3370 lines
93 KiB
C
3370 lines
93 KiB
C
/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
|
|
/*
|
|
Written/copyright 1999-2001 by Donald Becker.
|
|
Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
|
|
Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
|
|
Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
|
|
|
|
This software may be used and distributed according to the terms of
|
|
the GNU General Public License (GPL), incorporated herein by reference.
|
|
Drivers based on or derived from this code fall under the GPL and must
|
|
retain the authorship, copyright and license notice. This file is not
|
|
a complete program and may only be used when the entire operating
|
|
system is licensed under the GPL. License for under other terms may be
|
|
available. Contact the original author for details.
|
|
|
|
The original author may be reached as becker@scyld.com, or at
|
|
Scyld Computing Corporation
|
|
410 Severn Ave., Suite 210
|
|
Annapolis MD 21403
|
|
|
|
Support information and updates available at
|
|
http://www.scyld.com/network/netsemi.html
|
|
[link no longer provides useful info -jgarzik]
|
|
|
|
|
|
TODO:
|
|
* big endian support with CFG:BEM instead of cpu_to_le32
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/prefetch.h>
|
|
#include <asm/processor.h> /* Processor type for cache alignment. */
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#define DRV_NAME "natsemi"
|
|
#define DRV_VERSION "2.1"
|
|
#define DRV_RELDATE "Sept 11, 2006"
|
|
|
|
#define RX_OFFSET 2
|
|
|
|
/* Updated to recommendations in pci-skeleton v2.03. */
|
|
|
|
/* The user-configurable values.
|
|
These may be modified when a driver module is loaded.*/
|
|
|
|
#define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
|
|
NETIF_MSG_LINK | \
|
|
NETIF_MSG_WOL | \
|
|
NETIF_MSG_RX_ERR | \
|
|
NETIF_MSG_TX_ERR)
|
|
static int debug = -1;
|
|
|
|
static int mtu;
|
|
|
|
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
|
|
This chip uses a 512 element hash table based on the Ethernet CRC. */
|
|
static const int multicast_filter_limit = 100;
|
|
|
|
/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
|
|
Setting to > 1518 effectively disables this feature. */
|
|
static int rx_copybreak;
|
|
|
|
static int dspcfg_workaround = 1;
|
|
|
|
/* Used to pass the media type, etc.
|
|
Both 'options[]' and 'full_duplex[]' should exist for driver
|
|
interoperability.
|
|
The media type is usually passed in 'options[]'.
|
|
*/
|
|
#define MAX_UNITS 8 /* More are supported, limit only on options */
|
|
static int options[MAX_UNITS];
|
|
static int full_duplex[MAX_UNITS];
|
|
|
|
/* Operational parameters that are set at compile time. */
|
|
|
|
/* Keep the ring sizes a power of two for compile efficiency.
|
|
The compiler will convert <unsigned>'%'<2^N> into a bit mask.
|
|
Making the Tx ring too large decreases the effectiveness of channel
|
|
bonding and packet priority.
|
|
There are no ill effects from too-large receive rings. */
|
|
#define TX_RING_SIZE 16
|
|
#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
|
|
#define RX_RING_SIZE 32
|
|
|
|
/* Operational parameters that usually are not changed. */
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (2*HZ)
|
|
|
|
#define NATSEMI_HW_TIMEOUT 400
|
|
#define NATSEMI_TIMER_FREQ 5*HZ
|
|
#define NATSEMI_PG0_NREGS 64
|
|
#define NATSEMI_RFDR_NREGS 8
|
|
#define NATSEMI_PG1_NREGS 4
|
|
#define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
|
|
NATSEMI_PG1_NREGS)
|
|
#define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
|
|
#define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
|
|
|
|
/* Buffer sizes:
|
|
* The nic writes 32-bit values, even if the upper bytes of
|
|
* a 32-bit value are beyond the end of the buffer.
|
|
*/
|
|
#define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
|
|
#define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
|
|
#define NATSEMI_LONGPKT 1518 /* limit for normal packets */
|
|
#define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
|
|
|
|
/* These identify the driver base version and may not be removed. */
|
|
static char version[] __devinitdata =
|
|
KERN_INFO DRV_NAME " dp8381x driver, version "
|
|
DRV_VERSION ", " DRV_RELDATE "\n"
|
|
KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
|
|
KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
|
|
|
|
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
|
|
MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param(mtu, int, 0);
|
|
module_param(debug, int, 0);
|
|
module_param(rx_copybreak, int, 0);
|
|
module_param(dspcfg_workaround, int, 1);
|
|
module_param_array(options, int, NULL, 0);
|
|
module_param_array(full_duplex, int, NULL, 0);
|
|
MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
|
|
MODULE_PARM_DESC(debug, "DP8381x default debug level");
|
|
MODULE_PARM_DESC(rx_copybreak,
|
|
"DP8381x copy breakpoint for copy-only-tiny-frames");
|
|
MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
|
|
MODULE_PARM_DESC(options,
|
|
"DP8381x: Bits 0-3: media type, bit 17: full duplex");
|
|
MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
|
|
|
|
/*
|
|
Theory of Operation
|
|
|
|
I. Board Compatibility
|
|
|
|
This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
|
|
It also works with other chips in in the DP83810 series.
|
|
|
|
II. Board-specific settings
|
|
|
|
This driver requires the PCI interrupt line to be valid.
|
|
It honors the EEPROM-set values.
|
|
|
|
III. Driver operation
|
|
|
|
IIIa. Ring buffers
|
|
|
|
This driver uses two statically allocated fixed-size descriptor lists
|
|
formed into rings by a branch from the final descriptor to the beginning of
|
|
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
|
|
The NatSemi design uses a 'next descriptor' pointer that the driver forms
|
|
into a list.
|
|
|
|
IIIb/c. Transmit/Receive Structure
|
|
|
|
This driver uses a zero-copy receive and transmit scheme.
|
|
The driver allocates full frame size skbuffs for the Rx ring buffers at
|
|
open() time and passes the skb->data field to the chip as receive data
|
|
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
|
|
a fresh skbuff is allocated and the frame is copied to the new skbuff.
|
|
When the incoming frame is larger, the skbuff is passed directly up the
|
|
protocol stack. Buffers consumed this way are replaced by newly allocated
|
|
skbuffs in a later phase of receives.
|
|
|
|
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
|
|
using a full-sized skbuff for small frames vs. the copying costs of larger
|
|
frames. New boards are typically used in generously configured machines
|
|
and the underfilled buffers have negligible impact compared to the benefit of
|
|
a single allocation size, so the default value of zero results in never
|
|
copying packets. When copying is done, the cost is usually mitigated by using
|
|
a combined copy/checksum routine. Copying also preloads the cache, which is
|
|
most useful with small frames.
|
|
|
|
A subtle aspect of the operation is that unaligned buffers are not permitted
|
|
by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
|
|
longword aligned for further processing. On copies frames are put into the
|
|
skbuff at an offset of "+2", 16-byte aligning the IP header.
|
|
|
|
IIId. Synchronization
|
|
|
|
Most operations are synchronized on the np->lock irq spinlock, except the
|
|
recieve and transmit paths which are synchronised using a combination of
|
|
hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
|
|
|
|
IVb. References
|
|
|
|
http://www.scyld.com/expert/100mbps.html
|
|
http://www.scyld.com/expert/NWay.html
|
|
Datasheet is available from:
|
|
http://www.national.com/pf/DP/DP83815.html
|
|
|
|
IVc. Errata
|
|
|
|
None characterised.
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
* Support for fibre connections on Am79C874:
|
|
* This phy needs a special setup when connected to a fibre cable.
|
|
* http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
|
|
*/
|
|
#define PHYID_AM79C874 0x0022561b
|
|
|
|
enum {
|
|
MII_MCTRL = 0x15, /* mode control register */
|
|
MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
|
|
MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
|
|
};
|
|
|
|
enum {
|
|
NATSEMI_FLAG_IGNORE_PHY = 0x1,
|
|
};
|
|
|
|
/* array of board data directly indexed by pci_tbl[x].driver_data */
|
|
static struct {
|
|
const char *name;
|
|
unsigned long flags;
|
|
unsigned int eeprom_size;
|
|
} natsemi_pci_info[] __devinitdata = {
|
|
{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
|
|
{ "NatSemi DP8381[56]", 0, 24 },
|
|
};
|
|
|
|
static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
|
|
{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
|
|
{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
|
|
{ } /* terminate list */
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
|
|
|
|
/* Offsets to the device registers.
|
|
Unlike software-only systems, device drivers interact with complex hardware.
|
|
It's not useful to define symbolic names for every register bit in the
|
|
device.
|
|
*/
|
|
enum register_offsets {
|
|
ChipCmd = 0x00,
|
|
ChipConfig = 0x04,
|
|
EECtrl = 0x08,
|
|
PCIBusCfg = 0x0C,
|
|
IntrStatus = 0x10,
|
|
IntrMask = 0x14,
|
|
IntrEnable = 0x18,
|
|
IntrHoldoff = 0x1C, /* DP83816 only */
|
|
TxRingPtr = 0x20,
|
|
TxConfig = 0x24,
|
|
RxRingPtr = 0x30,
|
|
RxConfig = 0x34,
|
|
ClkRun = 0x3C,
|
|
WOLCmd = 0x40,
|
|
PauseCmd = 0x44,
|
|
RxFilterAddr = 0x48,
|
|
RxFilterData = 0x4C,
|
|
BootRomAddr = 0x50,
|
|
BootRomData = 0x54,
|
|
SiliconRev = 0x58,
|
|
StatsCtrl = 0x5C,
|
|
StatsData = 0x60,
|
|
RxPktErrs = 0x60,
|
|
RxMissed = 0x68,
|
|
RxCRCErrs = 0x64,
|
|
BasicControl = 0x80,
|
|
BasicStatus = 0x84,
|
|
AnegAdv = 0x90,
|
|
AnegPeer = 0x94,
|
|
PhyStatus = 0xC0,
|
|
MIntrCtrl = 0xC4,
|
|
MIntrStatus = 0xC8,
|
|
PhyCtrl = 0xE4,
|
|
|
|
/* These are from the spec, around page 78... on a separate table.
|
|
* The meaning of these registers depend on the value of PGSEL. */
|
|
PGSEL = 0xCC,
|
|
PMDCSR = 0xE4,
|
|
TSTDAT = 0xFC,
|
|
DSPCFG = 0xF4,
|
|
SDCFG = 0xF8
|
|
};
|
|
/* the values for the 'magic' registers above (PGSEL=1) */
|
|
#define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
|
|
#define TSTDAT_VAL 0x0
|
|
#define DSPCFG_VAL 0x5040
|
|
#define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
|
|
#define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
|
|
#define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
|
|
#define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
|
|
|
|
/* misc PCI space registers */
|
|
enum pci_register_offsets {
|
|
PCIPM = 0x44,
|
|
};
|
|
|
|
enum ChipCmd_bits {
|
|
ChipReset = 0x100,
|
|
RxReset = 0x20,
|
|
TxReset = 0x10,
|
|
RxOff = 0x08,
|
|
RxOn = 0x04,
|
|
TxOff = 0x02,
|
|
TxOn = 0x01,
|
|
};
|
|
|
|
enum ChipConfig_bits {
|
|
CfgPhyDis = 0x200,
|
|
CfgPhyRst = 0x400,
|
|
CfgExtPhy = 0x1000,
|
|
CfgAnegEnable = 0x2000,
|
|
CfgAneg100 = 0x4000,
|
|
CfgAnegFull = 0x8000,
|
|
CfgAnegDone = 0x8000000,
|
|
CfgFullDuplex = 0x20000000,
|
|
CfgSpeed100 = 0x40000000,
|
|
CfgLink = 0x80000000,
|
|
};
|
|
|
|
enum EECtrl_bits {
|
|
EE_ShiftClk = 0x04,
|
|
EE_DataIn = 0x01,
|
|
EE_ChipSelect = 0x08,
|
|
EE_DataOut = 0x02,
|
|
MII_Data = 0x10,
|
|
MII_Write = 0x20,
|
|
MII_ShiftClk = 0x40,
|
|
};
|
|
|
|
enum PCIBusCfg_bits {
|
|
EepromReload = 0x4,
|
|
};
|
|
|
|
/* Bits in the interrupt status/mask registers. */
|
|
enum IntrStatus_bits {
|
|
IntrRxDone = 0x0001,
|
|
IntrRxIntr = 0x0002,
|
|
IntrRxErr = 0x0004,
|
|
IntrRxEarly = 0x0008,
|
|
IntrRxIdle = 0x0010,
|
|
IntrRxOverrun = 0x0020,
|
|
IntrTxDone = 0x0040,
|
|
IntrTxIntr = 0x0080,
|
|
IntrTxErr = 0x0100,
|
|
IntrTxIdle = 0x0200,
|
|
IntrTxUnderrun = 0x0400,
|
|
StatsMax = 0x0800,
|
|
SWInt = 0x1000,
|
|
WOLPkt = 0x2000,
|
|
LinkChange = 0x4000,
|
|
IntrHighBits = 0x8000,
|
|
RxStatusFIFOOver = 0x10000,
|
|
IntrPCIErr = 0xf00000,
|
|
RxResetDone = 0x1000000,
|
|
TxResetDone = 0x2000000,
|
|
IntrAbnormalSummary = 0xCD20,
|
|
};
|
|
|
|
/*
|
|
* Default Interrupts:
|
|
* Rx OK, Rx Packet Error, Rx Overrun,
|
|
* Tx OK, Tx Packet Error, Tx Underrun,
|
|
* MIB Service, Phy Interrupt, High Bits,
|
|
* Rx Status FIFO overrun,
|
|
* Received Target Abort, Received Master Abort,
|
|
* Signalled System Error, Received Parity Error
|
|
*/
|
|
#define DEFAULT_INTR 0x00f1cd65
|
|
|
|
enum TxConfig_bits {
|
|
TxDrthMask = 0x3f,
|
|
TxFlthMask = 0x3f00,
|
|
TxMxdmaMask = 0x700000,
|
|
TxMxdma_512 = 0x0,
|
|
TxMxdma_4 = 0x100000,
|
|
TxMxdma_8 = 0x200000,
|
|
TxMxdma_16 = 0x300000,
|
|
TxMxdma_32 = 0x400000,
|
|
TxMxdma_64 = 0x500000,
|
|
TxMxdma_128 = 0x600000,
|
|
TxMxdma_256 = 0x700000,
|
|
TxCollRetry = 0x800000,
|
|
TxAutoPad = 0x10000000,
|
|
TxMacLoop = 0x20000000,
|
|
TxHeartIgn = 0x40000000,
|
|
TxCarrierIgn = 0x80000000
|
|
};
|
|
|
|
/*
|
|
* Tx Configuration:
|
|
* - 256 byte DMA burst length
|
|
* - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
|
|
* - 64 bytes initial drain threshold (i.e. begin actual transmission
|
|
* when 64 byte are in the fifo)
|
|
* - on tx underruns, increase drain threshold by 64.
