linux/net/ipv4/tcp.c
Jesper Juhl 02c30a84e6 [PATCH] update Ross Biro bouncing email address
Ross moved.  Remove the bad email address so people will find the correct
one in ./CREDITS.

Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 16:36:49 -07:00

2387 lines
63 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche, <flla@stud.uni-sb.de>
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
* Linus Torvalds, <torvalds@cs.helsinki.fi>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Matthew Dillon, <dillon@apollo.west.oic.com>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Jorge Cwik, <jorge@laser.satlink.net>
*
* Fixes:
* Alan Cox : Numerous verify_area() calls
* Alan Cox : Set the ACK bit on a reset
* Alan Cox : Stopped it crashing if it closed while
* sk->inuse=1 and was trying to connect
* (tcp_err()).
* Alan Cox : All icmp error handling was broken
* pointers passed where wrong and the
* socket was looked up backwards. Nobody
* tested any icmp error code obviously.
* Alan Cox : tcp_err() now handled properly. It
* wakes people on errors. poll
* behaves and the icmp error race
* has gone by moving it into sock.c
* Alan Cox : tcp_send_reset() fixed to work for
* everything not just packets for
* unknown sockets.
* Alan Cox : tcp option processing.
* Alan Cox : Reset tweaked (still not 100%) [Had
* syn rule wrong]
* Herp Rosmanith : More reset fixes
* Alan Cox : No longer acks invalid rst frames.
* Acking any kind of RST is right out.
* Alan Cox : Sets an ignore me flag on an rst
* receive otherwise odd bits of prattle
* escape still
* Alan Cox : Fixed another acking RST frame bug.
* Should stop LAN workplace lockups.
* Alan Cox : Some tidyups using the new skb list
* facilities
* Alan Cox : sk->keepopen now seems to work
* Alan Cox : Pulls options out correctly on accepts
* Alan Cox : Fixed assorted sk->rqueue->next errors
* Alan Cox : PSH doesn't end a TCP read. Switched a
* bit to skb ops.
* Alan Cox : Tidied tcp_data to avoid a potential
* nasty.
* Alan Cox : Added some better commenting, as the
* tcp is hard to follow
* Alan Cox : Removed incorrect check for 20 * psh
* Michael O'Reilly : ack < copied bug fix.
* Johannes Stille : Misc tcp fixes (not all in yet).
* Alan Cox : FIN with no memory -> CRASH
* Alan Cox : Added socket option proto entries.
* Also added awareness of them to accept.
* Alan Cox : Added TCP options (SOL_TCP)
* Alan Cox : Switched wakeup calls to callbacks,
* so the kernel can layer network
* sockets.
* Alan Cox : Use ip_tos/ip_ttl settings.
* Alan Cox : Handle FIN (more) properly (we hope).
* Alan Cox : RST frames sent on unsynchronised
* state ack error.
* Alan Cox : Put in missing check for SYN bit.
* Alan Cox : Added tcp_select_window() aka NET2E
* window non shrink trick.
* Alan Cox : Added a couple of small NET2E timer
* fixes
* Charles Hedrick : TCP fixes
* Toomas Tamm : TCP window fixes
* Alan Cox : Small URG fix to rlogin ^C ack fight
* Charles Hedrick : Rewrote most of it to actually work
* Linus : Rewrote tcp_read() and URG handling
* completely
* Gerhard Koerting: Fixed some missing timer handling
* Matthew Dillon : Reworked TCP machine states as per RFC
* Gerhard Koerting: PC/TCP workarounds
* Adam Caldwell : Assorted timer/timing errors
* Matthew Dillon : Fixed another RST bug
* Alan Cox : Move to kernel side addressing changes.
* Alan Cox : Beginning work on TCP fastpathing
* (not yet usable)
* Arnt Gulbrandsen: Turbocharged tcp_check() routine.
* Alan Cox : TCP fast path debugging
* Alan Cox : Window clamping
* Michael Riepe : Bug in tcp_check()
* Matt Dillon : More TCP improvements and RST bug fixes
* Matt Dillon : Yet more small nasties remove from the
* TCP code (Be very nice to this man if
* tcp finally works 100%) 8)
* Alan Cox : BSD accept semantics.
* Alan Cox : Reset on closedown bug.
* Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
* Michael Pall : Handle poll() after URG properly in
* all cases.
* Michael Pall : Undo the last fix in tcp_read_urg()
* (multi URG PUSH broke rlogin).
* Michael Pall : Fix the multi URG PUSH problem in
* tcp_readable(), poll() after URG
* works now.
* Michael Pall : recv(...,MSG_OOB) never blocks in the
* BSD api.
* Alan Cox : Changed the semantics of sk->socket to
* fix a race and a signal problem with
* accept() and async I/O.
* Alan Cox : Relaxed the rules on tcp_sendto().
* Yury Shevchuk : Really fixed accept() blocking problem.
* Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
* clients/servers which listen in on
* fixed ports.
* Alan Cox : Cleaned the above up and shrank it to
* a sensible code size.
* Alan Cox : Self connect lockup fix.
* Alan Cox : No connect to multicast.
* Ross Biro : Close unaccepted children on master
* socket close.
* Alan Cox : Reset tracing code.
* Alan Cox : Spurious resets on shutdown.
* Alan Cox : Giant 15 minute/60 second timer error
* Alan Cox : Small whoops in polling before an
* accept.
* Alan Cox : Kept the state trace facility since
* it's handy for debugging.
* Alan Cox : More reset handler fixes.
* Alan Cox : Started rewriting the code based on
* the RFC's for other useful protocol
* references see: Comer, KA9Q NOS, and
* for a reference on the difference
* between specifications and how BSD
* works see the 4.4lite source.
* A.N.Kuznetsov : Don't time wait on completion of tidy
* close.
* Linus Torvalds : Fin/Shutdown & copied_seq changes.
* Linus Torvalds : Fixed BSD port reuse to work first syn
* Alan Cox : Reimplemented timers as per the RFC
* and using multiple timers for sanity.
* Alan Cox : Small bug fixes, and a lot of new
* comments.
* Alan Cox : Fixed dual reader crash by locking
* the buffers (much like datagram.c)
* Alan Cox : Fixed stuck sockets in probe. A probe
* now gets fed up of retrying without
* (even a no space) answer.
* Alan Cox : Extracted closing code better
* Alan Cox : Fixed the closing state machine to
* resemble the RFC.
* Alan Cox : More 'per spec' fixes.
* Jorge Cwik : Even faster checksumming.
* Alan Cox : tcp_data() doesn't ack illegal PSH
* only frames. At least one pc tcp stack
* generates them.
* Alan Cox : Cache last socket.
* Alan Cox : Per route irtt.
* Matt Day : poll()->select() match BSD precisely on error
* Alan Cox : New buffers
* Marc Tamsky : Various sk->prot->retransmits and
* sk->retransmits misupdating fixed.
* Fixed tcp_write_timeout: stuck close,
* and TCP syn retries gets used now.
* Mark Yarvis : In tcp_read_wakeup(), don't send an
* ack if state is TCP_CLOSED.
* Alan Cox : Look up device on a retransmit - routes may
* change. Doesn't yet cope with MSS shrink right
* but it's a start!
* Marc Tamsky : Closing in closing fixes.
* Mike Shaver : RFC1122 verifications.
* Alan Cox : rcv_saddr errors.
* Alan Cox : Block double connect().
* Alan Cox : Small hooks for enSKIP.
* Alexey Kuznetsov: Path MTU discovery.
* Alan Cox : Support soft errors.
* Alan Cox : Fix MTU discovery pathological case
* when the remote claims no mtu!
* Marc Tamsky : TCP_CLOSE fix.
* Colin (G3TNE) : Send a reset on syn ack replies in
* window but wrong (fixes NT lpd problems)
* Pedro Roque : Better TCP window handling, delayed ack.
* Joerg Reuter : No modification of locked buffers in
* tcp_do_retransmit()
* Eric Schenk : Changed receiver side silly window
* avoidance algorithm to BSD style
* algorithm. This doubles throughput
* against machines running Solaris,
* and seems to result in general
* improvement.
* Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
* Willy Konynenberg : Transparent proxying support.
* Mike McLagan : Routing by source
* Keith Owens : Do proper merging with partial SKB's in
* tcp_do_sendmsg to avoid burstiness.
* Eric Schenk : Fix fast close down bug with
* shutdown() followed by close().
* Andi Kleen : Make poll agree with SIGIO
* Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
* lingertime == 0 (RFC 793 ABORT Call)
* Hirokazu Takahashi : Use copy_from_user() instead of
* csum_and_copy_from_user() if possible.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or(at your option) any later version.
*
* Description of States:
*
* TCP_SYN_SENT sent a connection request, waiting for ack
*
* TCP_SYN_RECV received a connection request, sent ack,
* waiting for final ack in three-way handshake.
*
* TCP_ESTABLISHED connection established
*
* TCP_FIN_WAIT1 our side has shutdown, waiting to complete
* transmission of remaining buffered data
*
* TCP_FIN_WAIT2 all buffered data sent, waiting for remote
* to shutdown
*
* TCP_CLOSING both sides have shutdown but we still have
* data we have to finish sending
*
* TCP_TIME_WAIT timeout to catch resent junk before entering
* closed, can only be entered from FIN_WAIT2
* or CLOSING. Required because the other end
* may not have gotten our last ACK causing it
* to retransmit the data packet (which we ignore)
*
* TCP_CLOSE_WAIT remote side has shutdown and is waiting for
* us to finish writing our data and to shutdown
* (we have to close() to move on to LAST_ACK)
*
* TCP_LAST_ACK out side has shutdown after remote has
* shutdown. There may still be data in our
* buffer that we have to finish sending
*
* TCP_CLOSE socket is finished
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/fs.h>
#include <linux/random.h>
#include <linux/bootmem.h>
#include <net/icmp.h>
#include <net/tcp.h>
#include <net/xfrm.h>
#include <net/ip.h>
#include <asm/uaccess.h>
#include <asm/ioctls.h>
int sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics);
kmem_cache_t *tcp_openreq_cachep;
kmem_cache_t *tcp_bucket_cachep;
kmem_cache_t *tcp_timewait_cachep;
atomic_t tcp_orphan_count = ATOMIC_INIT(0);
int sysctl_tcp_mem[3];
int sysctl_tcp_wmem[3] = { 4 * 1024, 16 * 1024, 128 * 1024 };
int sysctl_tcp_rmem[3] = { 4 * 1024, 87380, 87380 * 2 };
EXPORT_SYMBOL(sysctl_tcp_mem);
EXPORT_SYMBOL(sysctl_tcp_rmem);
EXPORT_SYMBOL(sysctl_tcp_wmem);
atomic_t tcp_memory_allocated; /* Current allocated memory. */
atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
EXPORT_SYMBOL(tcp_memory_allocated);
EXPORT_SYMBOL(tcp_sockets_allocated);
/*
* Pressure flag: try to collapse.
* Technical note: it is used by multiple contexts non atomically.
* All the sk_stream_mem_schedule() is of this nature: accounting
* is strict, actions are advisory and have some latency.
*/
int tcp_memory_pressure;
EXPORT_SYMBOL(tcp_memory_pressure);
void tcp_enter_memory_pressure(void)
{
if (!tcp_memory_pressure) {
NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
tcp_memory_pressure = 1;
}
}
EXPORT_SYMBOL(tcp_enter_memory_pressure);
/*
* LISTEN is a special case for poll..
*/
static __inline__ unsigned int tcp_listen_poll(struct sock *sk,
poll_table *wait)
{
return tcp_sk(sk)->accept_queue ? (POLLIN | POLLRDNORM) : 0;
}
/*
* Wait for a TCP event.
*
* Note that we don't need to lock the socket, as the upper poll layers
* take care of normal races (between the test and the event) and we don't
* go look at any of the socket buffers directly.
*/
unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
unsigned int mask;
struct sock *sk = sock->sk;
struct tcp_sock *tp = tcp_sk(sk);
poll_wait(file, sk->sk_sleep, wait);
if (sk->sk_state == TCP_LISTEN)
return tcp_listen_poll(sk, wait);
/* Socket is not locked. We are protected from async events
by poll logic and correct handling of state changes
made by another threads is impossible in any case.
*/
mask = 0;
if (sk->sk_err)
mask = POLLERR;
/*
* POLLHUP is certainly not done right. But poll() doesn't
* have a notion of HUP in just one direction, and for a
* socket the read side is more interesting.
*
* Some poll() documentation says that POLLHUP is incompatible
* with the POLLOUT/POLLWR flags, so somebody should check this
* all. But careful, it tends to be safer to return too many
* bits than too few, and you can easily break real applications
* if you don't tell them that something has hung up!
*
* Check-me.
*
* Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
* our fs/select.c). It means that after we received EOF,
* poll always returns immediately, making impossible poll() on write()
* in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
* if and only if shutdown has been made in both directions.
* Actually, it is interesting to look how Solaris and DUX
* solve this dilemma. I would prefer, if PULLHUP were maskable,
* then we could set it on SND_SHUTDOWN. BTW examples given
* in Stevens' books assume exactly this behaviour, it explains
* why PULLHUP is incompatible with POLLOUT. --ANK
*
* NOTE. Check for TCP_CLOSE is added. The goal is to prevent
* blocking on fresh not-connected or disconnected socket. --ANK
*/
if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
mask |= POLLHUP;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= POLLIN | POLLRDNORM;
/* Connected? */
if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
/* Potential race condition. If read of tp below will
* escape above sk->sk_state, we can be illegally awaken
* in SYN_* states. */
if ((tp->rcv_nxt != tp->copied_seq) &&
(tp->urg_seq != tp->copied_seq ||
tp->rcv_nxt != tp->copied_seq + 1 ||
sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
mask |= POLLIN | POLLRDNORM;
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
mask |= POLLOUT | POLLWRNORM;
} else { /* send SIGIO later */
set_bit(SOCK_ASYNC_NOSPACE,
&sk->sk_socket->flags);
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
/* Race breaker. If space is freed after
* wspace test but before the flags are set,
* IO signal will be lost.
*/
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
mask |= POLLOUT | POLLWRNORM;
}
}
if (tp->urg_data & TCP_URG_VALID)
mask |= POLLPRI;
}
return mask;
}
int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
struct tcp_sock *tp = tcp_sk(sk);
int answ;
switch (cmd) {
case SIOCINQ:
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
lock_sock(sk);
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
answ = 0;
else if (sock_flag(sk, SOCK_URGINLINE) ||
!tp->urg_data ||
before(tp->urg_seq, tp->copied_seq) ||
!before(tp->urg_seq, tp->rcv_nxt)) {
answ = tp->rcv_nxt - tp->copied_seq;
/* Subtract 1, if FIN is in queue. */
if (answ && !skb_queue_empty(&sk->sk_receive_queue))
answ -=
((struct sk_buff *)sk->sk_receive_queue.prev)->h.th->fin;
} else
answ = tp->urg_seq - tp->copied_seq;
release_sock(sk);
break;
case SIOCATMARK:
answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
break;
case SIOCOUTQ:
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
answ = 0;
else
answ = tp->write_seq - tp->snd_una;
break;
default:
return -ENOIOCTLCMD;
};
return put_user(answ, (int __user *)arg);
}
int tcp_listen_start(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_listen_opt *lopt;
sk->sk_max_ack_backlog = 0;
sk->sk_ack_backlog = 0;
tp->accept_queue = tp->accept_queue_tail = NULL;
rwlock_init(&tp->syn_wait_lock);
tcp_delack_init(tp);
lopt = kmalloc(sizeof(struct tcp_listen_opt), GFP_KERNEL);
if (!lopt)
return -ENOMEM;
memset(lopt, 0, sizeof(struct tcp_listen_opt));
for (lopt->max_qlen_log = 6; ; lopt->max_qlen_log++)
if ((1 << lopt->max_qlen_log) >= sysctl_max_syn_backlog)
break;
get_random_bytes(&lopt->hash_rnd, 4);
write_lock_bh(&tp->syn_wait_lock);
tp->listen_opt = lopt;
write_unlock_bh(&tp->syn_wait_lock);
/* There is race window here: we announce ourselves listening,
* but this transition is still not validated by get_port().
