dev, *data))!=0)
return ret;
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_WRITE_, i ))!=0)
return ret;
}
return 0;
}
static int smc911x_ethtool_geteeprom_len(struct net_device *dev)
{
return SMC911X_EEPROM_LEN;
}
static const struct ethtool_ops smc911x_ethtool_ops = {
.get_settings = smc911x_ethtool_getsettings,
.set_settings = smc911x_ethtool_setsettings,
.get_drvinfo = smc911x_ethtool_getdrvinfo,
.get_msglevel = smc911x_ethtool_getmsglevel,
.set_msglevel = smc911x_ethtool_setmsglevel,
.nway_reset = smc911x_ethtool_nwayreset,
.get_link = ethtool_op_get_link,
.get_regs_len = smc911x_ethtool_getregslen,
.get_regs = smc911x_ethtool_getregs,
.get_eeprom_len = smc911x_ethtool_geteeprom_len,
.get_eeprom = smc911x_ethtool_geteeprom,
.set_eeprom = smc911x_ethtool_seteeprom,
};
/*
* smc911x_findirq
*
* This routine has a simple purpose -- make the SMC chip generate an
* interrupt, so an auto-detect routine can detect it, and find the IRQ,
*/
static int __init smc911x_findirq(unsigned long ioaddr)
{
int timeout = 20;
unsigned long cookie;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
cookie = probe_irq_on();
/*
* Force a SW interrupt
*/
SMC_SET_INT_EN(INT_EN_SW_INT_EN_);
/*
* Wait until positive that the interrupt has been generated
*/
do {
int int_status;
udelay(10);
int_status = SMC_GET_INT_EN();
if (int_status & INT_EN_SW_INT_EN_)
break; /* got the interrupt */
} while (--timeout);
/*
* there is really nothing that I can do here if timeout fails,
* as autoirq_report will return a 0 anyway, which is what I
* want in this case. Plus, the clean up is needed in both
* cases.
*/
/* and disable all interrupts again */
SMC_SET_INT_EN(0);
/* and return what I found */
return probe_irq_off(cookie);
}
/*
* Function: smc911x_probe(unsigned long ioaddr)
*
* Purpose:
* Tests to see if a given ioaddr points to an SMC911x chip.
* Returns a 0 on success
*
* Algorithm:
* (1) see if the endian word is OK
* (1) see if I recognize the chip ID in the appropriate register
*
* Here I do typical initialization tasks.
*
* o Initialize the structure if needed
* o print out my vanity message if not done so already
* o print out what type of hardware is detected
* o print out the ethernet address
* o find the IRQ
* o set up my private data
* o configure the dev structure with my subroutines
* o actually GRAB the irq.
* o GRAB the region
*/
static int __init smc911x_probe(struct net_device *dev, unsigned long ioaddr)
{
struct smc911x_local *lp = netdev_priv(dev);
int i, retval;
unsigned int val, chip_id, revision;
const char *version_string;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/* First, see if the endian word is recognized */
val = SMC_GET_BYTE_TEST();
DBG(SMC_DEBUG_MISC, "%s: endian probe returned 0x%04x\n", CARDNAME, val);
if (val != 0x87654321) {
printk(KERN_ERR "Invalid chip endian 0x08%x\n",val);
retval = -ENODEV;
goto err_out;
}
/*
* check if the revision register is something that I
* recognize. These might need to be added to later,
* as future revisions could be added.
*/
chip_id = SMC_GET_PN();
DBG(SMC_DEBUG_MISC, "%s: id probe returned 0x%04x\n", CARDNAME, chip_id);
for(i=0;chip_ids[i].id != 0; i++) {
if (chip_ids[i].id == chip_id) break;
}
if (!chip_ids[i].id) {
printk(KERN_ERR "Unknown chip ID %04x\n", chip_id);
retval = -ENODEV;
goto err_out;
}
version_string = chip_ids[i].name;
revision = SMC_GET_REV();
DBG(SMC_DEBUG_MISC, "%s: revision = 0x%04x\n", CARDNAME, revision);
/* At this point I'll assume that the chip is an SMC911x. */