|
|
* - at most use a drain threshold of 1472 bytes: The sum of the fill
|
|
* threshold and the drain threshold must be less than 2016 bytes.
|
|
*
|
|
*/
|
|
#define TX_FLTH_VAL ((512/32) << 8)
|
|
#define TX_DRTH_VAL_START (64/32)
|
|
#define TX_DRTH_VAL_INC 2
|
|
#define TX_DRTH_VAL_LIMIT (1472/32)
|
|
|
|
enum RxConfig_bits {
|
|
RxDrthMask = 0x3e,
|
|
RxMxdmaMask = 0x700000,
|
|
RxMxdma_512 = 0x0,
|
|
RxMxdma_4 = 0x100000,
|
|
RxMxdma_8 = 0x200000,
|
|
RxMxdma_16 = 0x300000,
|
|
RxMxdma_32 = 0x400000,
|
|
RxMxdma_64 = 0x500000,
|
|
RxMxdma_128 = 0x600000,
|
|
RxMxdma_256 = 0x700000,
|
|
RxAcceptLong = 0x8000000,
|
|
RxAcceptTx = 0x10000000,
|
|
RxAcceptRunt = 0x40000000,
|
|
RxAcceptErr = 0x80000000
|
|
};
|
|
#define RX_DRTH_VAL (128/8)
|
|
|
|
enum ClkRun_bits {
|
|
PMEEnable = 0x100,
|
|
PMEStatus = 0x8000,
|
|
};
|
|
|
|
enum WolCmd_bits {
|
|
WakePhy = 0x1,
|
|
WakeUnicast = 0x2,
|
|
WakeMulticast = 0x4,
|
|
WakeBroadcast = 0x8,
|
|
WakeArp = 0x10,
|
|
WakePMatch0 = 0x20,
|
|
WakePMatch1 = 0x40,
|
|
WakePMatch2 = 0x80,
|
|
WakePMatch3 = 0x100,
|
|
WakeMagic = 0x200,
|
|
WakeMagicSecure = 0x400,
|
|
SecureHack = 0x100000,
|
|
WokePhy = 0x400000,
|
|
WokeUnicast = 0x800000,
|
|
WokeMulticast = 0x1000000,
|
|
WokeBroadcast = 0x2000000,
|
|
WokeArp = 0x4000000,
|
|
WokePMatch0 = 0x8000000,
|
|
WokePMatch1 = 0x10000000,
|
|
WokePMatch2 = 0x20000000,
|
|
WokePMatch3 = 0x40000000,
|
|
WokeMagic = 0x80000000,
|
|
WakeOptsSummary = 0x7ff
|
|
};
|
|
|
|
enum RxFilterAddr_bits {
|
|
RFCRAddressMask = 0x3ff,
|
|
AcceptMulticast = 0x00200000,
|
|
AcceptMyPhys = 0x08000000,
|
|
AcceptAllPhys = 0x10000000,
|
|
AcceptAllMulticast = 0x20000000,
|
|
AcceptBroadcast = 0x40000000,
|
|
RxFilterEnable = 0x80000000
|
|
};
|
|
|
|
enum StatsCtrl_bits {
|
|
StatsWarn = 0x1,
|
|
StatsFreeze = 0x2,
|
|
StatsClear = 0x4,
|
|
StatsStrobe = 0x8,
|
|
};
|
|
|
|
enum MIntrCtrl_bits {
|
|
MICRIntEn = 0x2,
|
|
};
|
|
|
|
enum PhyCtrl_bits {
|
|
PhyAddrMask = 0x1f,
|
|
};
|
|
|
|
#define PHY_ADDR_NONE 32
|
|
#define PHY_ADDR_INTERNAL 1
|
|
|
|
/* values we might find in the silicon revision register */
|
|
#define SRR_DP83815_C 0x0302
|
|
#define SRR_DP83815_D 0x0403
|
|
#define SRR_DP83816_A4 0x0504
|
|
#define SRR_DP83816_A5 0x0505
|
|
|
|
/* The Rx and Tx buffer descriptors. */
|
|
/* Note that using only 32 bit fields simplifies conversion to big-endian
|
|
architectures. */
|
|
struct netdev_desc {
|
|
__le32 next_desc;
|
|
__le32 cmd_status;
|
|
__le32 addr;
|
|
__le32 software_use;
|
|
};
|
|
|
|
/* Bits in network_desc.status */
|
|
enum desc_status_bits {
|
|
DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
|
|
DescNoCRC=0x10000000, DescPktOK=0x08000000,
|
|
DescSizeMask=0xfff,
|
|
|
|
DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
|
|
DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
|
|
DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
|
|
DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
|
|
|
|
DescRxAbort=0x04000000, DescRxOver=0x02000000,
|
|
DescRxDest=0x01800000, DescRxLong=0x00400000,
|
|
DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
|
|
DescRxCRC=0x00080000, DescRxAlign=0x00040000,
|
|
DescRxLoop=0x00020000, DesRxColl=0x00010000,
|
|
};
|
|
|
|
struct netdev_private {
|
|
/* Descriptor rings first for alignment */
|
|
dma_addr_t ring_dma;
|
|
struct netdev_desc *rx_ring;
|
|
struct netdev_desc *tx_ring;
|
|
/* The addresses of receive-in-place skbuffs */
|
|
struct sk_buff *rx_skbuff[RX_RING_SIZE];
|
|
dma_addr_t rx_dma[RX_RING_SIZE];
|
|
/* address of a sent-in-place packet/buffer, for later free() */
|
|
struct sk_buff *tx_skbuff[TX_RING_SIZE];
|
|
dma_addr_t tx_dma[TX_RING_SIZE];
|
|
struct net_device *dev;
|
|
struct napi_struct napi;
|
|
struct net_device_stats stats;
|
|
/* Media monitoring timer */
|
|
struct timer_list timer;
|
|
/* Frequently used values: keep some adjacent for cache effect */
|
|
struct pci_dev *pci_dev;
|
|
struct netdev_desc *rx_head_desc;
|
|
/* Producer/consumer ring indices */
|
|
unsigned int cur_rx, dirty_rx;
|
|
unsigned int cur_tx, dirty_tx;
|
|
/* Based on MTU+slack. */
|
|
unsigned int rx_buf_sz;
|
|
int oom;
|
|
/* Interrupt status */
|
|
u32 intr_status;
|
|
/* Do not touch the nic registers */
|
|
int hands_off;
|
|
/* Don't pay attention to the reported link state. */
|
|
int ignore_phy;
|
|
/* external phy that is used: only valid if dev->if_port != PORT_TP */
|
|
int mii;
|
|
int phy_addr_external;
|
|
unsigned int full_duplex;
|
|
/* Rx filter */
|
|
u32 cur_rx_mode;
|
|
u32 rx_filter[16];
|
|
/* FIFO and PCI burst thresholds */
|
|
u32 tx_config, rx_config;
|
|
/* original contents of ClkRun register */
|
|
u32 SavedClkRun;
|
|
/* silicon revision */
|
|
u32 srr;
|
|
/* expected DSPCFG value */
|
|
u16 dspcfg;
|
|
int dspcfg_workaround;
|
|
/* parms saved in ethtool format */
|
|
u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
|
|
u8 duplex; /* Duplex, half or full */
|
|
u8 autoneg; /* Autonegotiation enabled */
|
|
/* MII transceiver section */
|
|
u16 advertising;
|
|
unsigned int iosize;
|
|
spinlock_t lock;
|
|
u32 msg_enable;
|
|
/* EEPROM data */
|
|
int eeprom_size;
|
|
};
|
|
|
|
static void move_int_phy(struct net_device *dev, int addr);
|
|
static int eeprom_read(void __iomem *ioaddr, int location);
|
|
static int mdio_read(struct net_device *dev, int reg);
|
|
static void mdio_write(struct net_device *dev, int reg, u16 data);
|
|
static void init_phy_fixup(struct net_device *dev);
|
|
static int miiport_read(struct net_device *dev, int phy_id, int reg);
|
|
static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
|
|
static int find_mii(struct net_device *dev);
|
|
static void natsemi_reset(struct net_device *dev);
|
|
static void natsemi_reload_eeprom(struct net_device *dev);
|
|
static void natsemi_stop_rxtx(struct net_device *dev);
|
|
static int netdev_open(struct net_device *dev);
|
|
static void do_cable_magic(struct net_device *dev);
|
|
static void undo_cable_magic(struct net_device *dev);
|
|
static void check_link(struct net_device *dev);
|
|
static void netdev_timer(unsigned long data);
|
|
static void dump_ring(struct net_device *dev);
|
|
static void ns_tx_timeout(struct net_device *dev);
|
|
static int alloc_ring(struct net_device *dev);
|
|
static void refill_rx(struct net_device *dev);
|
|
static void init_ring(struct net_device *dev);
|
|
static void drain_tx(struct net_device *dev);
|
|
static void drain_ring(struct net_device *dev);
|
|
static void free_ring(struct net_device *dev);
|
|
static void reinit_ring(struct net_device *dev);
|
|
static void init_registers(struct net_device *dev);
|
|
static int start_tx(struct sk_buff *skb, struct net_device *dev);
|
|
static irqreturn_t intr_handler(int irq, void *dev_instance);
|
|
static void netdev_error(struct net_device *dev, int intr_status);
|
|
static int natsemi_poll(struct napi_struct *napi, int budget);
|
|
static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
|
|
static void netdev_tx_done(struct net_device *dev);
|
|
static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void natsemi_poll_controller(struct net_device *dev);
|
|
#endif
|
|
static void __set_rx_mode(struct net_device *dev);
|
|
static void set_rx_mode(struct net_device *dev);
|
|
static void __get_stats(struct net_device *dev);
|
|
static struct net_device_stats *get_stats(struct net_device *dev);
|
|
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static int netdev_set_wol(struct net_device *dev, u32 newval);
|
|
static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
|
|
static int netdev_set_sopass(struct net_device *dev, u8 *newval);
|
|
static int netdev_get_sopass(struct net_device *dev, u8 *data);
|
|
static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
|
|
static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
|
|
static void enable_wol_mode(struct net_device *dev, int enable_intr);
|
|
static int netdev_close(struct net_device *dev);
|
|
static int netdev_get_regs(struct net_device *dev, u8 *buf);
|
|
static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
|
|
static const struct ethtool_ops ethtool_ops;
|
|
|
|
#define NATSEMI_ATTR(_name) \
|
|
static ssize_t natsemi_show_##_name(struct device *dev, \
|
|
struct device_attribute *attr, char *buf); \
|
|
static ssize_t natsemi_set_##_name(struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
const char *buf, size_t count); \
|
|
static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
|
|
|
|
#define NATSEMI_CREATE_FILE(_dev, _name) \
|
|
device_create_file(&_dev->dev, &dev_attr_##_name)
|
|
#define NATSEMI_REMOVE_FILE(_dev, _name) \
|
|
device_remove_file(&_dev->dev, &dev_attr_##_name)
|
|
|
|
NATSEMI_ATTR(dspcfg_workaround);
|
|
|
|
static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct netdev_private *np = netdev_priv(to_net_dev(dev));
|
|
|
|
return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
|
|
}
|
|
|
|
static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct netdev_private *np = netdev_priv(to_net_dev(dev));
|
|
int new_setting;
|
|
unsigned long flags;
|
|
|
|
/* Find out the new setting */
|
|
if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
|
|
new_setting = 1;
|
|
else if (!strncmp("off", buf, count - 1)
|
|
|| !strncmp("0", buf, count - 1))
|
|
new_setting = 0;
|
|
else
|
|
return count;
|
|
|
|
spin_lock_irqsave(&np->lock, flags);
|
|
|
|
np->dspcfg_workaround = new_setting;
|
|
|
|
spin_unlock_irqrestore(&np->lock, flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
static inline void __iomem *ns_ioaddr(struct net_device *dev)
|
|
{
|
|
return (void __iomem *) dev->base_addr;
|
|
}
|
|
|
|
static inline void natsemi_irq_enable(struct net_device *dev)
|
|
{
|
|
writel(1, ns_ioaddr(dev) + IntrEnable);
|
|
readl(ns_ioaddr(dev) + IntrEnable);
|
|
}
|
|
|
|
static inline void natsemi_irq_disable(struct net_device *dev)
|
|
{
|
|
writel(0, ns_ioaddr(dev) + IntrEnable);
|
|
readl(ns_ioaddr(dev) + IntrEnable);
|
|
}
|
|
|
|
static void move_int_phy(struct net_device *dev, int addr)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
int target = 31;
|
|
|
|
/*
|
|
* The internal phy is visible on the external mii bus. Therefore we must
|
|
* move it away before we can send commands to an external phy.