* It is OK, because this socket enters to hash table only
* after validation is complete.
*/
sk->sk_state = TCP_LISTEN;
if (!sk->sk_prot->get_port(sk, inet->num)) {
inet->sport = htons(inet->num);
sk_dst_reset(sk);
sk->sk_prot->hash(sk);
return 0;
}
sk->sk_state = TCP_CLOSE;
write_lock_bh(&tp->syn_wait_lock);
tp->listen_opt = NULL;
write_unlock_bh(&tp->syn_wait_lock);
kfree(lopt);
return -EADDRINUSE;
}
/*
* This routine closes sockets which have been at least partially
* opened, but not yet accepted.
*/
static void tcp_listen_stop (struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_listen_opt *lopt = tp->listen_opt;
struct open_request *acc_req = tp->accept_queue;
struct open_request *req;
int i;
tcp_delete_keepalive_timer(sk);
/* make all the listen_opt local to us */
write_lock_bh(&tp->syn_wait_lock);
tp->listen_opt = NULL;
write_unlock_bh(&tp->syn_wait_lock);
tp->accept_queue = tp->accept_queue_tail = NULL;
if (lopt->qlen) {
for (i = 0; i < TCP_SYNQ_HSIZE; i++) {
while ((req = lopt->syn_table[i]) != NULL) {
lopt->syn_table[i] = req->dl_next;
lopt->qlen--;
tcp_openreq_free(req);
/* Following specs, it would be better either to send FIN
* (and enter FIN-WAIT-1, it is normal close)
* or to send active reset (abort).
* Certainly, it is pretty dangerous while synflood, but it is
* bad justification for our negligence 8)
* To be honest, we are not able to make either
* of the variants now. --ANK
*/
}
}
}
BUG_TRAP(!lopt->qlen);
kfree(lopt);
while ((req = acc_req) != NULL) {
struct sock *child = req->sk;
acc_req = req->dl_next;
local_bh_disable();
bh_lock_sock(child);
BUG_TRAP(!sock_owned_by_user(child));
sock_hold(child);
tcp_disconnect(child, O_NONBLOCK);
sock_orphan(child);
atomic_inc(&tcp_orphan_count);
tcp_destroy_sock(child);
bh_unlock_sock(child);
local_bh_enable();
sock_put(child);
sk_acceptq_removed(sk);
tcp_openreq_fastfree(req);
}
BUG_TRAP(!sk->sk_ack_backlog);
}
static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
{
TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
tp->pushed_seq = tp->write_seq;
}
static inline int forced_push(struct tcp_sock *tp)
{
return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
}
static inline void skb_entail(struct sock *sk, struct tcp_sock *tp,
struct sk_buff *skb)
{
skb->csum = 0;
TCP_SKB_CB(skb)->seq = tp->write_seq;
TCP_SKB_CB(skb)->end_seq = tp->write_seq;
TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
TCP_SKB_CB(skb)->sacked = 0;
skb_header_release(skb);
__skb_queue_tail(&sk->sk_write_queue, skb);
sk_charge_skb(sk, skb);
if (!sk->sk_send_head)
sk->sk_send_head = skb;
else if (tp->nonagle&TCP_NAGLE_PUSH)
tp->nonagle &= ~TCP_NAGLE_PUSH;
}
static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
struct sk_buff *skb)
{
if (flags & MSG_OOB) {
tp->urg_mode = 1;
tp->snd_up = tp->write_seq;
TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
}
}
static inline void tcp_push(struct sock *sk, struct tcp_sock *tp, int flags,
int mss_now, int nonagle)
{
if (sk->sk_send_head) {
struct sk_buff *skb = sk->sk_write_queue.prev;
if (!(flags & MSG_MORE) || forced_push(tp))
tcp_mark_push(tp, skb);
tcp_mark_urg(tp, flags, skb);
__tcp_push_pending_frames(sk, tp, mss_now,
(flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
}
}
static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
size_t psize, int flags)
{
struct tcp_sock *tp = tcp_sk(sk);
int mss_now;
int err;
ssize_t copied;
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_err;
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
copied = 0;
err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto do_error;
while (psize > 0) {
struct sk_buff *skb = sk->sk_write_queue.prev;
struct page *page = pages[poffset / PAGE_SIZE];
int copy, i, can_coalesce;
int offset = poffset % PAGE_SIZE;
int size = min_t(size_t, psize, PAGE_SIZE - offset);
if (!sk->sk_send_head || (copy = mss_now - skb->len) <= 0) {
new_segment:
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf;
skb = sk_stream_alloc_pskb(sk, 0, 0,
sk->sk_allocation);
if (!skb)
goto wait_for_memory;
skb_entail(sk, tp, skb);
copy = mss_now;
}
if (copy > size)
copy = size;
i = skb_shinfo(skb)->nr_frags;
can_coalesce = skb_can_coalesce(skb, i, page, offset);
if (!can_coalesce && i >= MAX_SKB_FRAGS) {
tcp_mark_push(tp, skb);
goto new_segment;
}
if (sk->sk_forward_alloc < copy &&
!sk_stream_mem_schedule(sk, copy, 0))
goto wait_for_memory;
if (can_coalesce) {
skb_shinfo(skb)->frags[i - 1].size += copy;
} else {
get_page(page);
skb_fill_page_desc(skb, i, page, offset, copy);
}
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk->sk_wmem_queued += copy;
sk->sk_forward_alloc -= copy;
skb->ip_summed = CHECKSUM_HW;
tp->write_seq += copy;
TCP_SKB_CB(skb)->end_seq += copy;
skb_shinfo(skb)->tso_segs = 0;
if (!copied)
TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
copied += copy;
poffset += copy;
if (!(psize -= copy))
goto out;
if (skb->len != mss_now || (flags & MSG_OOB))
continue;
if (forced_push(tp)) {
tcp_mark_push(tp, skb);
__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
} else if (skb == sk->sk_send_head)
tcp_push_one(sk, mss_now);
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
if (copied)
tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
goto do_error;
mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
}
out:
if (copied)
tcp_push(sk, tp, flags, mss_now, tp->nonagle);
return copied;
do_error:
if (copied)
goto out;
out_err:
return sk_stream_error(sk, flags, err);
}
ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
size_t size, int flags)
{
ssize_t res;
struct sock *sk = sock->sk;
#define TCP_ZC_CSUM_FLAGS (NETIF_F_IP_CSUM | NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
if (!(sk->sk_route_caps & NETIF_F_SG) ||
!(sk->sk_route_caps & TCP_ZC_CSUM_FLAGS))
return sock_no_sendpage(sock, page, offset, size, flags);
#undef TCP_ZC_CSUM_FLAGS
lock_sock(sk);
TCP_CHECK_TIMER(sk);
res = do_tcp_sendpages(sk, &page, offset, size, flags);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return res;
}
#define TCP_PAGE(sk) (sk->sk_sndmsg_page)
#define TCP_OFF(sk) (sk->sk_sndmsg_off)
static inline int select_size(struct sock *sk, struct tcp_sock *tp)
{
int tmp = tp->mss_cache_std;
if (sk->sk_route_caps & NETIF_F_SG) {
int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
if (tmp >= pgbreak &&
tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
tmp = pgbreak;
}
return tmp;
}
int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t size)
{
struct iovec *iov;
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int iovlen, flags;
int mss_now;
int err, copied;
long timeo;
lock_sock(sk);
TCP_CHECK_TIMER(sk);
flags = msg->msg_flags;
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_err;
/* This should be in poll */
clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
/* Ok commence sending. */
iovlen = msg->msg_iovlen;
iov = msg->msg_iov;
copied = 0;
err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto do_error;
while (--iovlen >= 0) {
int seglen = iov->iov_len;
unsigned char __user *from = iov->iov_base;
iov++;
while (seglen > 0) {
int copy;
skb = sk->sk_write_queue.prev;
if (!sk->sk_send_head ||
(copy = mss_now - skb->len) <= 0) {
new_segment:
/* Allocate new segment. If the interface is SG,
* allocate skb fitting to single page.