DBG(SMC_DEBUG_MISC, "%s: Found a %s\n", CARDNAME, chip_ids[i].name);
/* Validate the TX FIFO size requested */
if ((tx_fifo_kb < 2) || (tx_fifo_kb > 14)) {
printk(KERN_ERR "Invalid TX FIFO size requested %d\n", tx_fifo_kb);
retval = -EINVAL;
goto err_out;
}
/* fill in some of the fields */
dev->base_addr = ioaddr;
lp->version = chip_ids[i].id;
lp->revision = revision;
lp->tx_fifo_kb = tx_fifo_kb;
/* Reverse calculate the RX FIFO size from the TX */
lp->tx_fifo_size=(lp->tx_fifo_kb<<10) - 512;
lp->rx_fifo_size= ((0x4000 - 512 - lp->tx_fifo_size) / 16) * 15;
/* Set the automatic flow control values */
switch(lp->tx_fifo_kb) {
/*
* AFC_HI is about ((Rx Data Fifo Size)*2/3)/64
* AFC_LO is AFC_HI/2
* BACK_DUR is about 5uS*(AFC_LO) rounded down
*/
case 2:/* 13440 Rx Data Fifo Size */
lp->afc_cfg=0x008C46AF;break;
case 3:/* 12480 Rx Data Fifo Size */
lp->afc_cfg=0x0082419F;break;
case 4:/* 11520 Rx Data Fifo Size */
lp->afc_cfg=0x00783C9F;break;
case 5:/* 10560 Rx Data Fifo Size */
lp->afc_cfg=0x006E374F;break;
case 6:/* 9600 Rx Data Fifo Size */
lp->afc_cfg=0x0064328F;break;
case 7:/* 8640 Rx Data Fifo Size */
lp->afc_cfg=0x005A2D7F;break;
case 8:/* 7680 Rx Data Fifo Size */
lp->afc_cfg=0x0050287F;break;
case 9:/* 6720 Rx Data Fifo Size */
lp->afc_cfg=0x0046236F;break;
case 10:/* 5760 Rx Data Fifo Size */
lp->afc_cfg=0x003C1E6F;break;
case 11:/* 4800 Rx Data Fifo Size */
lp->afc_cfg=0x0032195F;break;
/*
* AFC_HI is ~1520 bytes less than RX Data Fifo Size
* AFC_LO is AFC_HI/2
* BACK_DUR is about 5uS*(AFC_LO) rounded down
*/
case 12:/* 3840 Rx Data Fifo Size */
lp->afc_cfg=0x0024124F;break;
case 13:/* 2880 Rx Data Fifo Size */
lp->afc_cfg=0x0015073F;break;
case 14:/* 1920 Rx Data Fifo Size */
lp->afc_cfg=0x0006032F;break;
default:
PRINTK("%s: ERROR -- no AFC_CFG setting found",
dev->name);
break;
}
DBG(SMC_DEBUG_MISC | SMC_DEBUG_TX | SMC_DEBUG_RX,
"%s: tx_fifo %d rx_fifo %d afc_cfg 0x%08x\n", CARDNAME,
lp->tx_fifo_size, lp->rx_fifo_size, lp->afc_cfg);
spin_lock_init(&lp->lock);
/* Get the MAC address */
SMC_GET_MAC_ADDR(dev->dev_addr);
/* now, reset the chip, and put it into a known state */
smc911x_reset(dev);
/*
* If dev->irq is 0, then the device has to be banged on to see
* what the IRQ is.
*
* Specifying an IRQ is done with the assumption that the user knows
* what (s)he is doing. No checking is done!!!!
*/
if (dev->irq < 1) {
int trials;
trials = 3;
while (trials--) {
dev->irq = smc911x_findirq(ioaddr);
if (dev->irq)
break;
/* kick the card and try again */
smc911x_reset(dev);
}
}
if (dev->irq == 0) {
printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
dev->name);
retval = -ENODEV;
goto err_out;
}
dev->irq = irq_canonicalize(dev->irq);
/* Fill in the fields of the device structure with ethernet values. */
ether_setup(dev);
dev->open = smc911x_open;
dev->stop = smc911x_close;
dev->hard_start_xmit = smc911x_hard_start_xmit;
dev->tx_timeout = smc911x_timeout;
dev->watchdog_timeo = msecs_to_jiffies(watchdog);
dev->get_stats = smc911x_query_statistics;
dev->set_multicast_list = smc911x_set_multicast_list;
dev->ethtool_ops = &smc911x_ethtool_ops;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = smc911x_poll_controller;
#endif
INIT_WORK(&lp->phy_configure, smc911x_phy_configure, dev);
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
lp->mii.force_media = 0;
lp->mii.full_duplex = 0;
lp->mii.dev = dev;
lp->mii.mdio_read = smc911x_phy_read;
lp->mii.mdio_write = smc911x_phy_write;
/*
* Locate the phy, if any.