|
|
* There are two addresses we must avoid:
|
|
* - the address on the external phy that is used for transmission.
|
|
* - the address that we want to access. User space can access phys
|
|
* on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
|
|
* phy that is used for transmission.
|
|
*/
|
|
|
|
if (target == addr)
|
|
target--;
|
|
if (target == np->phy_addr_external)
|
|
target--;
|
|
writew(target, ioaddr + PhyCtrl);
|
|
readw(ioaddr + PhyCtrl);
|
|
udelay(1);
|
|
}
|
|
|
|
static void __devinit natsemi_init_media (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u32 tmp;
|
|
|
|
if (np->ignore_phy)
|
|
netif_carrier_on(dev);
|
|
else
|
|
netif_carrier_off(dev);
|
|
|
|
/* get the initial settings from hardware */
|
|
tmp = mdio_read(dev, MII_BMCR);
|
|
np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
|
|
np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
|
|
np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
|
|
np->advertising= mdio_read(dev, MII_ADVERTISE);
|
|
|
|
if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
|
|
&& netif_msg_probe(np)) {
|
|
printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
|
|
"10%s %s duplex.\n",
|
|
pci_name(np->pci_dev),
|
|
(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
|
|
"enabled, advertise" : "disabled, force",
|
|
(np->advertising &
|
|
(ADVERTISE_100FULL|ADVERTISE_100HALF))?
|
|
"0" : "",
|
|
(np->advertising &
|
|
(ADVERTISE_100FULL|ADVERTISE_10FULL))?
|
|
"full" : "half");
|
|
}
|
|
if (netif_msg_probe(np))
|
|
printk(KERN_INFO
|
|
"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
|
|
pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
|
|
np->advertising);
|
|
|
|
}
|
|
|
|
static int __devinit natsemi_probe1 (struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev;
|
|
struct netdev_private *np;
|
|
int i, option, irq, chip_idx = ent->driver_data;
|
|
static int find_cnt = -1;
|
|
resource_size_t iostart;
|
|
unsigned long iosize;
|
|
void __iomem *ioaddr;
|
|
const int pcibar = 1; /* PCI base address register */
|
|
int prev_eedata;
|
|
u32 tmp;
|
|
|
|
/* when built into the kernel, we only print version if device is found */
|
|
#ifndef MODULE
|
|
static int printed_version;
|
|
if (!printed_version++)
|
|
printk(version);
|
|
#endif
|
|
|
|
i = pci_enable_device(pdev);
|
|
if (i) return i;
|
|
|
|
/* natsemi has a non-standard PM control register
|
|
* in PCI config space. Some boards apparently need
|
|
* to be brought to D0 in this manner.
|
|
*/
|
|
pci_read_config_dword(pdev, PCIPM, &tmp);
|
|
if (tmp & PCI_PM_CTRL_STATE_MASK) {
|
|
/* D0 state, disable PME assertion */
|
|
u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
|
|
pci_write_config_dword(pdev, PCIPM, newtmp);
|
|
}
|
|
|
|
find_cnt++;
|
|
iostart = pci_resource_start(pdev, pcibar);
|
|
iosize = pci_resource_len(pdev, pcibar);
|
|
irq = pdev->irq;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
dev = alloc_etherdev(sizeof (struct netdev_private));
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
i = pci_request_regions(pdev, DRV_NAME);
|
|
if (i)
|
|
goto err_pci_request_regions;
|
|
|
|
ioaddr = ioremap(iostart, iosize);
|
|
if (!ioaddr) {
|
|
i = -ENOMEM;
|
|
goto err_ioremap;
|
|
}
|
|
|
|
/* Work around the dropped serial bit. */
|
|
prev_eedata = eeprom_read(ioaddr, 6);
|
|
for (i = 0; i < 3; i++) {
|
|
int eedata = eeprom_read(ioaddr, i + 7);
|
|
dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
|
|
dev->dev_addr[i*2+1] = eedata >> 7;
|
|
prev_eedata = eedata;
|
|
}
|
|
|
|
dev->base_addr = (unsigned long __force) ioaddr;
|
|
dev->irq = irq;
|
|
|
|
np = netdev_priv(dev);
|
|
netif_napi_add(dev, &np->napi, natsemi_poll, 64);
|
|
np->dev = dev;
|
|
|
|
np->pci_dev = pdev;
|
|
pci_set_drvdata(pdev, dev);
|
|
np->iosize = iosize;
|
|
spin_lock_init(&np->lock);
|
|
np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
|
|
np->hands_off = 0;
|
|
np->intr_status = 0;
|
|
np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
|
|
if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
|
|
np->ignore_phy = 1;
|
|
else
|
|
np->ignore_phy = 0;
|
|
np->dspcfg_workaround = dspcfg_workaround;
|
|
|
|
/* Initial port:
|
|
* - If configured to ignore the PHY set up for external.
|
|
* - If the nic was configured to use an external phy and if find_mii
|
|
* finds a phy: use external port, first phy that replies.
|
|
* - Otherwise: internal port.
|
|
* Note that the phy address for the internal phy doesn't matter:
|
|
* The address would be used to access a phy over the mii bus, but
|
|
* the internal phy is accessed through mapped registers.
|
|
*/
|
|
if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
|
|
dev->if_port = PORT_MII;
|
|
else
|
|
dev->if_port = PORT_TP;
|
|
/* Reset the chip to erase previous misconfiguration. */
|
|
natsemi_reload_eeprom(dev);
|
|
natsemi_reset(dev);
|
|
|
|
if (dev->if_port != PORT_TP) {
|
|
np->phy_addr_external = find_mii(dev);
|
|
/* If we're ignoring the PHY it doesn't matter if we can't
|
|
* find one. */
|
|
if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
|
|
dev->if_port = PORT_TP;
|
|
np->phy_addr_external = PHY_ADDR_INTERNAL;
|
|
}
|
|
} else {
|
|
np->phy_addr_external = PHY_ADDR_INTERNAL;
|
|
}
|
|
|
|
option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
|
|
if (dev->mem_start)
|
|
option = dev->mem_start;
|
|
|
|
/* The lower four bits are the media type. */
|
|
if (option) {
|
|
if (option & 0x200)
|
|
np->full_duplex = 1;
|
|
if (option & 15)
|
|
printk(KERN_INFO
|
|
"natsemi %s: ignoring user supplied media type %d",
|
|
pci_name(np->pci_dev), option & 15);
|
|
}
|
|
if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
|
|
np->full_duplex = 1;
|
|
|
|
/* The chip-specific entries in the device structure. */
|
|
dev->open = &netdev_open;
|
|
dev->hard_start_xmit = &start_tx;
|
|
dev->stop = &netdev_close;
|
|
dev->get_stats = &get_stats;
|
|
dev->set_multicast_list = &set_rx_mode;
|
|
dev->change_mtu = &natsemi_change_mtu;
|
|
dev->do_ioctl = &netdev_ioctl;
|
|
dev->tx_timeout = &ns_tx_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
dev->poll_controller = &natsemi_poll_controller;
|
|
#endif
|
|
SET_ETHTOOL_OPS(dev, ðtool_ops);
|
|
|
|
if (mtu)
|
|
dev->mtu = mtu;
|
|
|
|
natsemi_init_media(dev);
|
|
|
|
/* save the silicon revision for later querying */
|
|
np->srr = readl(ioaddr + SiliconRev);
|
|
if (netif_msg_hw(np))
|
|
printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
|
|
pci_name(np->pci_dev), np->srr);
|
|
|
|
i = register_netdev(dev);
|
|
if (i)
|
|
goto err_register_netdev;
|
|
|
|
if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
|
|
goto err_create_file;
|
|
|
|
if (netif_msg_drv(np)) {
|
|
printk(KERN_INFO "natsemi %s: %s at %#08llx "
|
|
"(%s), %pM, IRQ %d",
|
|
dev->name, natsemi_pci_info[chip_idx].name,
|
|
(unsigned long long)iostart, pci_name(np->pci_dev),
|
|
dev->dev_addr, irq);
|
|
if (dev->if_port == PORT_TP)
|
|
printk(", port TP.\n");
|
|
else if (np->ignore_phy)
|
|
printk(", port MII, ignoring PHY\n");
|
|
else
|
|
printk(", port MII, phy ad %d.\n", np->phy_addr_external);
|
|
}
|
|
return 0;
|
|
|
|
err_create_file:
|
|
unregister_netdev(dev);
|
|
|
|
err_register_netdev:
|
|
iounmap(ioaddr);
|
|
|
|
err_ioremap:
|
|
pci_release_regions(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
err_pci_request_regions:
|
|
free_netdev(dev);
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
|
|
The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
|
|
|
|
/* Delay between EEPROM clock transitions.
|
|
No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
|
|
a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
|
|
made udelay() unreliable.
|
|
The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
|
|
deprecated.
|
|
*/
|
|
#define eeprom_delay(ee_addr) readl(ee_addr)
|
|
|
|
#define EE_Write0 (EE_ChipSelect)
|
|
#define EE_Write1 (EE_ChipSelect | EE_DataIn)
|
|
|
|
/* The EEPROM commands include the alway-set leading bit. */
|
|
enum EEPROM_Cmds {
|
|
EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
|
|
};
|
|
|
|
static int eeprom_read(void __iomem *addr, int location)
|
|
{
|
|
int i;
|
|
int retval = 0;
|
|
void __iomem *ee_addr = addr + EECtrl;
|
|
int read_cmd = location | EE_ReadCmd;
|
|
|
|
writel(EE_Write0, ee_addr);
|
|
|
|
/* Shift the read command bits out. */
|
|
for (i = 10; i >= 0; i--) {
|
|
short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
|
|
writel(dataval, ee_addr);
|
|
eeprom_delay(ee_addr);
|
|
writel(dataval | EE_ShiftClk, ee_addr);
|
|
eeprom_delay(ee_addr);
|
|
}
|
|
writel(EE_ChipSelect, ee_addr);
|
|
eeprom_delay(ee_addr);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
|
|
eeprom_delay(ee_addr);
|
|
retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
|
|
writel(EE_ChipSelect, ee_addr);
|
|
eeprom_delay(ee_addr);
|
|
}
|
|
|
|
/* Terminate the EEPROM access. */
|
|
writel(EE_Write0, ee_addr);
|
|
writel(0, ee_addr);
|
|
return retval;
|
|
}
|
|
|
|
/* MII transceiver control section.
|
|
* The 83815 series has an internal transceiver, and we present the
|
|
* internal management registers as if they were MII connected.
|
|
* External Phy registers are referenced through the MII interface.