*/
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf;
skb = sk_stream_alloc_pskb(sk, select_size(sk, tp),
0, sk->sk_allocation);
if (!skb)
goto wait_for_memory;
/*
* Check whether we can use HW checksum.
*/
if (sk->sk_route_caps &
(NETIF_F_IP_CSUM | NETIF_F_NO_CSUM |
NETIF_F_HW_CSUM))
skb->ip_summed = CHECKSUM_HW;
skb_entail(sk, tp, skb);
copy = mss_now;
}
/* Try to append data to the end of skb. */
if (copy > seglen)
copy = seglen;
/* Where to copy to? */
if (skb_tailroom(skb) > 0) {
/* We have some space in skb head. Superb! */
if (copy > skb_tailroom(skb))
copy = skb_tailroom(skb);
if ((err = skb_add_data(skb, from, copy)) != 0)
goto do_fault;
} else {
int merge = 0;
int i = skb_shinfo(skb)->nr_frags;
struct page *page = TCP_PAGE(sk);
int off = TCP_OFF(sk);
if (skb_can_coalesce(skb, i, page, off) &&
off != PAGE_SIZE) {
/* We can extend the last page
* fragment. */
merge = 1;
} else if (i == MAX_SKB_FRAGS ||
(!i &&
!(sk->sk_route_caps & NETIF_F_SG))) {
/* Need to add new fragment and cannot
* do this because interface is non-SG,
* or because all the page slots are
* busy. */
tcp_mark_push(tp, skb);
goto new_segment;
} else if (page) {
/* If page is cached, align
* offset to L1 cache boundary
*/
off = (off + L1_CACHE_BYTES - 1) &
~(L1_CACHE_BYTES - 1);
if (off == PAGE_SIZE) {
put_page(page);
TCP_PAGE(sk) = page = NULL;
}
}
if (!page) {
/* Allocate new cache page. */
if (!(page = sk_stream_alloc_page(sk)))
goto wait_for_memory;
off = 0;
}
if (copy > PAGE_SIZE - off)
copy = PAGE_SIZE - off;
/* Time to copy data. We are close to
* the end! */
err = skb_copy_to_page(sk, from, skb, page,
off, copy);
if (err) {
/* If this page was new, give it to the
* socket so it does not get leaked.
*/
if (!TCP_PAGE(sk)) {
TCP_PAGE(sk) = page;
TCP_OFF(sk) = 0;
}
goto do_error;
}
/* Update the skb. */
if (merge) {
skb_shinfo(skb)->frags[i - 1].size +=
copy;
} else {
skb_fill_page_desc(skb, i, page, off, copy);
if (TCP_PAGE(sk)) {
get_page(page);
} else if (off + copy < PAGE_SIZE) {
get_page(page);
TCP_PAGE(sk) = page;
}
}
TCP_OFF(sk) = off + copy;
}
if (!copied)
TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
tp->write_seq += copy;
TCP_SKB_CB(skb)->end_seq += copy;
skb_shinfo(skb)->tso_segs = 0;
from += copy;
copied += copy;
if ((seglen -= copy) == 0 && iovlen == 0)
goto out;
if (skb->len != mss_now || (flags & MSG_OOB))
continue;
if (forced_push(tp)) {
tcp_mark_push(tp, skb);
__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_PUSH);
} else if (skb == sk->sk_send_head)
tcp_push_one(sk, mss_now);
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
if (copied)
tcp_push(sk, tp, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
goto do_error;
mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
}
}
out:
if (copied)
tcp_push(sk, tp, flags, mss_now, tp->nonagle);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return copied;
do_fault:
if (!skb->len) {
if (sk->sk_send_head == skb)
sk->sk_send_head = NULL;
__skb_unlink(skb, skb->list);
sk_stream_free_skb(sk, skb);
}
do_error:
if (copied)
goto out;
out_err:
err = sk_stream_error(sk, flags, err);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return err;
}
/*
* Handle reading urgent data. BSD has very simple semantics for
* this, no blocking and very strange errors 8)
*/
static int tcp_recv_urg(struct sock *sk, long timeo,
struct msghdr *msg, int len, int flags,
int *addr_len)
{
struct tcp_sock *tp = tcp_sk(sk);
/* No URG data to read. */
if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
tp->urg_data == TCP_URG_READ)
return -EINVAL; /* Yes this is right ! */
if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
return -ENOTCONN;
if (tp->urg_data & TCP_URG_VALID) {
int err = 0;
char c = tp->urg_data;
if (!(flags & MSG_PEEK))
tp->urg_data = TCP_URG_READ;
/* Read urgent data. */
msg->msg_flags |= MSG_OOB;
if (len > 0) {
if (!(flags & MSG_TRUNC))
err = memcpy_toiovec(msg->msg_iov, &c, 1);
len = 1;
} else
msg->msg_flags |= MSG_TRUNC;
return err ? -EFAULT : len;
}
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
return 0;
/* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
* the available implementations agree in this case:
* this call should never block, independent of the
* blocking state of the socket.
* Mike <pall@rz.uni-karlsruhe.de>
*/
return -EAGAIN;
}
/* Clean up the receive buffer for full frames taken by the user,
* then send an ACK if necessary. COPIED is the number of bytes
* tcp_recvmsg has given to the user so far, it speeds up the
* calculation of whether or not we must ACK for the sake of
* a window update.
*/
static void cleanup_rbuf(struct sock *sk, int copied)
{
struct tcp_sock *tp = tcp_sk(sk);
int time_to_ack = 0;
#if TCP_DEBUG
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
#endif
if (tcp_ack_scheduled(tp)) {
/* Delayed ACKs frequently hit locked sockets during bulk
* receive. */
if (tp->ack.blocked ||
/* Once-per-two-segments ACK was not sent by tcp_input.c */
tp->rcv_nxt - tp->rcv_wup > tp->ack.rcv_mss ||
/*
* If this read emptied read buffer, we send ACK, if
* connection is not bidirectional, user drained
* receive buffer and there was a small segment
* in queue.
*/
(copied > 0 && (tp->ack.pending & TCP_ACK_PUSHED) &&
!tp->ack.pingpong && !atomic_read(&sk->sk_rmem_alloc)))
time_to_ack = 1;
}
/* We send an ACK if we can now advertise a non-zero window
* which has been raised "significantly".
*
* Even if window raised up to infinity, do not send window open ACK
* in states, where we will not receive more. It is useless.
*/
if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
__u32 rcv_window_now = tcp_receive_window(tp);
/* Optimize, __tcp_select_window() is not cheap. */
if (2*rcv_window_now <= tp->window_clamp) {
__u32 new_window = __tcp_select_window(sk);
/* Send ACK now, if this read freed lots of space
* in our buffer. Certainly, new_window is new window.
* We can advertise it now, if it is not less than current one.
* "Lots" means "at least twice" here.
*/
if (new_window && new_window >= 2 * rcv_window_now)
time_to_ack = 1;
}
}
if (time_to_ack)
tcp_send_ack(sk);
}
static void tcp_prequeue_process(struct sock *sk)
{
struct sk_buff *skb;
struct tcp_sock *tp = tcp_sk(sk);
NET_ADD_STATS_USER(LINUX_MIB_TCPPREQUEUED, skb_queue_len(&tp->ucopy.prequeue));
/* RX process wants to run with disabled BHs, though it is not
* necessary */
local_bh_disable();
while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
sk->sk_backlog_rcv(sk, skb);
local_bh_enable();
/* Clear memory counter. */
tp->ucopy.memory = 0;
}
static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
{
struct sk_buff *skb;
u32 offset;
skb_queue_walk(&sk->sk_receive_queue, skb) {
offset = seq - TCP_SKB_CB(skb)->seq;
if (skb->h.th->syn)
offset--;
if (offset < skb->len || skb->h.th->fin) {
*off = offset;
return skb;
}
}
return NULL;
}
/*
* This routine provides an alternative to tcp_recvmsg() for routines
* that would like to handle copying from skbuffs directly in 'sendfile'
* fashion.
