303 lines
8.3 KiB
C
303 lines
8.3 KiB
C
#include <linux/init.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/atmel_tc.h>
|
|
|
|
|
|
/*
|
|
* We're configured to use a specific TC block, one that's not hooked
|
|
* up to external hardware, to provide a time solution:
|
|
*
|
|
* - Two channels combine to create a free-running 32 bit counter
|
|
* with a base rate of 5+ MHz, packaged as a clocksource (with
|
|
* resolution better than 200 nsec).
|
|
*
|
|
* - The third channel may be used to provide a 16-bit clockevent
|
|
* source, used in either periodic or oneshot mode. This runs
|
|
* at 32 KiHZ, and can handle delays of up to two seconds.
|
|
*
|
|
* A boot clocksource and clockevent source are also currently needed,
|
|
* unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
|
|
* this code can be used when init_timers() is called, well before most
|
|
* devices are set up. (Some low end AT91 parts, which can run uClinux,
|
|
* have only the timers in one TC block... they currently don't support
|
|
* the tclib code, because of that initialization issue.)
|
|
*
|
|
* REVISIT behavior during system suspend states... we should disable
|
|
* all clocks and save the power. Easily done for clockevent devices,
|
|
* but clocksources won't necessarily get the needed notifications.
|
|
* For deeper system sleep states, this will be mandatory...
|
|
*/
|
|
|
|
static void __iomem *tcaddr;
|
|
|
|
static cycle_t tc_get_cycles(struct clocksource *cs)
|
|
{
|
|
unsigned long flags;
|
|
u32 lower, upper;
|
|
|
|
raw_local_irq_save(flags);
|
|
do {
|
|
upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
|
|
lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
|
|
} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
|
|
|
|
raw_local_irq_restore(flags);
|
|
return (upper << 16) | lower;
|
|
}
|
|
|
|
static struct clocksource clksrc = {
|
|
.name = "tcb_clksrc",
|
|
.rating = 200,
|
|
.read = tc_get_cycles,
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
.shift = 18,
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS
|
|
|
|
struct tc_clkevt_device {
|
|
struct clock_event_device clkevt;
|
|
struct clk *clk;
|
|
void __iomem *regs;
|
|
};
|
|
|
|
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
|
|
{
|
|
return container_of(clkevt, struct tc_clkevt_device, clkevt);
|
|
}
|
|
|
|
/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
|
|
* because using one of the divided clocks would usually mean the
|
|
* tick rate can never be less than several dozen Hz (vs 0.5 Hz).
|
|
*
|
|
* A divided clock could be good for high resolution timers, since
|
|
* 30.5 usec resolution can seem "low".
|
|
*/
|
|
static u32 timer_clock;
|
|
|
|
static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
|
|
{
|
|
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
|
|
void __iomem *regs = tcd->regs;
|
|
|
|
if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
|
|
|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
|
|
__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
|
|
__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
|
|
clk_disable(tcd->clk);
|
|
}
|
|
|
|
switch (m) {
|
|
|
|
/* By not making the gentime core emulate periodic mode on top
|
|
* of oneshot, we get lower overhead and improved accuracy.
|
|
*/
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
clk_enable(tcd->clk);
|
|
|
|
/* slow clock, count up to RC, then irq and restart */
|
|
__raw_writel(timer_clock
|
|
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
|
|
regs + ATMEL_TC_REG(2, CMR));
|
|
__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
|
|
|
|
/* Enable clock and interrupts on RC compare */
|
|
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
|
|
|
|
/* go go gadget! */
|
|
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
|
|
regs + ATMEL_TC_REG(2, CCR));
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
clk_enable(tcd->clk);
|
|
|
|
/* slow clock, count up to RC, then irq and stop */
|
|
__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
|
|
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
|
|
regs + ATMEL_TC_REG(2, CMR));
|
|
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
|
|
|
|
/* set_next_event() configures and starts the timer */
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
|
|
{
|
|
__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
|
|
|
|
/* go go gadget! */
|
|
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