|
|
*/
|
|
|
|
/* clock transitions >= 20ns (25MHz)
|
|
* One readl should be good to PCI @ 100MHz
|
|
*/
|
|
#define mii_delay(ioaddr) readl(ioaddr + EECtrl)
|
|
|
|
static int mii_getbit (struct net_device *dev)
|
|
{
|
|
int data;
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
writel(MII_ShiftClk, ioaddr + EECtrl);
|
|
data = readl(ioaddr + EECtrl);
|
|
writel(0, ioaddr + EECtrl);
|
|
mii_delay(ioaddr);
|
|
return (data & MII_Data)? 1 : 0;
|
|
}
|
|
|
|
static void mii_send_bits (struct net_device *dev, u32 data, int len)
|
|
{
|
|
u32 i;
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
for (i = (1 << (len-1)); i; i >>= 1)
|
|
{
|
|
u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
|
|
writel(mdio_val, ioaddr + EECtrl);
|
|
mii_delay(ioaddr);
|
|
writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
|
|
mii_delay(ioaddr);
|
|
}
|
|
writel(0, ioaddr + EECtrl);
|
|
mii_delay(ioaddr);
|
|
}
|
|
|
|
static int miiport_read(struct net_device *dev, int phy_id, int reg)
|
|
{
|
|
u32 cmd;
|
|
int i;
|
|
u32 retval = 0;
|
|
|
|
/* Ensure sync */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP = 0110'b for read operation */
|
|
cmd = (0x06 << 10) | (phy_id << 5) | reg;
|
|
mii_send_bits (dev, cmd, 14);
|
|
/* Turnaround */
|
|
if (mii_getbit (dev))
|
|
return 0;
|
|
/* Read data */
|
|
for (i = 0; i < 16; i++) {
|
|
retval <<= 1;
|
|
retval |= mii_getbit (dev);
|
|
}
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return retval;
|
|
}
|
|
|
|
static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
|
|
{
|
|
u32 cmd;
|
|
|
|
/* Ensure sync */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
|
|
cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
|
|
mii_send_bits (dev, cmd, 32);
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
}
|
|
|
|
static int mdio_read(struct net_device *dev, int reg)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
/* The 83815 series has two ports:
|
|
* - an internal transceiver
|
|
* - an external mii bus
|
|
*/
|
|
if (dev->if_port == PORT_TP)
|
|
return readw(ioaddr+BasicControl+(reg<<2));
|
|
else
|
|
return miiport_read(dev, np->phy_addr_external, reg);
|
|
}
|
|
|
|
static void mdio_write(struct net_device *dev, int reg, u16 data)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
/* The 83815 series has an internal transceiver; handle separately */
|
|
if (dev->if_port == PORT_TP)
|
|
writew(data, ioaddr+BasicControl+(reg<<2));
|
|
else
|
|
miiport_write(dev, np->phy_addr_external, reg, data);
|
|
}
|
|
|
|
static void init_phy_fixup(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
int i;
|
|
u32 cfg;
|
|
u16 tmp;
|
|
|
|
/* restore stuff lost when power was out */
|
|
tmp = mdio_read(dev, MII_BMCR);
|
|
if (np->autoneg == AUTONEG_ENABLE) {
|
|
/* renegotiate if something changed */
|
|
if ((tmp & BMCR_ANENABLE) == 0
|
|
|| np->advertising != mdio_read(dev, MII_ADVERTISE))
|
|
{
|
|
/* turn on autonegotiation and force negotiation */
|
|
tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
|
|
mdio_write(dev, MII_ADVERTISE, np->advertising);
|
|
}
|
|
} else {
|
|
/* turn off auto negotiation, set speed and duplexity */
|
|
tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
|
|
if (np->speed == SPEED_100)
|
|
tmp |= BMCR_SPEED100;
|
|
if (np->duplex == DUPLEX_FULL)
|
|
tmp |= BMCR_FULLDPLX;
|
|
/*
|
|
* Note: there is no good way to inform the link partner
|
|
* that our capabilities changed. The user has to unplug
|
|
* and replug the network cable after some changes, e.g.
|
|
* after switching from 10HD, autoneg off to 100 HD,
|
|
* autoneg off.
|
|
*/
|
|
}
|
|
mdio_write(dev, MII_BMCR, tmp);
|
|
readl(ioaddr + ChipConfig);
|
|
udelay(1);
|
|
|
|
/* find out what phy this is */
|
|
np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
|
|
+ mdio_read(dev, MII_PHYSID2);
|
|
|
|
/* handle external phys here */
|
|
switch (np->mii) {
|
|
case PHYID_AM79C874:
|
|
/* phy specific configuration for fibre/tp operation */
|
|
tmp = mdio_read(dev, MII_MCTRL);
|
|
tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
|
|
if (dev->if_port == PORT_FIBRE)
|
|
tmp |= MII_FX_SEL;
|
|
else
|
|
tmp |= MII_EN_SCRM;
|
|
mdio_write(dev, MII_MCTRL, tmp);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
cfg = readl(ioaddr + ChipConfig);
|
|
if (cfg & CfgExtPhy)
|
|
return;
|
|
|
|
/* On page 78 of the spec, they recommend some settings for "optimum
|
|
performance" to be done in sequence. These settings optimize some
|
|
of the 100Mbit autodetection circuitry. They say we only want to
|
|
do this for rev C of the chip, but engineers at NSC (Bradley
|
|
Kennedy) recommends always setting them. If you don't, you get
|
|
errors on some autonegotiations that make the device unusable.
|
|
|
|
It seems that the DSP needs a few usec to reinitialize after
|
|
the start of the phy. Just retry writing these values until they
|
|
stick.
|
|
*/
|
|
for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
|
|
|
|
int dspcfg;
|
|
writew(1, ioaddr + PGSEL);
|
|
writew(PMDCSR_VAL, ioaddr + PMDCSR);
|
|
writew(TSTDAT_VAL, ioaddr + TSTDAT);
|
|
np->dspcfg = (np->srr <= SRR_DP83815_C)?
|
|
DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
|
|
writew(np->dspcfg, ioaddr + DSPCFG);
|
|
writew(SDCFG_VAL, ioaddr + SDCFG);
|
|
writew(0, ioaddr + PGSEL);
|
|
readl(ioaddr + ChipConfig);
|
|
udelay(10);
|
|
|
|
writew(1, ioaddr + PGSEL);
|
|
dspcfg = readw(ioaddr + DSPCFG);
|
|
writew(0, ioaddr + PGSEL);
|
|
if (np->dspcfg == dspcfg)
|
|
break;
|
|
}
|
|
|
|
if (netif_msg_link(np)) {
|
|
if (i==NATSEMI_HW_TIMEOUT) {
|
|
printk(KERN_INFO
|
|
"%s: DSPCFG mismatch after retrying for %d usec.\n",
|
|
dev->name, i*10);
|
|
} else {
|
|
printk(KERN_INFO
|
|
"%s: DSPCFG accepted after %d usec.\n",
|
|
dev->name, i*10);
|
|
}
|
|
}
|
|
/*
|
|
* Enable PHY Specific event based interrupts. Link state change
|
|
* and Auto-Negotiation Completion are among the affected.
|
|
* Read the intr status to clear it (needed for wake events).
|
|
*/
|
|
readw(ioaddr + MIntrStatus);
|
|
writew(MICRIntEn, ioaddr + MIntrCtrl);
|
|
}
|
|
|
|
static int switch_port_external(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
u32 cfg;
|
|
|
|
cfg = readl(ioaddr + ChipConfig);
|
|
if (cfg & CfgExtPhy)
|
|
return 0;
|
|
|
|
if (netif_msg_link(np)) {
|
|
printk(KERN_INFO "%s: switching to external transceiver.\n",
|
|
dev->name);
|
|
}
|
|
|
|
/* 1) switch back to external phy */
|
|
writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
|
|
readl(ioaddr + ChipConfig);
|
|
udelay(1);
|
|
|
|
/* 2) reset the external phy: */
|
|
/* resetting the external PHY has been known to cause a hub supplying
|
|
* power over Ethernet to kill the power. We don't want to kill
|
|
* power to this computer, so we avoid resetting the phy.
|
|
*/
|
|
|
|
/* 3) reinit the phy fixup, it got lost during power down. */
|
|
move_int_phy(dev, np->phy_addr_external);
|
|
init_phy_fixup(dev);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int switch_port_internal(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
int i;
|
|
u32 cfg;
|
|
u16 bmcr;
|
|
|
|
cfg = readl(ioaddr + ChipConfig);
|
|
if (!(cfg &CfgExtPhy))
|
|
return 0;
|
|
|
|
if (netif_msg_link(np)) {
|
|
printk(KERN_INFO "%s: switching to internal transceiver.\n",
|
|
dev->name);
|
|
}
|
|
/* 1) switch back to internal phy: */
|
|
cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
|
|
writel(cfg, ioaddr + ChipConfig);
|
|
readl(ioaddr + ChipConfig);
|
|
udelay(1);
|
|
|
|
/* 2) reset the internal phy: */
|
|
bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
|
|
writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
|
|
readl(ioaddr + ChipConfig);
|
|
udelay(10);
|
|
for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
|
|
bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
|
|
if (!(bmcr & BMCR_RESET))
|
|
break;
|
|
udelay(10);
|
|
}
|
|
if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
|
|
printk(KERN_INFO
|
|
"%s: phy reset did not complete in %d usec.\n",
|
|
dev->name, i*10);
|
|
}
|
|
/* 3) reinit the phy fixup, it got lost during power down. */
|
|
init_phy_fixup(dev);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Scan for a PHY on the external mii bus.
|
|
* There are two tricky points:
|
|
* - Do not scan while the internal phy is enabled. The internal phy will
|
|
* crash: e.g. reads from the DSPCFG register will return odd values and
|
|
* the nasty random phy reset code will reset the nic every few seconds.
|
|
* - The internal phy must be moved around, an external phy could
|
|
* have the same address as the internal phy.
|
|
*/
|
|
static int find_mii(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int tmp;
|
|
int i;
|
|
int did_switch;
|
|
|
|
/* Switch to external phy */
|
|
did_switch = switch_port_external(dev);
|
|
|
|
/* Scan the possible phy addresses:
|
|
*
|
|
* PHY address 0 means that the phy is in isolate mode. Not yet
|
|
* supported due to lack of test hardware. User space should
|
|
* handle it through ethtool.
|
|
*/
|
|
for (i = 1; i <= 31; i++) {
|
|
move_int_phy(dev, i);
|
|
tmp = miiport_read(dev, i, MII_BMSR);
|
|
if (tmp != 0xffff && tmp != 0x0000) {
|
|
/* found something! */
|
|
np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
|
|
+ mdio_read(dev, MII_PHYSID2);
|
|
if (netif_msg_probe(np)) {
|
|
printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
|
|
pci_name(np->pci_dev), np->mii, i);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* And switch back to internal phy: */
|
|
if (did_switch)
|
|
switch_port_internal(dev);
|
|
return i;
|
|
}
|
|
|
|
/* CFG bits [13:16] [18:23] */
|
|
#define CFG_RESET_SAVE 0xfde000
|
|
/* WCSR bits [0:4] [9:10] */
|
|
#define WCSR_RESET_SAVE 0x61f
|
|
/* RFCR bits [20] [22] [27:31] */
|
|
#define RFCR_RESET_SAVE 0xf8500000;
|
|
|
|
static void natsemi_reset(struct net_device *dev)
|
|
{
|
|
int i;
|
|
u32 cfg;
|
|
u32 wcsr;
|
|
u32 rfcr;
|
|
u16 pmatch[3];
|
|
u16 sopass[3];
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
/*
|
|
* Resetting the chip causes some registers to be lost.
|
|
* Natsemi suggests NOT reloading the EEPROM while live, so instead
|
|
* we save the state that would have been loaded from EEPROM
|
|
* on a normal power-up (see the spec EEPROM map). This assumes
|
|
* whoever calls this will follow up with init_registers() eventually.