* Note:
* - It is assumed that the socket was locked by the caller.
* - The routine does not block.
* - At present, there is no support for reading OOB data
* or for 'peeking' the socket using this routine
* (although both would be easy to implement).
*/
int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
sk_read_actor_t recv_actor)
{
struct sk_buff *skb;
struct tcp_sock *tp = tcp_sk(sk);
u32 seq = tp->copied_seq;
u32 offset;
int copied = 0;
if (sk->sk_state == TCP_LISTEN)
return -ENOTCONN;
while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
if (offset < skb->len) {
size_t used, len;
len = skb->len - offset;
/* Stop reading if we hit a patch of urgent data */
if (tp->urg_data) {
u32 urg_offset = tp->urg_seq - seq;
if (urg_offset < len)
len = urg_offset;
if (!len)
break;
}
used = recv_actor(desc, skb, offset, len);
if (used <= len) {
seq += used;
copied += used;
offset += used;
}
if (offset != skb->len)
break;
}
if (skb->h.th->fin) {
sk_eat_skb(sk, skb);
++seq;
break;
}
sk_eat_skb(sk, skb);
if (!desc->count)
break;
}
tp->copied_seq = seq;
tcp_rcv_space_adjust(sk);
/* Clean up data we have read: This will do ACK frames. */
if (copied)
cleanup_rbuf(sk, copied);
return copied;
}
/*
* This routine copies from a sock struct into the user buffer.
*
* Technical note: in 2.3 we work on _locked_ socket, so that
* tricks with *seq access order and skb->users are not required.
* Probably, code can be easily improved even more.
*/
int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len, int nonblock, int flags, int *addr_len)
{
struct tcp_sock *tp = tcp_sk(sk);
int copied = 0;
u32 peek_seq;
u32 *seq;
unsigned long used;
int err;
int target; /* Read at least this many bytes */
long timeo;
struct task_struct *user_recv = NULL;
lock_sock(sk);
TCP_CHECK_TIMER(sk);
err = -ENOTCONN;
if (sk->sk_state == TCP_LISTEN)
goto out;
timeo = sock_rcvtimeo(sk, nonblock);
/* Urgent data needs to be handled specially. */
if (flags & MSG_OOB)
goto recv_urg;
seq = &tp->copied_seq;
if (flags & MSG_PEEK) {
peek_seq = tp->copied_seq;
seq = &peek_seq;
}
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
do {
struct sk_buff *skb;
u32 offset;
/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
if (tp->urg_data && tp->urg_seq == *seq) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
break;
}
}
/* Next get a buffer. */
skb = skb_peek(&sk->sk_receive_queue);
do {
if (!skb)
break;
/* Now that we have two receive queues this
* shouldn't happen.
*/
if (before(*seq, TCP_SKB_CB(skb)->seq)) {
printk(KERN_INFO "recvmsg bug: copied %X "
"seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
break;
}
offset = *seq - TCP_SKB_CB(skb)->seq;
if (skb->h.th->syn)
offset--;
if (offset < skb->len)
goto found_ok_skb;
if (skb->h.th->fin)
goto found_fin_ok;
BUG_TRAP(flags & MSG_PEEK);
skb = skb->next;
} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
/* Well, if we have backlog, try to process it now yet. */
if (copied >= target && !sk->sk_backlog.tail)
break;
if (copied) {
if (sk->sk_err ||
sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
!timeo ||
signal_pending(current) ||
(flags & MSG_PEEK))
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
if (!sock_flag(sk, SOCK_DONE)) {
/* This occurs when user tries to read
* from never connected socket.
*/
copied = -ENOTCONN;
break;
}
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
cleanup_rbuf(sk, copied);
if (tp->ucopy.task == user_recv) {
/* Install new reader */
if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
user_recv = current;
tp->ucopy.task = user_recv;
tp->ucopy.iov = msg->msg_iov;
}
tp->ucopy.len = len;
BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
(flags & (MSG_PEEK | MSG_TRUNC)));
/* Ugly... If prequeue is not empty, we have to
* process it before releasing socket, otherwise
* order will be broken at second iteration.
* More elegant solution is required!!!
*
* Look: we have the following (pseudo)queues:
*
* 1. packets in flight
* 2. backlog
* 3. prequeue
* 4. receive_queue
*
* Each queue can be processed only if the next ones
* are empty. At this point we have empty receive_queue.
* But prequeue _can_ be not empty after 2nd iteration,
* when we jumped to start of loop because backlog
* processing added something to receive_queue.
* We cannot release_sock(), because backlog contains
* packets arrived _after_ prequeued ones.
*
* Shortly, algorithm is clear --- to process all
* the queues in order. We could make it more directly,
* requeueing packets from backlog to prequeue, if
* is not empty. It is more elegant, but eats cycles,
* unfortunately.
*/
if (skb_queue_len(&tp->ucopy.prequeue))
goto do_prequeue;
/* __ Set realtime policy in scheduler __ */
}
if (copied >= target) {
/* Do not sleep, just process backlog. */
release_sock(sk);
lock_sock(sk);
} else
sk_wait_data(sk, &timeo);
if (user_recv) {
int chunk;
/* __ Restore normal policy in scheduler __ */
if ((chunk = len - tp->ucopy.len) != 0) {
NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
len -= chunk;
copied += chunk;
}
if (tp->rcv_nxt == tp->copied_seq &&
skb_queue_len(&tp->ucopy.prequeue)) {
do_prequeue:
tcp_prequeue_process(sk);
if ((chunk = len - tp->ucopy.len) != 0) {
NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
len -= chunk;
copied += chunk;
}
}
}
if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
if (net_ratelimit())
printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
current->comm, current->pid);
peek_seq = tp->copied_seq;
}
continue;
found_ok_skb:
/* Ok so how much can we use? */
used = skb->len - offset;
if (len < used)
used = len;
/* Do we have urgent data here? */
if (tp->urg_data) {
u32 urg_offset = tp->urg_seq - *seq;
if (urg_offset < used) {
if (!urg_offset) {
if (!sock_flag(sk, SOCK_URGINLINE)) {
++*seq;
offset++;
used--;
if (!used)
goto skip_copy;
}
} else
used = urg_offset;
}
}
if (!(flags & MSG_TRUNC)) {
err = skb_copy_datagram_iovec(skb, offset,
msg->msg_iov, used);
if (err) {
/* Exception. Bailout! */
if (!copied)
copied = -EFAULT;
break;
}
}
*seq += used;
copied += used;
len -= used;
tcp_rcv_space_adjust(sk);
skip_copy:
if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
tp->urg_data = 0;
tcp_fast_path_check(sk, tp);
}
if (used + offset < skb->len)
continue;
if (skb->h.th->fin)
goto found_fin_ok;
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
continue;
found_fin_ok:
/* Process the FIN. */
++*seq;
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
break;
} while (len > 0);
if (user_recv) {
if (skb_queue_len(&tp->ucopy.prequeue)) {
int chunk;
tp->ucopy.len = copied > 0 ? len : 0;
tcp_prequeue_process(sk);
if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
len -= chunk;
copied += chunk;
}
}
tp->ucopy.task = NULL;
tp->ucopy.len = 0;
}
/* According to UNIX98, msg_name/msg_namelen are ignored
* on connected socket. I was just happy when found this 8) --ANK
*/
/* Clean up data we have read: This will do ACK frames. */
cleanup_rbuf(sk, copied);
TCP_CHECK_TIMER(sk);
release_sock(sk);
return copied;
out:
TCP_CHECK_TIMER(sk);
release_sock(sk);
return err;
recv_urg:
err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
goto out;
}
/*
* State processing on a close. This implements the state shift for
* sending our FIN frame. Note that we only send a FIN for some
* states. A shutdown() may have already sent the FIN, or we may be
* closed.