|
|
tcaddr + ATMEL_TC_REG(2, CCR));
|
|
return 0;
|
|
}
|
|
|
|
static struct tc_clkevt_device clkevt = {
|
|
.clkevt = {
|
|
.name = "tc_clkevt",
|
|
.features = CLOCK_EVT_FEAT_PERIODIC
|
|
| CLOCK_EVT_FEAT_ONESHOT,
|
|
.shift = 32,
|
|
/* Should be lower than at91rm9200's system timer */
|
|
.rating = 125,
|
|
.set_next_event = tc_next_event,
|
|
.set_mode = tc_mode,
|
|
},
|
|
};
|
|
|
|
static irqreturn_t ch2_irq(int irq, void *handle)
|
|
{
|
|
struct tc_clkevt_device *dev = handle;
|
|
unsigned int sr;
|
|
|
|
sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
|
|
if (sr & ATMEL_TC_CPCS) {
|
|
dev->clkevt.event_handler(&dev->clkevt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static struct irqaction tc_irqaction = {
|
|
.name = "tc_clkevt",
|
|
.flags = IRQF_TIMER | IRQF_DISABLED,
|
|
.handler = ch2_irq,
|
|
};
|
|
|
|
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
|
|
{
|
|
struct clk *t2_clk = tc->clk[2];
|
|
int irq = tc->irq[2];
|
|
|
|
clkevt.regs = tc->regs;
|
|
clkevt.clk = t2_clk;
|
|
tc_irqaction.dev_id = &clkevt;
|
|
|
|
timer_clock = clk32k_divisor_idx;
|
|
|
|
clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
|
|
clkevt.clkevt.max_delta_ns
|
|
= clockevent_delta2ns(0xffff, &clkevt.clkevt);
|
|
clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
|
|
clkevt.clkevt.cpumask = cpumask_of(0);
|
|
|
|
setup_irq(irq, &tc_irqaction);
|
|
|
|
clockevents_register_device(&clkevt.clkevt);
|
|
}
|
|
|
|
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
|
|
|
|
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
|
|
{
|
|
/* NOTHING */
|
|
}
|
|
|
|
#endif
|
|
|
|
static int __init tcb_clksrc_init(void)
|
|
{
|
|
static char bootinfo[] __initdata
|
|
= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
|
|
|
|
struct platform_device *pdev;
|
|
struct atmel_tc *tc;
|
|
struct clk *t0_clk;
|
|
u32 rate, divided_rate = 0;
|
|
int best_divisor_idx = -1;
|
|
int clk32k_divisor_idx = -1;
|
|
int i;
|
|
|
|
tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
|
|
if (!tc) {
|
|
pr_debug("can't alloc TC for clocksource\n");
|
|
return -ENODEV;
|
|
}
|
|
tcaddr = tc->regs;
|
|
pdev = tc->pdev;
|
|
|
|
t0_clk = tc->clk[0];
|
|
clk_enable(t0_clk);
|
|
|
|
/* How fast will we be counting? Pick something over 5 MHz. */
|
|
rate = (u32) clk_get_rate(t0_clk);
|
|
for (i = 0; i < 5; i++) {
|
|
unsigned divisor = atmel_tc_divisors[i];
|
|
unsigned tmp;
|
|
|
|
/* remember 32 KiHz clock for later */
|
|
if (!divisor) {
|
|
clk32k_divisor_idx = i;
|
|
continue;
|
|
}
|
|
|
|
tmp = rate / divisor;
|
|
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
|
|
if (best_divisor_idx > 0) {
|
|
if (tmp < 5 * 1000 * 1000)
|
|
continue;
|
|
}
|
|
divided_rate = tmp;
|
|
best_divisor_idx = i;
|
|
}
|
|
|
|
clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
|
|
|
|
printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
|
|
divided_rate / 1000000,
|
|
((divided_rate + 500000) % 1000000) / 1000);
|
|
|
|
/* tclib will give us three clocks no matter what the
|
|
* underlying platform supports.
|
|
*/
|
|
clk_enable(tc->clk[1]);
|
|
|
|
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
|
|
__raw_writel(best_divisor_idx /* likely divide-by-8 */
|
|
| ATMEL_TC_WAVE
|
|
| ATMEL_TC_WAVESEL_UP /* free-run */
|
|
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
|
|
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
|
|
tcaddr + ATMEL_TC_REG(0, CMR));
|
|
__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
|
|
__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
|
|
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
|
|
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
|
|
|
|
/* channel 1: waveform mode, input TIOA0 */
|
|
__raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
|
|
| ATMEL_TC_WAVE
|
|
| ATMEL_TC_WAVESEL_UP, /* free-run */
|
|
tcaddr + ATMEL_TC_REG(1, CMR));
|
|
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
|
|
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
|
|
|
|
/* chain channel 0 to channel 1, then reset all the timers */
|
|
__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
|
|
__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
|
|
|
|
/* and away we go! */
|
|
clocksource_register(&clksrc);
|
|
|
|
/* channel 2: periodic and oneshot timer support */
|
|
setup_clkevents(tc, clk32k_divisor_idx);
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(tcb_clksrc_init);
|