|
|
*/
|
|
|
|
/* CFG */
|
|
cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
|
|
/* WCSR */
|
|
wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
|
|
/* RFCR */
|
|
rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
|
|
/* PMATCH */
|
|
for (i = 0; i < 3; i++) {
|
|
writel(i*2, ioaddr + RxFilterAddr);
|
|
pmatch[i] = readw(ioaddr + RxFilterData);
|
|
}
|
|
/* SOPAS */
|
|
for (i = 0; i < 3; i++) {
|
|
writel(0xa+(i*2), ioaddr + RxFilterAddr);
|
|
sopass[i] = readw(ioaddr + RxFilterData);
|
|
}
|
|
|
|
/* now whack the chip */
|
|
writel(ChipReset, ioaddr + ChipCmd);
|
|
for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
|
|
if (!(readl(ioaddr + ChipCmd) & ChipReset))
|
|
break;
|
|
udelay(5);
|
|
}
|
|
if (i==NATSEMI_HW_TIMEOUT) {
|
|
printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
|
|
dev->name, i*5);
|
|
} else if (netif_msg_hw(np)) {
|
|
printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
|
|
dev->name, i*5);
|
|
}
|
|
|
|
/* restore CFG */
|
|
cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
|
|
/* turn on external phy if it was selected */
|
|
if (dev->if_port == PORT_TP)
|
|
cfg &= ~(CfgExtPhy | CfgPhyDis);
|
|
else
|
|
cfg |= (CfgExtPhy | CfgPhyDis);
|
|
writel(cfg, ioaddr + ChipConfig);
|
|
/* restore WCSR */
|
|
wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
|
|
writel(wcsr, ioaddr + WOLCmd);
|
|
/* read RFCR */
|
|
rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
|
|
/* restore PMATCH */
|
|
for (i = 0; i < 3; i++) {
|
|
writel(i*2, ioaddr + RxFilterAddr);
|
|
writew(pmatch[i], ioaddr + RxFilterData);
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
writel(0xa+(i*2), ioaddr + RxFilterAddr);
|
|
writew(sopass[i], ioaddr + RxFilterData);
|
|
}
|
|
/* restore RFCR */
|
|
writel(rfcr, ioaddr + RxFilterAddr);
|
|
}
|
|
|
|
static void reset_rx(struct net_device *dev)
|
|
{
|
|
int i;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
np->intr_status &= ~RxResetDone;
|
|
|
|
writel(RxReset, ioaddr + ChipCmd);
|
|
|
|
for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
|
|
np->intr_status |= readl(ioaddr + IntrStatus);
|
|
if (np->intr_status & RxResetDone)
|
|
break;
|
|
udelay(15);
|
|
}
|
|
if (i==NATSEMI_HW_TIMEOUT) {
|
|
printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
|
|
dev->name, i*15);
|
|
} else if (netif_msg_hw(np)) {
|
|
printk(KERN_WARNING "%s: RX reset took %d usec.\n",
|
|
dev->name, i*15);
|
|
}
|
|
}
|
|
|
|
static void natsemi_reload_eeprom(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
int i;
|
|
|
|
writel(EepromReload, ioaddr + PCIBusCfg);
|
|
for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
|
|
udelay(50);
|
|
if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
|
|
break;
|
|
}
|
|
if (i==NATSEMI_HW_TIMEOUT) {
|
|
printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
|
|
pci_name(np->pci_dev), i*50);
|
|
} else if (netif_msg_hw(np)) {
|
|
printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
|
|
pci_name(np->pci_dev), i*50);
|
|
}
|
|
}
|
|
|
|
static void natsemi_stop_rxtx(struct net_device *dev)
|
|
{
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
writel(RxOff | TxOff, ioaddr + ChipCmd);
|
|
for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
|
|
if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
|
|
break;
|
|
udelay(5);
|
|
}
|
|
if (i==NATSEMI_HW_TIMEOUT) {
|
|
printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
|
|
dev->name, i*5);
|
|
} else if (netif_msg_hw(np)) {
|
|
printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
|
|
dev->name, i*5);
|
|
}
|
|
}
|
|
|
|
static int netdev_open(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
int i;
|
|
|
|
/* Reset the chip, just in case. */
|
|
natsemi_reset(dev);
|
|
|
|
i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
|
|
if (i) return i;
|
|
|
|
if (netif_msg_ifup(np))
|
|
printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
|
|
dev->name, dev->irq);
|
|
i = alloc_ring(dev);
|
|
if (i < 0) {
|
|
free_irq(dev->irq, dev);
|
|
return i;
|
|
}
|
|
napi_enable(&np->napi);
|
|
|
|
init_ring(dev);
|
|
spin_lock_irq(&np->lock);
|
|
init_registers(dev);
|
|
/* now set the MAC address according to dev->dev_addr */
|
|
for (i = 0; i < 3; i++) {
|
|
u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
|
|
|
|
writel(i*2, ioaddr + RxFilterAddr);
|
|
writew(mac, ioaddr + RxFilterData);
|
|
}
|
|
writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
|
|
spin_unlock_irq(&np->lock);
|
|
|
|
netif_start_queue(dev);
|
|
|
|
if (netif_msg_ifup(np))
|
|
printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
|
|
dev->name, (int)readl(ioaddr + ChipCmd));
|
|
|
|
/* Set the timer to check for link beat. */
|
|
init_timer(&np->timer);
|
|
np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
|
|
np->timer.data = (unsigned long)dev;
|
|
np->timer.function = &netdev_timer; /* timer handler */
|
|
add_timer(&np->timer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void do_cable_magic(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = ns_ioaddr(dev);
|
|
|
|
if (dev->if_port != PORT_TP)
|
|
return;
|
|
|
|
if (np->srr >= SRR_DP83816_A5)
|
|
return;
|
|
|
|
/*
|
|
* 100 MBit links with short cables can trip an issue with the chip.
|
|
* The problem manifests as lots of CRC errors and/or flickering
|
|
* activity LED while idle. This process is based on instructions
|
|
* from engineers at National.
|
|
*/
|
|
if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
|
|
u16 data;
|
|
|
|
writew(1, ioaddr + PGSEL);
|
|
/*
|
|
* coefficient visibility should already be enabled via
|
|
* DSPCFG | 0x1000
|
|
*/
|
|
data = readw(ioaddr + TSTDAT) & 0xff;
|
|
/*
|
|
* the value must be negative, and within certain values
|
|
* (these values all come from National)
|
|
*/
|
|
if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
|
|
np = netdev_priv(dev);
|
|
|
|
/* the bug has been triggered - fix the coefficient */
|
|
writew(TSTDAT_FIXED, ioaddr + TSTDAT);
|
|
/* lock the value */
|
|
data = readw(ioaddr + DSPCFG);
|
|
np->dspcfg = data | DSPCFG_LOCK;
|
|
writew(np->dspcfg, ioaddr + DSPCFG);
|
|
}
|
|
writew(0, ioaddr + PGSEL);
|
|
}
|
|
}
|
|
|
|
static void undo_cable_magic(struct net_device *dev)
|
|
{
|
|
u16 data;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
if (dev->if_port != PORT_TP)
|
|
return;
|
|
|
|
if (np->srr >= SRR_DP83816_A5)
|
|
return;
|
|
|
|
writew(1, ioaddr + PGSEL);
|
|
/* make sure the lock bit is clear */
|
|
data = readw(ioaddr + DSPCFG);
|
|
np->dspcfg = data & ~DSPCFG_LOCK;
|
|
writew(np->dspcfg, ioaddr + DSPCFG);
|
|
writew(0, ioaddr + PGSEL);
|
|
}
|
|
|
|
static void check_link(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
int duplex = np->duplex;
|
|
u16 bmsr;
|
|
|
|
/* If we are ignoring the PHY then don't try reading it. */
|
|
if (np->ignore_phy)
|
|
goto propagate_state;
|
|
|
|
/* The link status field is latched: it remains low after a temporary
|
|
* link failure until it's read. We need the current link status,
|
|
* thus read twice.
|
|
*/
|
|
mdio_read(dev, MII_BMSR);
|
|
bmsr = mdio_read(dev, MII_BMSR);
|
|
|
|
if (!(bmsr & BMSR_LSTATUS)) {
|
|
if (netif_carrier_ok(dev)) {
|
|
if (netif_msg_link(np))
|
|
printk(KERN_NOTICE "%s: link down.\n",
|
|
dev->name);
|
|
netif_carrier_off(dev);
|
|
undo_cable_magic(dev);
|
|
}
|
|
return;
|
|
}
|
|
if (!netif_carrier_ok(dev)) {
|
|
if (netif_msg_link(np))
|
|
printk(KERN_NOTICE "%s: link up.\n", dev->name);
|
|
netif_carrier_on(dev);
|
|
do_cable_magic(dev);
|
|
}
|
|
|
|
duplex = np->full_duplex;
|
|
if (!duplex) {
|
|
if (bmsr & BMSR_ANEGCOMPLETE) {
|
|
int tmp = mii_nway_result(
|
|
np->advertising & mdio_read(dev, MII_LPA));
|
|
if (tmp == LPA_100FULL || tmp == LPA_10FULL)
|
|
duplex = 1;
|
|
} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
|
|
duplex = 1;
|
|
}
|
|
|
|
propagate_state:
|
|
/* if duplex is set then bit 28 must be set, too */
|
|
if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
|
|
if (netif_msg_link(np))
|
|
printk(KERN_INFO
|
|
"%s: Setting %s-duplex based on negotiated "
|
|
"link capability.\n", dev->name,
|
|
duplex ? "full" : "half");
|
|
if (duplex) {
|
|
np->rx_config |= RxAcceptTx;
|
|
np->tx_config |= TxCarrierIgn | TxHeartIgn;
|
|
} else {
|
|
np->rx_config &= ~RxAcceptTx;
|
|
np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
|
|
}
|
|
writel(np->tx_config, ioaddr + TxConfig);
|
|
writel(np->rx_config, ioaddr + RxConfig);
|
|
}
|
|
}
|
|
|
|
static void init_registers(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
init_phy_fixup(dev);
|
|
|
|
/* clear any interrupts that are pending, such as wake events */
|
|
readl(ioaddr + IntrStatus);
|
|
|
|
writel(np->ring_dma, ioaddr + RxRingPtr);
|
|
writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
|
|
ioaddr + TxRingPtr);
|
|
|
|
/* Initialize other registers.
|
|
* Configure the PCI bus bursts and FIFO thresholds.
|
|
* Configure for standard, in-spec Ethernet.
|
|
* Start with half-duplex. check_link will update
|
|
* to the correct settings.
|
|
*/
|
|
|
|
/* DRTH: 2: start tx if 64 bytes are in the fifo
|
|
* FLTH: 0x10: refill with next packet if 512 bytes are free
|
|
* MXDMA: 0: up to 256 byte bursts.
|
|
* MXDMA must be <= FLTH
|
|
* ECRETRY=1
|
|
* ATP=1
|
|
*/
|
|
np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
|
|
TX_FLTH_VAL | TX_DRTH_VAL_START;
|
|
writel(np->tx_config, ioaddr + TxConfig);
|
|
|
|
/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
|
|
* MXDMA 0: up to 256 byte bursts
|
|
*/
|
|
np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
|
|
/* if receive ring now has bigger buffers than normal, enable jumbo */
|
|
if (np->rx_buf_sz > NATSEMI_LONGPKT)
|
|
np->rx_config |= RxAcceptLong;
|
|
|
|
writel(np->rx_config, ioaddr + RxConfig);
|
|
|
|
/* Disable PME:
|
|
* The PME bit is initialized from the EEPROM contents.
|
|
* PCI cards probably have PME disabled, but motherboard
|
|
* implementations may have PME set to enable WakeOnLan.
|
|
* With PME set the chip will scan incoming packets but
|
|
* nothing will be written to memory. */
|
|
np->SavedClkRun = readl(ioaddr + ClkRun);
|
|
writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
|
|
if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
|
|
printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
|
|
dev->name, readl(ioaddr + WOLCmd));
|
|
}
|
|
|
|
check_link(dev);
|
|
__set_rx_mode(dev);
|
|
|
|
/* Enable interrupts by setting the interrupt mask. */
|
|
writel(DEFAULT_INTR, ioaddr + IntrMask);
|
|
natsemi_irq_enable(dev);
|
|
|
|
writel(RxOn | TxOn, ioaddr + ChipCmd);
|
|
writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
|
|
}
|
|
|
|
/*
|
|
* netdev_timer:
|
|
* Purpose:
|
|
* 1) check for link changes. Usually they are handled by the MII interrupt
|
|
* but it doesn't hurt to check twice.
|
|
* 2) check for sudden death of the NIC:
|
|
* It seems that a reference set for this chip went out with incorrect info,
|
|
* and there exist boards that aren't quite right. An unexpected voltage
|
|
* drop can cause the PHY to get itself in a weird state (basically reset).
|
|
* NOTE: this only seems to affect revC chips. The user can disable
|
|
* this check via dspcfg_workaround sysfs option.
|
|
* 3) check of death of the RX path due to OOM
|
|
*/
|
|
static void netdev_timer(unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *)data;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
int next_tick = NATSEMI_TIMER_FREQ;
|
|
|
|
if (netif_msg_timer(np)) {
|
|
/* DO NOT read the IntrStatus register,
|
|
* a read clears any pending interrupts.