*/
static unsigned char new_state[16] = {
/* current state: new state: action: */
/* (Invalid) */ TCP_CLOSE,
/* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
/* TCP_SYN_SENT */ TCP_CLOSE,
/* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
/* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
/* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
/* TCP_TIME_WAIT */ TCP_CLOSE,
/* TCP_CLOSE */ TCP_CLOSE,
/* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
/* TCP_LAST_ACK */ TCP_LAST_ACK,
/* TCP_LISTEN */ TCP_CLOSE,
/* TCP_CLOSING */ TCP_CLOSING,
};
static int tcp_close_state(struct sock *sk)
{
int next = (int)new_state[sk->sk_state];
int ns = next & TCP_STATE_MASK;
tcp_set_state(sk, ns);
return next & TCP_ACTION_FIN;
}
/*
* Shutdown the sending side of a connection. Much like close except
* that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
*/
void tcp_shutdown(struct sock *sk, int how)
{
/* We need to grab some memory, and put together a FIN,
* and then put it into the queue to be sent.
* Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
*/
if (!(how & SEND_SHUTDOWN))
return;
/* If we've already sent a FIN, or it's a closed state, skip this. */
if ((1 << sk->sk_state) &
(TCPF_ESTABLISHED | TCPF_SYN_SENT |
TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
/* Clear out any half completed packets. FIN if needed. */
if (tcp_close_state(sk))
tcp_send_fin(sk);
}
}
/*
* At this point, there should be no process reference to this
* socket, and thus no user references at all. Therefore we
* can assume the socket waitqueue is inactive and nobody will
* try to jump onto it.
*/
void tcp_destroy_sock(struct sock *sk)
{
BUG_TRAP(sk->sk_state == TCP_CLOSE);
BUG_TRAP(sock_flag(sk, SOCK_DEAD));
/* It cannot be in hash table! */
BUG_TRAP(sk_unhashed(sk));
/* If it has not 0 inet_sk(sk)->num, it must be bound */
BUG_TRAP(!inet_sk(sk)->num || tcp_sk(sk)->bind_hash);
sk->sk_prot->destroy(sk);
sk_stream_kill_queues(sk);
xfrm_sk_free_policy(sk);
#ifdef INET_REFCNT_DEBUG
if (atomic_read(&sk->sk_refcnt) != 1) {
printk(KERN_DEBUG "Destruction TCP %p delayed, c=%d\n",
sk, atomic_read(&sk->sk_refcnt));
}
#endif
atomic_dec(&tcp_orphan_count);
sock_put(sk);
}
void tcp_close(struct sock *sk, long timeout)
{
struct sk_buff *skb;
int data_was_unread = 0;
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (sk->sk_state == TCP_LISTEN) {
tcp_set_state(sk, TCP_CLOSE);
/* Special case. */
tcp_listen_stop(sk);
goto adjudge_to_death;
}
/* We need to flush the recv. buffs. We do this only on the
* descriptor close, not protocol-sourced closes, because the
* reader process may not have drained the data yet!
*/
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
skb->h.th->fin;
data_was_unread += len;
__kfree_skb(skb);
}
sk_stream_mem_reclaim(sk);
/* As outlined in draft-ietf-tcpimpl-prob-03.txt, section
* 3.10, we send a RST here because data was lost. To
* witness the awful effects of the old behavior of always
* doing a FIN, run an older 2.1.x kernel or 2.0.x, start
* a bulk GET in an FTP client, suspend the process, wait
* for the client to advertise a zero window, then kill -9
* the FTP client, wheee... Note: timeout is always zero
* in such a case.
*/
if (data_was_unread) {
/* Unread data was tossed, zap the connection. */
NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
tcp_set_state(sk, TCP_CLOSE);
tcp_send_active_reset(sk, GFP_KERNEL);
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
/* Check zero linger _after_ checking for unread data. */
sk->sk_prot->disconnect(sk, 0);
NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
} else if (tcp_close_state(sk)) {
/* We FIN if the application ate all the data before
* zapping the connection.
*/
/* RED-PEN. Formally speaking, we have broken TCP state
* machine. State transitions:
*
* TCP_ESTABLISHED -> TCP_FIN_WAIT1
* TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
* TCP_CLOSE_WAIT -> TCP_LAST_ACK
*
* are legal only when FIN has been sent (i.e. in window),
* rather than queued out of window. Purists blame.
*
* F.e. "RFC state" is ESTABLISHED,
* if Linux state is FIN-WAIT-1, but FIN is still not sent.
*
* The visible declinations are that sometimes
* we enter time-wait state, when it is not required really
* (harmless), do not send active resets, when they are
* required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
* they look as CLOSING or LAST_ACK for Linux)
* Probably, I missed some more holelets.
* --ANK
*/
tcp_send_fin(sk);
}
sk_stream_wait_close(sk, timeout);
adjudge_to_death:
/* It is the last release_sock in its life. It will remove backlog. */
release_sock(sk);
/* Now socket is owned by kernel and we acquire BH lock
to finish close. No need to check for user refs.
*/
local_bh_disable();
bh_lock_sock(sk);
BUG_TRAP(!sock_owned_by_user(sk));
sock_hold(sk);
sock_orphan(sk);
/* This is a (useful) BSD violating of the RFC. There is a
* problem with TCP as specified in that the other end could
* keep a socket open forever with no application left this end.
* We use a 3 minute timeout (about the same as BSD) then kill
* our end. If they send after that then tough - BUT: long enough
* that we won't make the old 4*rto = almost no time - whoops
* reset mistake.
*
* Nope, it was not mistake. It is really desired behaviour
* f.e. on http servers, when such sockets are useless, but
* consume significant resources. Let's do it with special
* linger2 option. --ANK
*/
if (sk->sk_state == TCP_FIN_WAIT2) {
struct tcp_sock *tp = tcp_sk(sk);
if (tp->linger2 < 0) {
tcp_set_state(sk, TCP_CLOSE);
tcp_send_active_reset(sk, GFP_ATOMIC);
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
} else {
int tmo = tcp_fin_time(tp);
if (tmo > TCP_TIMEWAIT_LEN) {
tcp_reset_keepalive_timer(sk, tcp_fin_time(tp));
} else {
atomic_inc(&tcp_orphan_count);
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
goto out;
}
}
}
if (sk->sk_state != TCP_CLOSE) {
sk_stream_mem_reclaim(sk);
if (atomic_read(&tcp_orphan_count) > sysctl_tcp_max_orphans ||
(sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])) {
if (net_ratelimit())
printk(KERN_INFO "TCP: too many of orphaned "
"sockets\n");
tcp_set_state(sk, TCP_CLOSE);
tcp_send_active_reset(sk, GFP_ATOMIC);
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
}
}
atomic_inc(&tcp_orphan_count);
if (sk->sk_state == TCP_CLOSE)
tcp_destroy_sock(sk);
/* Otherwise, socket is reprieved until protocol close. */
out:
bh_unlock_sock(sk);
local_bh_enable();
sock_put(sk);
}
/* These states need RST on ABORT according to RFC793 */
static inline int tcp_need_reset(int state)
{
return (1 << state) &
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
}
int tcp_disconnect(struct sock *sk, int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct tcp_sock *tp = tcp_sk(sk);
int err = 0;
int old_state = sk->sk_state;
if (old_state != TCP_CLOSE)
tcp_set_state(sk, TCP_CLOSE);
/* ABORT function of RFC793 */
if (old_state == TCP_LISTEN) {
tcp_listen_stop(sk);
} else if (tcp_need_reset(old_state) ||
(tp->snd_nxt != tp->write_seq &&
(1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
/* The last check adjusts for discrepance of Linux wrt. RFC
* states
*/
tcp_send_active_reset(sk, gfp_any());
sk->sk_err = ECONNRESET;
} else if (old_state == TCP_SYN_SENT)
sk->sk_err = ECONNRESET;
tcp_clear_xmit_timers(sk);
__skb_queue_purge(&sk->sk_receive_queue);
sk_stream_writequeue_purge(sk);
__skb_queue_purge(&tp->out_of_order_queue);
inet->dport = 0;
if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
inet_reset_saddr(sk);
sk->sk_shutdown = 0;
sock_reset_flag(sk, SOCK_DONE);
tp->srtt = 0;
if ((tp->write_seq += tp->max_window + 2) == 0)
tp->write_seq = 1;
tp->backoff = 0;
tp->snd_cwnd = 2;
tp->probes_out = 0;
tp->packets_out = 0;
tp->snd_ssthresh = 0x7fffffff;
tp->snd_cwnd_cnt = 0;
tcp_set_ca_state(tp, TCP_CA_Open);
tcp_clear_retrans(tp);
tcp_delack_init(tp);
sk->sk_send_head = NULL;
tp->rx_opt.saw_tstamp = 0;
tcp_sack_reset(&tp->rx_opt);
__sk_dst_reset(sk);
BUG_TRAP(!inet->num || tp->bind_hash);
sk->sk_error_report(sk);
return err;
}
/*
* Wait for an incoming connection, avoid race
* conditions. This must be called with the socket locked.