*/
smc911x_phy_detect(dev);
/* Set default parameters */
lp->msg_enable = NETIF_MSG_LINK;
lp->ctl_rfduplx = 1;
lp->ctl_rspeed = 100;
/* Grab the IRQ */
retval = request_irq(dev->irq, &smc911x_interrupt, IRQF_SHARED, dev->name, dev);
if (retval)
goto err_out;
set_irq_type(dev->irq, IRQT_FALLING);
#ifdef SMC_USE_DMA
lp->rxdma = SMC_DMA_REQUEST(dev, smc911x_rx_dma_irq);
lp->txdma = SMC_DMA_REQUEST(dev, smc911x_tx_dma_irq);
lp->rxdma_active = 0;
lp->txdma_active = 0;
dev->dma = lp->rxdma;
#endif
retval = register_netdev(dev);
if (retval == 0) {
/* now, print out the card info, in a short format.. */
printk("%s: %s (rev %d) at %#lx IRQ %d",
dev->name, version_string, lp->revision,
dev->base_addr, dev->irq);
#ifdef SMC_USE_DMA
if (lp->rxdma != -1)
printk(" RXDMA %d ", lp->rxdma);
if (lp->txdma != -1)
printk("TXDMA %d", lp->txdma);
#endif
printk("\n");
if (!is_valid_ether_addr(dev->dev_addr)) {
printk("%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", dev->name);
} else {
/* Print the Ethernet address */
printk("%s: Ethernet addr: ", dev->name);
for (i = 0; i < 5; i++)
printk("%2.2x:", dev->dev_addr[i]);
printk("%2.2x\n", dev->dev_addr[5]);
}
if (lp->phy_type == 0) {
PRINTK("%s: No PHY found\n", dev->name);
} else if ((lp->phy_type & ~0xff) == LAN911X_INTERNAL_PHY_ID) {
PRINTK("%s: LAN911x Internal PHY\n", dev->name);
} else {
PRINTK("%s: External PHY 0x%08x\n", dev->name, lp->phy_type);
}
}
err_out:
#ifdef SMC_USE_DMA
if (retval) {
if (lp->rxdma != -1) {
SMC_DMA_FREE(dev, lp->rxdma);
}
if (lp->txdma != -1) {
SMC_DMA_FREE(dev, lp->txdma);
}
}
#endif
return retval;
}
/*
* smc911x_init(void)
*
* Output:
* 0 --> there is a device
* anything else, error
*/
static int smc911x_drv_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct resource *res;
unsigned int *addr;
int ret;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
goto out;
}
/*
* Request the regions.
*/
if (!request_mem_region(res->start, SMC911X_IO_EXTENT, CARDNAME)) {
ret = -EBUSY;
goto out;
}
ndev = alloc_etherdev(sizeof(struct smc911x_local));
if (!ndev) {
printk("%s: could not allocate device.\n", CARDNAME);
ret = -ENOMEM;
goto release_1;
}
SET_MODULE_OWNER(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->dma = (unsigned char)-1;
ndev->irq = platform_get_irq(pdev, 0);
addr = ioremap(res->start, SMC911X_IO_EXTENT);
if (!addr) {
ret = -ENOMEM;
goto release_both;
}
platform_set_drvdata(pdev, ndev);
ret = smc911x_probe(ndev, (unsigned long)addr);
if (ret != 0) {
platform_set_drvdata(pdev, NULL);
iounmap(addr);
release_both:
free_netdev(ndev);
release_1:
release_mem_region(res->start, SMC911X_IO_EXTENT);
out:
printk("%s: not found (%d).\n", CARDNAME, ret);
}
#ifdef SMC_USE_DMA
else {
struct smc911x_local *lp = netdev_priv(ndev);
lp->physaddr = res->start;
lp->dev = &pdev->dev;
}
#endif
return ret;
}
static int smc911x_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct resource *res;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
platform_set_drvdata(pdev, NULL);
unregister_netdev(ndev);
free_irq(ndev->irq, ndev);
#ifdef SMC_USE_DMA
{
struct smc911x_local *lp = netdev_priv(ndev);
if (lp->rxdma != -1) {
SMC_DMA_FREE(dev, lp->rxdma);
}
if (lp->txdma != -1) {
SMC_DMA_FREE(dev, lp->txdma);
}
}
#endif
iounmap((void *)ndev->base_addr);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, SMC911X_IO_EXTENT);
free_netdev(ndev);
return 0;
}
static int smc911x_drv_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
unsigned long ioaddr = ndev->base_addr;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
if (ndev) {
if (netif_running(ndev)) {
netif_device_detach(ndev);
smc911x_shutdown(ndev);
#if POWER_DOWN
/* Set D2 - Energy detect only setting */
SMC_SET_PMT_CTRL(2<<12);
#endif
}
}
return 0;
}
static int smc911x_drv_resume(struct platform_device *dev)
{
struct net_device *ndev = platform_get_drvdata(dev);
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
if (ndev) {
struct smc911x_local *lp = netdev_priv(ndev);
if (netif_running(ndev)) {
smc911x_reset(ndev);
smc911x_enable(ndev);
if (lp->phy_type != 0)
smc911x_phy_configure(ndev);
netif_device_attach(ndev);
}
}
return 0;
}
static struct platform_driver smc911x_driver = {
.probe = smc911x_drv_probe,
.remove = smc911x_drv_remove,
.suspend = smc911x_drv_suspend,
.resume = smc911x_drv_resume,
.driver = {
.name = CARDNAME,
},
};
static int __init smc911x_init(void)
{
return platform_driver_register(&smc911x_driver);
}
static void __exit smc911x_cleanup(void)
{
platform_driver_unregister(&smc911x_driver);
}
module_init(smc911x_init);
module_exit(smc911x_cleanup);