|
|
*/
|
|
printk(KERN_DEBUG "%s: Media selection timer tick.\n",
|
|
dev->name);
|
|
}
|
|
|
|
if (dev->if_port == PORT_TP) {
|
|
u16 dspcfg;
|
|
|
|
spin_lock_irq(&np->lock);
|
|
/* check for a nasty random phy-reset - use dspcfg as a flag */
|
|
writew(1, ioaddr+PGSEL);
|
|
dspcfg = readw(ioaddr+DSPCFG);
|
|
writew(0, ioaddr+PGSEL);
|
|
if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
|
|
if (!netif_queue_stopped(dev)) {
|
|
spin_unlock_irq(&np->lock);
|
|
if (netif_msg_drv(np))
|
|
printk(KERN_NOTICE "%s: possible phy reset: "
|
|
"re-initializing\n", dev->name);
|
|
disable_irq(dev->irq);
|
|
spin_lock_irq(&np->lock);
|
|
natsemi_stop_rxtx(dev);
|
|
dump_ring(dev);
|
|
reinit_ring(dev);
|
|
init_registers(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
enable_irq(dev->irq);
|
|
} else {
|
|
/* hurry back */
|
|
next_tick = HZ;
|
|
spin_unlock_irq(&np->lock);
|
|
}
|
|
} else {
|
|
/* init_registers() calls check_link() for the above case */
|
|
check_link(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
}
|
|
} else {
|
|
spin_lock_irq(&np->lock);
|
|
check_link(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
}
|
|
if (np->oom) {
|
|
disable_irq(dev->irq);
|
|
np->oom = 0;
|
|
refill_rx(dev);
|
|
enable_irq(dev->irq);
|
|
if (!np->oom) {
|
|
writel(RxOn, ioaddr + ChipCmd);
|
|
} else {
|
|
next_tick = 1;
|
|
}
|
|
}
|
|
|
|
if (next_tick > 1)
|
|
mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
|
|
else
|
|
mod_timer(&np->timer, jiffies + next_tick);
|
|
}
|
|
|
|
static void dump_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
if (netif_msg_pktdata(np)) {
|
|
int i;
|
|
printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
|
|
i, np->tx_ring[i].next_desc,
|
|
np->tx_ring[i].cmd_status,
|
|
np->tx_ring[i].addr);
|
|
}
|
|
printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
|
|
i, np->rx_ring[i].next_desc,
|
|
np->rx_ring[i].cmd_status,
|
|
np->rx_ring[i].addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ns_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
disable_irq(dev->irq);
|
|
spin_lock_irq(&np->lock);
|
|
if (!np->hands_off) {
|
|
if (netif_msg_tx_err(np))
|
|
printk(KERN_WARNING
|
|
"%s: Transmit timed out, status %#08x,"
|
|
" resetting...\n",
|
|
dev->name, readl(ioaddr + IntrStatus));
|
|
dump_ring(dev);
|
|
|
|
natsemi_reset(dev);
|
|
reinit_ring(dev);
|
|
init_registers(dev);
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"%s: tx_timeout while in hands_off state?\n",
|
|
dev->name);
|
|
}
|
|
spin_unlock_irq(&np->lock);
|
|
enable_irq(dev->irq);
|
|
|
|
dev->trans_start = jiffies;
|
|
np->stats.tx_errors++;
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
static int alloc_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
np->rx_ring = pci_alloc_consistent(np->pci_dev,
|
|
sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
|
|
&np->ring_dma);
|
|
if (!np->rx_ring)
|
|
return -ENOMEM;
|
|
np->tx_ring = &np->rx_ring[RX_RING_SIZE];
|
|
return 0;
|
|
}
|
|
|
|
static void refill_rx(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
/* Refill the Rx ring buffers. */
|
|
for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
|
|
struct sk_buff *skb;
|
|
int entry = np->dirty_rx % RX_RING_SIZE;
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
|
|
skb = dev_alloc_skb(buflen);
|
|
np->rx_skbuff[entry] = skb;
|
|
if (skb == NULL)
|
|
break; /* Better luck next round. */
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
np->rx_dma[entry] = pci_map_single(np->pci_dev,
|
|
skb->data, buflen, PCI_DMA_FROMDEVICE);
|
|
np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
|
|
}
|
|
np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
|
|
}
|
|
if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
|
|
if (netif_msg_rx_err(np))
|
|
printk(KERN_WARNING "%s: going OOM.\n", dev->name);
|
|
np->oom = 1;
|
|
}
|
|
}
|
|
|
|
static void set_bufsize(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
if (dev->mtu <= ETH_DATA_LEN)
|
|
np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
|
|
else
|
|
np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
|
|
}
|
|
|
|
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
|
|
static void init_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
/* 1) TX ring */
|
|
np->dirty_tx = np->cur_tx = 0;
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
np->tx_skbuff[i] = NULL;
|
|
np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
|
|
+sizeof(struct netdev_desc)
|
|
*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
|
|
np->tx_ring[i].cmd_status = 0;
|
|
}
|
|
|
|
/* 2) RX ring */
|
|
np->dirty_rx = 0;
|
|
np->cur_rx = RX_RING_SIZE;
|
|
np->oom = 0;
|
|
set_bufsize(dev);
|
|
|
|
np->rx_head_desc = &np->rx_ring[0];
|
|
|
|
/* Please be carefull before changing this loop - at least gcc-2.95.1
|
|
* miscompiles it otherwise.
|
|
*/
|
|
/* Initialize all Rx descriptors. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
|
|
+sizeof(struct netdev_desc)
|
|
*((i+1)%RX_RING_SIZE));
|
|
np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
refill_rx(dev);
|
|
dump_ring(dev);
|
|
}
|
|
|
|
static void drain_tx(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
if (np->tx_skbuff[i]) {
|
|
pci_unmap_single(np->pci_dev,
|
|
np->tx_dma[i], np->tx_skbuff[i]->len,
|
|
PCI_DMA_TODEVICE);
|
|
dev_kfree_skb(np->tx_skbuff[i]);
|
|
np->stats.tx_dropped++;
|
|
}
|
|
np->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void drain_rx(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
unsigned int buflen = np->rx_buf_sz;
|
|
int i;
|
|
|
|
/* Free all the skbuffs in the Rx queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].cmd_status = 0;
|
|
np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
|
|
if (np->rx_skbuff[i]) {
|
|
pci_unmap_single(np->pci_dev,
|
|
np->rx_dma[i], buflen,
|
|
PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(np->rx_skbuff[i]);
|
|
}
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void drain_ring(struct net_device *dev)
|
|
{
|
|
drain_rx(dev);
|
|
drain_tx(dev);
|
|
}
|
|
|
|
static void free_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
pci_free_consistent(np->pci_dev,
|
|
sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
|
|
np->rx_ring, np->ring_dma);
|
|
}
|
|
|
|
static void reinit_rx(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
/* RX Ring */
|
|
np->dirty_rx = 0;
|
|
np->cur_rx = RX_RING_SIZE;
|
|
np->rx_head_desc = &np->rx_ring[0];
|
|
/* Initialize all Rx descriptors. */
|
|
for (i = 0; i < RX_RING_SIZE; i++)
|
|
np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
|
|
|
|
refill_rx(dev);
|
|
}
|
|
|
|
static void reinit_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
/* drain TX ring */
|
|
drain_tx(dev);
|
|
np->dirty_tx = np->cur_tx = 0;
|
|
for (i=0;i<TX_RING_SIZE;i++)
|
|
np->tx_ring[i].cmd_status = 0;
|
|
|
|
reinit_rx(dev);
|
|
}
|
|
|
|
static int start_tx(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
unsigned entry;
|
|
unsigned long flags;
|
|
|
|
/* Note: Ordering is important here, set the field with the
|
|
"ownership" bit last, and only then increment cur_tx. */
|
|
|
|
/* Calculate the next Tx descriptor entry. */
|
|
entry = np->cur_tx % TX_RING_SIZE;
|
|
|
|
np->tx_skbuff[entry] = skb;
|
|
np->tx_dma[entry] = pci_map_single(np->pci_dev,
|
|
skb->data,skb->len, PCI_DMA_TODEVICE);
|
|
|
|
np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
|
|
|
|
spin_lock_irqsave(&np->lock, flags);
|
|
|
|
if (!np->hands_off) {
|
|
np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
|
|
/* StrongARM: Explicitly cache flush np->tx_ring and
|
|
* skb->data,skb->len. */
|
|
wmb();
|
|
np->cur_tx++;
|
|
if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
|
|
netdev_tx_done(dev);
|
|
if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
|
|
netif_stop_queue(dev);
|
|
}
|
|
/* Wake the potentially-idle transmit channel. */
|
|
writel(TxOn, ioaddr + ChipCmd);
|
|
} else {
|
|
dev_kfree_skb_irq(skb);
|
|
np->stats.tx_dropped++;
|
|
}
|
|
spin_unlock_irqrestore(&np->lock, flags);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
if (netif_msg_tx_queued(np)) {
|
|
printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
|
|
dev->name, np->cur_tx, entry);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void netdev_tx_done(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
|
|
int entry = np->dirty_tx % TX_RING_SIZE;
|
|
if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
|
|
break;
|
|
if (netif_msg_tx_done(np))
|
|
printk(KERN_DEBUG
|
|
"%s: tx frame #%d finished, status %#08x.\n",
|
|
dev->name, np->dirty_tx,
|
|
le32_to_cpu(np->tx_ring[entry].cmd_status));
|
|
if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
|
|
np->stats.tx_packets++;
|
|
np->stats.tx_bytes += np->tx_skbuff[entry]->len;
|
|
} else { /* Various Tx errors */
|
|
int tx_status =
|
|
le32_to_cpu(np->tx_ring[entry].cmd_status);
|
|
if (tx_status & (DescTxAbort|DescTxExcColl))
|
|
np->stats.tx_aborted_errors++;
|
|
if (tx_status & DescTxFIFO)
|
|
np->stats.tx_fifo_errors++;
|
|
if (tx_status & DescTxCarrier)
|
|
np->stats.tx_carrier_errors++;
|
|
if (tx_status & DescTxOOWCol)
|
|
np->stats.tx_window_errors++;
|
|
np->stats.tx_errors++;
|
|
}
|
|
pci_unmap_single(np->pci_dev,np->tx_dma[entry],
|
|
np->tx_skbuff[entry]->len,
|
|
PCI_DMA_TODEVICE);
|
|
/* Free the original skb. */
|
|
dev_kfree_skb_irq(np->tx_skbuff[entry]);
|
|
np->tx_skbuff[entry] = NULL;
|
|
}
|
|
if (netif_queue_stopped(dev)
|
|
&& np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
|
|
/* The ring is no longer full, wake queue. */
|
|
netif_wake_queue(dev);
|
|
}
|
|
}
|
|
|
|
/* The interrupt handler doesn't actually handle interrupts itself, it
|
|
* schedules a NAPI poll if there is anything to do. */
|
|
static irqreturn_t intr_handler(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
/* Reading IntrStatus automatically acknowledges so don't do
|
|
* that while interrupts are disabled, (for example, while a
|
|
* poll is scheduled). */
|
|
if (np->hands_off || !readl(ioaddr + IntrEnable))
|
|
return IRQ_NONE;
|
|
|
|
np->intr_status = readl(ioaddr + IntrStatus);
|
|
|
|
if (!np->intr_status)
|
|
return IRQ_NONE;
|
|
|
|
if (netif_msg_intr(np))
|
|
printk(KERN_DEBUG
|
|
"%s: Interrupt, status %#08x, mask %#08x.\n",
|
|
dev->name, np->intr_status,
|
|
readl(ioaddr + IntrMask));
|
|
|
|
prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
|
|
|
|
if (netif_rx_schedule_prep(dev, &np->napi)) {
|
|
/* Disable interrupts and register for poll */
|
|
natsemi_irq_disable(dev);
|
|
__netif_rx_schedule(dev, &np->napi);
|
|
} else
|
|
printk(KERN_WARNING
|
|
"%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
|
|
dev->name, np->intr_status,
|
|
readl(ioaddr + IntrMask));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* This is the NAPI poll routine. As well as the standard RX handling
|
|
* it also handles all other interrupts that the chip might raise.
|
|
*/
|
|
static int natsemi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct netdev_private *np = container_of(napi, struct netdev_private, napi);
|
|
struct net_device *dev = np->dev;
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
int work_done = 0;
|
|
|
|
do {
|
|
if (netif_msg_intr(np))
|
|
printk(KERN_DEBUG
|
|
"%s: Poll, status %#08x, mask %#08x.\n",
|
|
dev->name, np->intr_status,
|
|
readl(ioaddr + IntrMask));
|
|
|
|
/* netdev_rx() may read IntrStatus again if the RX state
|
|
* machine falls over so do it first. */
|
|
if (np->intr_status &
|
|
(IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
|
|
IntrRxErr | IntrRxOverrun)) {
|
|
netdev_rx(dev, &work_done, budget);
|
|
}
|
|
|
|
if (np->intr_status &
|
|
(IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
|
|
spin_lock(&np->lock);
|
|
netdev_tx_done(dev);
|
|
spin_unlock(&np->lock);
|
|
}
|
|
|
|
/* Abnormal error summary/uncommon events handlers. */
|
|
if (np->intr_status & IntrAbnormalSummary)
|
|
netdev_error(dev, np->intr_status);
|
|
|
|
if (work_done >= budget)
|
|
return work_done;
|
|
|
|
np->intr_status = readl(ioaddr + IntrStatus);
|
|
} while (np->intr_status);
|
|
|
|
netif_rx_complete(dev, napi);
|
|
|
|
/* Reenable interrupts providing nothing is trying to shut
|
|
* the chip down. */
|
|
spin_lock(&np->lock);
|
|
if (!np->hands_off)
|
|
natsemi_irq_enable(dev);
|
|
spin_unlock(&np->lock);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
/* This routine is logically part of the interrupt handler, but separated
|
|
for clarity and better register allocation. */
|
|
static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->cur_rx % RX_RING_SIZE;
|
|
int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
|
|
s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
|
|
unsigned int buflen = np->rx_buf_sz;
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
/* If the driver owns the next entry it's a new packet. Send it up. */
|
|
while (desc_status < 0) { /* e.g. & DescOwn */
|
|
int pkt_len;
|
|
if (netif_msg_rx_status(np))
|
|
printk(KERN_DEBUG
|
|
" netdev_rx() entry %d status was %#08x.\n",
|
|
entry, desc_status);
|
|
if (--boguscnt < 0)
|
|
break;
|
|
|
|
if (*work_done >= work_to_do)
|
|
break;
|
|
|
|
(*work_done)++;
|
|
|
|
pkt_len = (desc_status & DescSizeMask) - 4;
|
|
if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
|
|
if (desc_status & DescMore) {
|
|
unsigned long flags;
|
|
|
|
if (netif_msg_rx_err(np))
|
|
printk(KERN_WARNING
|
|
"%s: Oversized(?) Ethernet "
|
|
"frame spanned multiple "
|
|
"buffers, entry %#08x "
|
|
"status %#08x.\n", dev->name,
|
|
np->cur_rx, desc_status);
|
|
np->stats.rx_length_errors++;
|
|
|
|
/* The RX state machine has probably
|
|
* locked up beneath us. Follow the
|
|
* reset procedure documented in
|
|
* AN-1287. */
|
|
|
|
spin_lock_irqsave(&np->lock, flags);
|
|
reset_rx(dev);
|
|
reinit_rx(dev);
|
|
writel(np->ring_dma, ioaddr + RxRingPtr);
|
|
check_link(dev);
|
|
spin_unlock_irqrestore(&np->lock, flags);
|
|
|
|
/* We'll enable RX on exit from this
|
|
* function. */
|
|
break;
|
|
|
|
} else {
|
|
/* There was an error. */
|
|
np->stats.rx_errors++;
|
|
if (desc_status & (DescRxAbort|DescRxOver))
|
|
np->stats.rx_over_errors++;
|
|
if (desc_status & (DescRxLong|DescRxRunt))
|
|
np->stats.rx_length_errors++;
|
|
if (desc_status & (DescRxInvalid|DescRxAlign))
|
|
np->stats.rx_frame_errors++;
|
|
if (desc_status & DescRxCRC)
|
|
np->stats.rx_crc_errors++;
|
|
}
|
|
} else if (pkt_len > np->rx_buf_sz) {
|
|
/* if this is the tail of a double buffer
|
|
* packet, we've already counted the error
|
|
* on the first part. Ignore the second half.