*/
static int wait_for_connect(struct sock *sk, long timeo)
{
struct tcp_sock *tp = tcp_sk(sk);
DEFINE_WAIT(wait);
int err;
/*
* True wake-one mechanism for incoming connections: only
* one process gets woken up, not the 'whole herd'.
* Since we do not 'race & poll' for established sockets
* anymore, the common case will execute the loop only once.
*
* Subtle issue: "add_wait_queue_exclusive()" will be added
* after any current non-exclusive waiters, and we know that
* it will always _stay_ after any new non-exclusive waiters
* because all non-exclusive waiters are added at the
* beginning of the wait-queue. As such, it's ok to "drop"
* our exclusiveness temporarily when we get woken up without
* having to remove and re-insert us on the wait queue.
*/
for (;;) {
prepare_to_wait_exclusive(sk->sk_sleep, &wait,
TASK_INTERRUPTIBLE);
release_sock(sk);
if (!tp->accept_queue)
timeo = schedule_timeout(timeo);
lock_sock(sk);
err = 0;
if (tp->accept_queue)
break;
err = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
break;
err = sock_intr_errno(timeo);
if (signal_pending(current))
break;
err = -EAGAIN;
if (!timeo)
break;
}
finish_wait(sk->sk_sleep, &wait);
return err;
}
/*
* This will accept the next outstanding connection.
*/
struct sock *tcp_accept(struct sock *sk, int flags, int *err)
{
struct tcp_sock *tp = tcp_sk(sk);
struct open_request *req;
struct sock *newsk;
int error;
lock_sock(sk);
/* We need to make sure that this socket is listening,
* and that it has something pending.
*/
error = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
goto out;
/* Find already established connection */
if (!tp->accept_queue) {
long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
/* If this is a non blocking socket don't sleep */
error = -EAGAIN;
if (!timeo)
goto out;
error = wait_for_connect(sk, timeo);
if (error)
goto out;
}
req = tp->accept_queue;
if ((tp->accept_queue = req->dl_next) == NULL)
tp->accept_queue_tail = NULL;
newsk = req->sk;
sk_acceptq_removed(sk);
tcp_openreq_fastfree(req);
BUG_TRAP(newsk->sk_state != TCP_SYN_RECV);
release_sock(sk);
return newsk;
out:
release_sock(sk);
*err = error;
return NULL;
}
/*
* Socket option code for TCP.
*/
int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
int optlen)
{
struct tcp_sock *tp = tcp_sk(sk);
int val;
int err = 0;
if (level != SOL_TCP)
return tp->af_specific->setsockopt(sk, level, optname,
optval, optlen);
if (optlen < sizeof(int))
return -EINVAL;
if (get_user(val, (int __user *)optval))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case TCP_MAXSEG:
/* Values greater than interface MTU won't take effect. However
* at the point when this call is done we typically don't yet
* know which interface is going to be used */
if (val < 8 || val > MAX_TCP_WINDOW) {
err = -EINVAL;
break;
}
tp->rx_opt.user_mss = val;
break;
case TCP_NODELAY:
if (val) {
/* TCP_NODELAY is weaker than TCP_CORK, so that
* this option on corked socket is remembered, but
* it is not activated until cork is cleared.
*
* However, when TCP_NODELAY is set we make
* an explicit push, which overrides even TCP_CORK
* for currently queued segments.
*/
tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
tcp_push_pending_frames(sk, tp);
} else {
tp->nonagle &= ~TCP_NAGLE_OFF;
}
break;
case TCP_CORK:
/* When set indicates to always queue non-full frames.
* Later the user clears this option and we transmit
* any pending partial frames in the queue. This is
* meant to be used alongside sendfile() to get properly
* filled frames when the user (for example) must write
* out headers with a write() call first and then use
* sendfile to send out the data parts.
*
* TCP_CORK can be set together with TCP_NODELAY and it is
* stronger than TCP_NODELAY.
*/
if (val) {
tp->nonagle |= TCP_NAGLE_CORK;
} else {
tp->nonagle &= ~TCP_NAGLE_CORK;
if (tp->nonagle&TCP_NAGLE_OFF)
tp->nonagle |= TCP_NAGLE_PUSH;
tcp_push_pending_frames(sk, tp);
}
break;
case TCP_KEEPIDLE:
if (val < 1 || val > MAX_TCP_KEEPIDLE)
err = -EINVAL;
else {
tp->keepalive_time = val * HZ;
if (sock_flag(sk, SOCK_KEEPOPEN) &&
!((1 << sk->sk_state) &
(TCPF_CLOSE | TCPF_LISTEN))) {
__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
if (tp->keepalive_time > elapsed)
elapsed = tp->keepalive_time - elapsed;
else
elapsed = 0;
tcp_reset_keepalive_timer(sk, elapsed);
}
}
break;
case TCP_KEEPINTVL:
if (val < 1 || val > MAX_TCP_KEEPINTVL)
err = -EINVAL;
else
tp->keepalive_intvl = val * HZ;
break;
case TCP_KEEPCNT:
if (val < 1 || val > MAX_TCP_KEEPCNT)
err = -EINVAL;
else
tp->keepalive_probes = val;
break;
case TCP_SYNCNT:
if (val < 1 || val > MAX_TCP_SYNCNT)
err = -EINVAL;
else
tp->syn_retries = val;
break;
case TCP_LINGER2:
if (val < 0)
tp->linger2 = -1;
else if (val > sysctl_tcp_fin_timeout / HZ)
tp->linger2 = 0;
else
tp->linger2 = val * HZ;
break;
case TCP_DEFER_ACCEPT:
tp->defer_accept = 0;
if (val > 0) {
/* Translate value in seconds to number of
* retransmits */
while (tp->defer_accept < 32 &&
val > ((TCP_TIMEOUT_INIT / HZ) <<
tp->defer_accept))
tp->defer_accept++;
tp->defer_accept++;
}
break;
case TCP_WINDOW_CLAMP:
if (!val) {
if (sk->sk_state != TCP_CLOSE) {
err = -EINVAL;
break;
}
tp->window_clamp = 0;
} else
tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
SOCK_MIN_RCVBUF / 2 : val;
break;
case TCP_QUICKACK:
if (!val) {
tp->ack.pingpong = 1;
} else {
tp->ack.pingpong = 0;
if ((1 << sk->sk_state) &
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
tcp_ack_scheduled(tp)) {
tp->ack.pending |= TCP_ACK_PUSHED;
cleanup_rbuf(sk, 1);
if (!(val & 1))
tp->ack.pingpong = 1;
}
}
break;
default:
err = -ENOPROTOOPT;
break;
};
release_sock(sk);
return err;
}
/* Return information about state of tcp endpoint in API format. */
void tcp_get_info(struct sock *sk, struct tcp_info *info)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 now = tcp_time_stamp;
memset(info, 0, sizeof(*info));
info->tcpi_state = sk->sk_state;
info->tcpi_ca_state = tp->ca_state;
info->tcpi_retransmits = tp->retransmits;
info->tcpi_probes = tp->probes_out;
info->tcpi_backoff = tp->backoff;
if (tp->rx_opt.tstamp_ok)
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
if (tp->rx_opt.sack_ok)
info->tcpi_options |= TCPI_OPT_SACK;
if (tp->rx_opt.wscale_ok) {
info->tcpi_options |= TCPI_OPT_WSCALE;