|
|
*/
|
|
} else {
|
|
struct sk_buff *skb;
|
|
/* Omit CRC size. */
|
|
/* Check if the packet is long enough to accept
|
|
* without copying to a minimally-sized skbuff. */
|
|
if (pkt_len < rx_copybreak
|
|
&& (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
|
|
/* 16 byte align the IP header */
|
|
skb_reserve(skb, RX_OFFSET);
|
|
pci_dma_sync_single_for_cpu(np->pci_dev,
|
|
np->rx_dma[entry],
|
|
buflen,
|
|
PCI_DMA_FROMDEVICE);
|
|
skb_copy_to_linear_data(skb,
|
|
np->rx_skbuff[entry]->data, pkt_len);
|
|
skb_put(skb, pkt_len);
|
|
pci_dma_sync_single_for_device(np->pci_dev,
|
|
np->rx_dma[entry],
|
|
buflen,
|
|
PCI_DMA_FROMDEVICE);
|
|
} else {
|
|
pci_unmap_single(np->pci_dev, np->rx_dma[entry],
|
|
buflen, PCI_DMA_FROMDEVICE);
|
|
skb_put(skb = np->rx_skbuff[entry], pkt_len);
|
|
np->rx_skbuff[entry] = NULL;
|
|
}
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
netif_receive_skb(skb);
|
|
np->stats.rx_packets++;
|
|
np->stats.rx_bytes += pkt_len;
|
|
}
|
|
entry = (++np->cur_rx) % RX_RING_SIZE;
|
|
np->rx_head_desc = &np->rx_ring[entry];
|
|
desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
|
|
}
|
|
refill_rx(dev);
|
|
|
|
/* Restart Rx engine if stopped. */
|
|
if (np->oom)
|
|
mod_timer(&np->timer, jiffies + 1);
|
|
else
|
|
writel(RxOn, ioaddr + ChipCmd);
|
|
}
|
|
|
|
static void netdev_error(struct net_device *dev, int intr_status)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
spin_lock(&np->lock);
|
|
if (intr_status & LinkChange) {
|
|
u16 lpa = mdio_read(dev, MII_LPA);
|
|
if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
|
|
&& netif_msg_link(np)) {
|
|
printk(KERN_INFO
|
|
"%s: Autonegotiation advertising"
|
|
" %#04x partner %#04x.\n", dev->name,
|
|
np->advertising, lpa);
|
|
}
|
|
|
|
/* read MII int status to clear the flag */
|
|
readw(ioaddr + MIntrStatus);
|
|
check_link(dev);
|
|
}
|
|
if (intr_status & StatsMax) {
|
|
__get_stats(dev);
|
|
}
|
|
if (intr_status & IntrTxUnderrun) {
|
|
if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
|
|
np->tx_config += TX_DRTH_VAL_INC;
|
|
if (netif_msg_tx_err(np))
|
|
printk(KERN_NOTICE
|
|
"%s: increased tx threshold, txcfg %#08x.\n",
|
|
dev->name, np->tx_config);
|
|
} else {
|
|
if (netif_msg_tx_err(np))
|
|
printk(KERN_NOTICE
|
|
"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
|
|
dev->name, np->tx_config);
|
|
}
|
|
writel(np->tx_config, ioaddr + TxConfig);
|
|
}
|
|
if (intr_status & WOLPkt && netif_msg_wol(np)) {
|
|
int wol_status = readl(ioaddr + WOLCmd);
|
|
printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
|
|
dev->name, wol_status);
|
|
}
|
|
if (intr_status & RxStatusFIFOOver) {
|
|
if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
|
|
printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
|
|
dev->name);
|
|
}
|
|
np->stats.rx_fifo_errors++;
|
|
np->stats.rx_errors++;
|
|
}
|
|
/* Hmmmmm, it's not clear how to recover from PCI faults. */
|
|
if (intr_status & IntrPCIErr) {
|
|
printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
|
|
intr_status & IntrPCIErr);
|
|
np->stats.tx_fifo_errors++;
|
|
np->stats.tx_errors++;
|
|
np->stats.rx_fifo_errors++;
|
|
np->stats.rx_errors++;
|
|
}
|
|
spin_unlock(&np->lock);
|
|
}
|
|
|
|
static void __get_stats(struct net_device *dev)
|
|
{
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
/* The chip only need report frame silently dropped. */
|
|
np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
|
|
np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
|
|
}
|
|
|
|
static struct net_device_stats *get_stats(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
/* The chip only need report frame silently dropped. */
|
|
spin_lock_irq(&np->lock);
|
|
if (netif_running(dev) && !np->hands_off)
|
|
__get_stats(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
|
|
return &np->stats;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void natsemi_poll_controller(struct net_device *dev)
|
|
{
|
|
disable_irq(dev->irq);
|
|
intr_handler(dev->irq, dev);
|
|
enable_irq(dev->irq);
|
|
}
|
|
#endif
|
|
|
|
#define HASH_TABLE 0x200
|
|
static void __set_rx_mode(struct net_device *dev)
|
|
{
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u8 mc_filter[64]; /* Multicast hash filter */
|
|
u32 rx_mode;
|
|
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
rx_mode = RxFilterEnable | AcceptBroadcast
|
|
| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
|
|
} else if ((dev->mc_count > multicast_filter_limit)
|
|
|| (dev->flags & IFF_ALLMULTI)) {
|
|
rx_mode = RxFilterEnable | AcceptBroadcast
|
|
| AcceptAllMulticast | AcceptMyPhys;
|
|
} else {
|
|
struct dev_mc_list *mclist;
|
|
int i;
|
|
memset(mc_filter, 0, sizeof(mc_filter));
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
|
|
mc_filter[b/8] |= (1 << (b & 0x07));
|
|
}
|
|
rx_mode = RxFilterEnable | AcceptBroadcast
|
|
| AcceptMulticast | AcceptMyPhys;
|
|
for (i = 0; i < 64; i += 2) {
|
|
writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
|
|
writel((mc_filter[i + 1] << 8) + mc_filter[i],
|
|
ioaddr + RxFilterData);
|
|
}
|
|
}
|
|
writel(rx_mode, ioaddr + RxFilterAddr);
|
|
np->cur_rx_mode = rx_mode;
|
|
}
|
|
|
|
static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
|
|
return -EINVAL;
|
|
|
|
dev->mtu = new_mtu;
|
|
|
|
/* synchronized against open : rtnl_lock() held by caller */
|
|
if (netif_running(dev)) {
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
disable_irq(dev->irq);
|
|
spin_lock(&np->lock);
|
|
/* stop engines */
|
|
natsemi_stop_rxtx(dev);
|
|
/* drain rx queue */
|
|
drain_rx(dev);
|
|
/* change buffers */
|
|
set_bufsize(dev);
|
|
reinit_rx(dev);
|
|
writel(np->ring_dma, ioaddr + RxRingPtr);
|
|
/* restart engines */
|
|
writel(RxOn | TxOn, ioaddr + ChipCmd);
|
|
spin_unlock(&np->lock);
|
|
enable_irq(dev->irq);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
spin_lock_irq(&np->lock);
|
|
if (!np->hands_off)
|
|
__set_rx_mode(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
}
|
|
|
|
static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
|
|
strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
|
|
strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
|
|
}
|
|
|
|
static int get_regs_len(struct net_device *dev)
|
|
{
|
|
return NATSEMI_REGS_SIZE;
|
|
}
|
|
|
|
static int get_eeprom_len(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return np->eeprom_size;
|
|
}
|
|
|
|
static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
spin_lock_irq(&np->lock);
|
|
netdev_get_ecmd(dev, ecmd);
|
|
spin_unlock_irq(&np->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int res;
|
|
spin_lock_irq(&np->lock);
|
|
res = netdev_set_ecmd(dev, ecmd);
|
|
spin_unlock_irq(&np->lock);
|
|
return res;
|
|
}
|
|
|
|
static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
spin_lock_irq(&np->lock);
|
|
netdev_get_wol(dev, &wol->supported, &wol->wolopts);
|
|
netdev_get_sopass(dev, wol->sopass);
|
|
spin_unlock_irq(&np->lock);
|
|
}
|
|
|
|
static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int res;
|
|
spin_lock_irq(&np->lock);
|
|
netdev_set_wol(dev, wol->wolopts);
|
|
res = netdev_set_sopass(dev, wol->sopass);
|
|
spin_unlock_irq(&np->lock);
|
|
return res;
|
|
}
|
|
|
|
static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
regs->version = NATSEMI_REGS_VER;
|
|
spin_lock_irq(&np->lock);
|
|
netdev_get_regs(dev, buf);
|
|
spin_unlock_irq(&np->lock);
|
|
}
|
|
|
|
static u32 get_msglevel(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return np->msg_enable;
|
|
}
|
|
|
|
static void set_msglevel(struct net_device *dev, u32 val)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
np->msg_enable = val;
|
|
}
|
|
|
|
static int nway_reset(struct net_device *dev)
|
|
{
|
|
int tmp;
|
|
int r = -EINVAL;
|
|
/* if autoneg is off, it's an error */
|
|
tmp = mdio_read(dev, MII_BMCR);
|
|
if (tmp & BMCR_ANENABLE) {
|
|
tmp |= (BMCR_ANRESTART);
|
|
mdio_write(dev, MII_BMCR, tmp);
|
|
r = 0;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static u32 get_link(struct net_device *dev)
|
|
{
|
|
/* LSTATUS is latched low until a read - so read twice */
|
|
mdio_read(dev, MII_BMSR);
|
|
return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
|
|
}
|
|
|
|
static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u8 *eebuf;
|
|
int res;
|
|
|
|
eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
|
|
if (!eebuf)
|
|
return -ENOMEM;
|
|
|
|
eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
|
|
spin_lock_irq(&np->lock);
|
|
res = netdev_get_eeprom(dev, eebuf);
|
|
spin_unlock_irq(&np->lock);
|
|
if (!res)
|
|
memcpy(data, eebuf+eeprom->offset, eeprom->len);
|
|
kfree(eebuf);
|
|
return res;
|
|
}
|
|
|
|
static const struct ethtool_ops ethtool_ops = {
|
|
.get_drvinfo = get_drvinfo,
|
|
.get_regs_len = get_regs_len,
|
|
.get_eeprom_len = get_eeprom_len,
|
|
.get_settings = get_settings,
|
|
.set_settings = set_settings,
|
|
.get_wol = get_wol,
|
|
.set_wol = set_wol,
|
|
.get_regs = get_regs,
|
|
.get_msglevel = get_msglevel,
|
|
.set_msglevel = set_msglevel,
|
|
.nway_reset = nway_reset,
|
|
.get_link = get_link,
|
|
.get_eeprom = get_eeprom,
|
|
};
|
|
|
|
static int netdev_set_wol(struct net_device *dev, u32 newval)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
|
|
|
|
/* translate to bitmasks this chip understands */
|
|
if (newval & WAKE_PHY)
|
|
data |= WakePhy;
|
|
if (newval & WAKE_UCAST)
|
|
data |= WakeUnicast;
|
|
if (newval & WAKE_MCAST)
|
|
data |= WakeMulticast;
|
|
if (newval & WAKE_BCAST)
|
|
data |= WakeBroadcast;
|
|
if (newval & WAKE_ARP)
|
|
data |= WakeArp;
|
|
if (newval & WAKE_MAGIC)
|
|
data |= WakeMagic;
|
|
if (np->srr >= SRR_DP83815_D) {
|
|
if (newval & WAKE_MAGICSECURE) {
|
|
data |= WakeMagicSecure;
|
|
}
|
|
}
|
|
|
|
writel(data, ioaddr + WOLCmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
u32 regval = readl(ioaddr + WOLCmd);
|
|
|
|
*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
|
|
| WAKE_ARP | WAKE_MAGIC);
|
|
|
|
if (np->srr >= SRR_DP83815_D) {
|
|
/* SOPASS works on revD and higher */
|
|
*supported |= WAKE_MAGICSECURE;
|
|
}
|
|
*cur = 0;
|
|
|
|
/* translate from chip bitmasks */
|
|
if (regval & WakePhy)
|
|
*cur |= WAKE_PHY;
|
|
if (regval & WakeUnicast)
|
|
*cur |= WAKE_UCAST;
|
|
if (regval & WakeMulticast)
|
|
*cur |= WAKE_MCAST;
|
|
if (regval & WakeBroadcast)
|
|
*cur |= WAKE_BCAST;
|
|
if (regval & WakeArp)
|
|
*cur |= WAKE_ARP;
|
|
if (regval & WakeMagic)
|
|