info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
}
if (tp->ecn_flags&TCP_ECN_OK)
info->tcpi_options |= TCPI_OPT_ECN;
info->tcpi_rto = jiffies_to_usecs(tp->rto);
info->tcpi_ato = jiffies_to_usecs(tp->ack.ato);
info->tcpi_snd_mss = tp->mss_cache_std;
info->tcpi_rcv_mss = tp->ack.rcv_mss;
info->tcpi_unacked = tp->packets_out;
info->tcpi_sacked = tp->sacked_out;
info->tcpi_lost = tp->lost_out;
info->tcpi_retrans = tp->retrans_out;
info->tcpi_fackets = tp->fackets_out;
info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
info->tcpi_last_data_recv = jiffies_to_msecs(now - tp->ack.lrcvtime);
info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
info->tcpi_pmtu = tp->pmtu_cookie;
info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
info->tcpi_snd_ssthresh = tp->snd_ssthresh;
info->tcpi_snd_cwnd = tp->snd_cwnd;
info->tcpi_advmss = tp->advmss;
info->tcpi_reordering = tp->reordering;
info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
info->tcpi_rcv_space = tp->rcvq_space.space;
info->tcpi_total_retrans = tp->total_retrans;
}
EXPORT_SYMBOL_GPL(tcp_get_info);
int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
int __user *optlen)
{
struct tcp_sock *tp = tcp_sk(sk);
int val, len;
if (level != SOL_TCP)
return tp->af_specific->getsockopt(sk, level, optname,
optval, optlen);
if (get_user(len, optlen))
return -EFAULT;
len = min_t(unsigned int, len, sizeof(int));
if (len < 0)
return -EINVAL;
switch (optname) {
case TCP_MAXSEG:
val = tp->mss_cache_std;
if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
val = tp->rx_opt.user_mss;
break;
case TCP_NODELAY:
val = !!(tp->nonagle&TCP_NAGLE_OFF);
break;
case TCP_CORK:
val = !!(tp->nonagle&TCP_NAGLE_CORK);
break;
case TCP_KEEPIDLE:
val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
break;
case TCP_KEEPINTVL:
val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
break;
case TCP_KEEPCNT:
val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
break;
case TCP_SYNCNT:
val = tp->syn_retries ? : sysctl_tcp_syn_retries;
break;
case TCP_LINGER2:
val = tp->linger2;
if (val >= 0)
val = (val ? : sysctl_tcp_fin_timeout) / HZ;
break;
case TCP_DEFER_ACCEPT:
val = !tp->defer_accept ? 0 : ((TCP_TIMEOUT_INIT / HZ) <<
(tp->defer_accept - 1));
break;
case TCP_WINDOW_CLAMP:
val = tp->window_clamp;
break;
case TCP_INFO: {
struct tcp_info info;
if (get_user(len, optlen))
return -EFAULT;
tcp_get_info(sk, &info);
len = min_t(unsigned int, len, sizeof(info));
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
case TCP_QUICKACK:
val = !tp->ack.pingpong;
break;
default:
return -ENOPROTOOPT;
};
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
extern void __skb_cb_too_small_for_tcp(int, int);
extern void tcpdiag_init(void);
static __initdata unsigned long thash_entries;
static int __init set_thash_entries(char *str)
{
if (!str)
return 0;
thash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("thash_entries=", set_thash_entries);
void __init tcp_init(void)
{
struct sk_buff *skb = NULL;
int order, i;
if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
__skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
sizeof(skb->cb));
tcp_openreq_cachep = kmem_cache_create("tcp_open_request",
sizeof(struct open_request),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if (!tcp_openreq_cachep)
panic("tcp_init: Cannot alloc open_request cache.");
tcp_bucket_cachep = kmem_cache_create("tcp_bind_bucket",
sizeof(struct tcp_bind_bucket),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if (!tcp_bucket_cachep)
panic("tcp_init: Cannot alloc tcp_bind_bucket cache.");
tcp_timewait_cachep = kmem_cache_create("tcp_tw_bucket",
sizeof(struct tcp_tw_bucket),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if (!tcp_timewait_cachep)
panic("tcp_init: Cannot alloc tcp_tw_bucket cache.");
/* Size and allocate the main established and bind bucket
* hash tables.
*
* The methodology is similar to that of the buffer cache.
*/
tcp_ehash = (struct tcp_ehash_bucket *)
alloc_large_system_hash("TCP established",
sizeof(struct tcp_ehash_bucket),
thash_entries,
(num_physpages >= 128 * 1024) ?
(25 - PAGE_SHIFT) :
(27 - PAGE_SHIFT),
HASH_HIGHMEM,
&tcp_ehash_size,
NULL,
0);
tcp_ehash_size = (1 << tcp_ehash_size) >> 1;
for (i = 0; i < (tcp_ehash_size << 1); i++) {
rwlock_init(&tcp_ehash[i].lock);
INIT_HLIST_HEAD(&tcp_ehash[i].chain);
}
tcp_bhash = (struct tcp_bind_hashbucket *)
alloc_large_system_hash("TCP bind",
sizeof(struct tcp_bind_hashbucket),
tcp_ehash_size,
(num_physpages >= 128 * 1024) ?
(25 - PAGE_SHIFT) :
(27 - PAGE_SHIFT),
HASH_HIGHMEM,
&tcp_bhash_size,
NULL,
64 * 1024);
tcp_bhash_size = 1 << tcp_bhash_size;
for (i = 0; i < tcp_bhash_size; i++) {
spin_lock_init(&tcp_bhash[i].lock);
INIT_HLIST_HEAD(&tcp_bhash[i].chain);
}
/* Try to be a bit smarter and adjust defaults depending
* on available memory.
*/
for (order = 0; ((1 << order) << PAGE_SHIFT) <
(tcp_bhash_size * sizeof(struct tcp_bind_hashbucket));
order++)
;
if (order > 4) {
sysctl_local_port_range[0] = 32768;
sysctl_local_port_range[1] = 61000;
sysctl_tcp_max_tw_buckets = 180000;
sysctl_tcp_max_orphans = 4096 << (order - 4);
sysctl_max_syn_backlog = 1024;
} else if (order < 3) {
sysctl_local_port_range[0] = 1024 * (3 - order);
sysctl_tcp_max_tw_buckets >>= (3 - order);
sysctl_tcp_max_orphans >>= (3 - order);
sysctl_max_syn_backlog = 128;
}
tcp_port_rover = sysctl_local_port_range[0] - 1;
sysctl_tcp_mem[0] = 768 << order;
sysctl_tcp_mem[1] = 1024 << order;
sysctl_tcp_mem[2] = 1536 << order;
if (order < 3) {
sysctl_tcp_wmem[2] = 64 * 1024;
sysctl_tcp_rmem[0] = PAGE_SIZE;
sysctl_tcp_rmem[1] = 43689;
sysctl_tcp_rmem[2] = 2 * 43689;
}
printk(KERN_INFO "TCP: Hash tables configured "
"(established %d bind %d)\n",
tcp_ehash_size << 1, tcp_bhash_size);
}
EXPORT_SYMBOL(tcp_accept);
EXPORT_SYMBOL(tcp_close);
EXPORT_SYMBOL(tcp_destroy_sock);
EXPORT_SYMBOL(tcp_disconnect);
EXPORT_SYMBOL(tcp_getsockopt);
EXPORT_SYMBOL(tcp_ioctl);
EXPORT_SYMBOL(tcp_openreq_cachep);
EXPORT_SYMBOL(tcp_poll);
EXPORT_SYMBOL(tcp_read_sock);
EXPORT_SYMBOL(tcp_recvmsg);
EXPORT_SYMBOL(tcp_sendmsg);
EXPORT_SYMBOL(tcp_sendpage);
EXPORT_SYMBOL(tcp_setsockopt);
EXPORT_SYMBOL(tcp_shutdown);
EXPORT_SYMBOL(tcp_statistics);
EXPORT_SYMBOL(tcp_timewait_cachep);