*cur |= WAKE_MAGIC;
|
|
if (regval & WakeMagicSecure) {
|
|
/* this can be on in revC, but it's broken */
|
|
*cur |= WAKE_MAGICSECURE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_set_sopass(struct net_device *dev, u8 *newval)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
u16 *sval = (u16 *)newval;
|
|
u32 addr;
|
|
|
|
if (np->srr < SRR_DP83815_D) {
|
|
return 0;
|
|
}
|
|
|
|
/* enable writing to these registers by disabling the RX filter */
|
|
addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
|
|
addr &= ~RxFilterEnable;
|
|
writel(addr, ioaddr + RxFilterAddr);
|
|
|
|
/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
|
|
writel(addr | 0xa, ioaddr + RxFilterAddr);
|
|
writew(sval[0], ioaddr + RxFilterData);
|
|
|
|
writel(addr | 0xc, ioaddr + RxFilterAddr);
|
|
writew(sval[1], ioaddr + RxFilterData);
|
|
|
|
writel(addr | 0xe, ioaddr + RxFilterAddr);
|
|
writew(sval[2], ioaddr + RxFilterData);
|
|
|
|
/* re-enable the RX filter */
|
|
writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_get_sopass(struct net_device *dev, u8 *data)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
u16 *sval = (u16 *)data;
|
|
u32 addr;
|
|
|
|
if (np->srr < SRR_DP83815_D) {
|
|
sval[0] = sval[1] = sval[2] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
|
|
addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
|
|
|
|
writel(addr | 0xa, ioaddr + RxFilterAddr);
|
|
sval[0] = readw(ioaddr + RxFilterData);
|
|
|
|
writel(addr | 0xc, ioaddr + RxFilterAddr);
|
|
sval[1] = readw(ioaddr + RxFilterData);
|
|
|
|
writel(addr | 0xe, ioaddr + RxFilterAddr);
|
|
sval[2] = readw(ioaddr + RxFilterData);
|
|
|
|
writel(addr, ioaddr + RxFilterAddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u32 tmp;
|
|
|
|
ecmd->port = dev->if_port;
|
|
ecmd->speed = np->speed;
|
|
ecmd->duplex = np->duplex;
|
|
ecmd->autoneg = np->autoneg;
|
|
ecmd->advertising = 0;
|
|
if (np->advertising & ADVERTISE_10HALF)
|
|
ecmd->advertising |= ADVERTISED_10baseT_Half;
|
|
if (np->advertising & ADVERTISE_10FULL)
|
|
ecmd->advertising |= ADVERTISED_10baseT_Full;
|
|
if (np->advertising & ADVERTISE_100HALF)
|
|
ecmd->advertising |= ADVERTISED_100baseT_Half;
|
|
if (np->advertising & ADVERTISE_100FULL)
|
|
ecmd->advertising |= ADVERTISED_100baseT_Full;
|
|
ecmd->supported = (SUPPORTED_Autoneg |
|
|
SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
|
|
SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
|
|
ecmd->phy_address = np->phy_addr_external;
|
|
/*
|
|
* We intentionally report the phy address of the external
|
|
* phy, even if the internal phy is used. This is necessary
|
|
* to work around a deficiency of the ethtool interface:
|
|
* It's only possible to query the settings of the active
|
|
* port. Therefore
|
|
* # ethtool -s ethX port mii
|
|
* actually sends an ioctl to switch to port mii with the
|
|
* settings that are used for the current active port.
|
|
* If we would report a different phy address in this
|
|
* command, then
|
|
* # ethtool -s ethX port tp;ethtool -s ethX port mii
|
|
* would unintentionally change the phy address.
|
|
*
|
|
* Fortunately the phy address doesn't matter with the
|
|
* internal phy...
|
|
*/
|
|
|
|
/* set information based on active port type */
|
|
switch (ecmd->port) {
|
|
default:
|
|
case PORT_TP:
|
|
ecmd->advertising |= ADVERTISED_TP;
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
break;
|
|
case PORT_MII:
|
|
ecmd->advertising |= ADVERTISED_MII;
|
|
ecmd->transceiver = XCVR_EXTERNAL;
|
|
break;
|
|
case PORT_FIBRE:
|
|
ecmd->advertising |= ADVERTISED_FIBRE;
|
|
ecmd->transceiver = XCVR_EXTERNAL;
|
|
break;
|
|
}
|
|
|
|
/* if autonegotiation is on, try to return the active speed/duplex */
|
|
if (ecmd->autoneg == AUTONEG_ENABLE) {
|
|
ecmd->advertising |= ADVERTISED_Autoneg;
|
|
tmp = mii_nway_result(
|
|
np->advertising & mdio_read(dev, MII_LPA));
|
|
if (tmp == LPA_100FULL || tmp == LPA_100HALF)
|
|
ecmd->speed = SPEED_100;
|
|
else
|
|
ecmd->speed = SPEED_10;
|
|
if (tmp == LPA_100FULL || tmp == LPA_10FULL)
|
|
ecmd->duplex = DUPLEX_FULL;
|
|
else
|
|
ecmd->duplex = DUPLEX_HALF;
|
|
}
|
|
|
|
/* ignore maxtxpkt, maxrxpkt for now */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
|
|
return -EINVAL;
|
|
if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
|
|
return -EINVAL;
|
|
if (ecmd->autoneg == AUTONEG_ENABLE) {
|
|
if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full |
|
|
ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full)) == 0) {
|
|
return -EINVAL;
|
|
}
|
|
} else if (ecmd->autoneg == AUTONEG_DISABLE) {
|
|
if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
|
|
return -EINVAL;
|
|
if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
|
|
return -EINVAL;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If we're ignoring the PHY then autoneg and the internal
|
|
* transciever are really not going to work so don't let the
|
|
* user select them.
|
|
*/
|
|
if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
|
|
ecmd->port == PORT_TP))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* maxtxpkt, maxrxpkt: ignored for now.
|
|
*
|
|
* transceiver:
|
|
* PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
|
|
* XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
|
|
* selects based on ecmd->port.
|
|
*
|
|
* Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
|
|
* phys that are connected to the mii bus. It's used to apply fibre
|
|
* specific updates.
|
|
*/
|
|
|
|
/* WHEW! now lets bang some bits */
|
|
|
|
/* save the parms */
|
|
dev->if_port = ecmd->port;
|
|
np->autoneg = ecmd->autoneg;
|
|
np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
|
|
if (np->autoneg == AUTONEG_ENABLE) {
|
|
/* advertise only what has been requested */
|
|
np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
|
|
if (ecmd->advertising & ADVERTISED_10baseT_Half)
|
|
np->advertising |= ADVERTISE_10HALF;
|
|
if (ecmd->advertising & ADVERTISED_10baseT_Full)
|
|
np->advertising |= ADVERTISE_10FULL;
|
|
if (ecmd->advertising & ADVERTISED_100baseT_Half)
|
|
np->advertising |= ADVERTISE_100HALF;
|
|
if (ecmd->advertising & ADVERTISED_100baseT_Full)
|
|
np->advertising |= ADVERTISE_100FULL;
|
|
} else {
|
|
np->speed = ecmd->speed;
|
|
np->duplex = ecmd->duplex;
|
|
/* user overriding the initial full duplex parm? */
|
|
if (np->duplex == DUPLEX_HALF)
|
|
np->full_duplex = 0;
|
|
}
|
|
|
|
/* get the right phy enabled */
|
|
if (ecmd->port == PORT_TP)
|
|
switch_port_internal(dev);
|
|
else
|
|
switch_port_external(dev);
|
|
|
|
/* set parms and see how this affected our link status */
|
|
init_phy_fixup(dev);
|
|
check_link(dev);
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_get_regs(struct net_device *dev, u8 *buf)
|
|
{
|
|
int i;
|
|
int j;
|
|
u32 rfcr;
|
|
u32 *rbuf = (u32 *)buf;
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
/* read non-mii page 0 of registers */
|
|
for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
|
|
rbuf[i] = readl(ioaddr + i*4);
|
|
}
|
|
|
|
/* read current mii registers */
|
|
for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
|
|
rbuf[i] = mdio_read(dev, i & 0x1f);
|
|
|
|
/* read only the 'magic' registers from page 1 */
|
|
writew(1, ioaddr + PGSEL);
|
|
rbuf[i++] = readw(ioaddr + PMDCSR);
|
|
rbuf[i++] = readw(ioaddr + TSTDAT);
|
|
rbuf[i++] = readw(ioaddr + DSPCFG);
|
|
rbuf[i++] = readw(ioaddr + SDCFG);
|
|
writew(0, ioaddr + PGSEL);
|
|
|
|
/* read RFCR indexed registers */
|
|
rfcr = readl(ioaddr + RxFilterAddr);
|
|
for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
|
|
writel(j*2, ioaddr + RxFilterAddr);
|
|
rbuf[i++] = readw(ioaddr + RxFilterData);
|
|
}
|
|
writel(rfcr, ioaddr + RxFilterAddr);
|
|
|
|
/* the interrupt status is clear-on-read - see if we missed any */
|
|
if (rbuf[4] & rbuf[5]) {
|
|
printk(KERN_WARNING
|
|
"%s: shoot, we dropped an interrupt (%#08x)\n",
|
|
dev->name, rbuf[4] & rbuf[5]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
|
|
| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
|
|
| (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
|
|
| (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
|
|
| (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
|
|
| (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
|
|
| (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
|
|
| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
|
|
|
|
static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
|
|
{
|
|
int i;
|
|
u16 *ebuf = (u16 *)buf;
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
/* eeprom_read reads 16 bits, and indexes by 16 bits */
|
|
for (i = 0; i < np->eeprom_size/2; i++) {
|
|
ebuf[i] = eeprom_read(ioaddr, i);
|
|
/* The EEPROM itself stores data bit-swapped, but eeprom_read
|
|
* reads it back "sanely". So we swap it back here in order to
|
|
* present it to userland as it is stored. */
|
|
ebuf[i] = SWAP_BITS(ebuf[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct mii_ioctl_data *data = if_mii(rq);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
switch(cmd) {
|
|
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
|
|
case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
|
|
data->phy_id = np->phy_addr_external;
|
|
/* Fall Through */
|
|
|
|
case SIOCGMIIREG: /* Read MII PHY register. */
|
|
case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
|
|
/* The phy_id is not enough to uniquely identify
|
|
* the intended target. Therefore the command is sent to
|
|
* the given mii on the current port.
|
|
*/
|
|
if (dev->if_port == PORT_TP) {
|
|
if ((data->phy_id & 0x1f) == np->phy_addr_external)
|
|
data->val_out = mdio_read(dev,
|
|
data->reg_num & 0x1f);
|
|
else
|
|
data->val_out = 0;
|
|
} else {
|
|
move_int_phy(dev, data->phy_id & 0x1f);
|
|
data->val_out = miiport_read(dev, data->phy_id & 0x1f,
|
|
data->reg_num & 0x1f);
|
|
}
|
|
return 0;
|
|
|
|
case SIOCSMIIREG: /* Write MII PHY register. */
|
|
case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
if (dev->if_port == PORT_TP) {
|
|
if ((data->phy_id & 0x1f) == np->phy_addr_external) {
|
|
if ((data->reg_num & 0x1f) == MII_ADVERTISE)
|
|
np->advertising = data->val_in;
|
|
mdio_write(dev, data->reg_num & 0x1f,
|
|
data->val_in);
|
|
}
|
|
} else {
|
|
if ((data->phy_id & 0x1f) == np->phy_addr_external) {
|
|
if ((data->reg_num & 0x1f) == MII_ADVERTISE)
|
|
np->advertising = data->val_in;
|
|
}
|
|
move_int_phy(dev, data->phy_id & 0x1f);
|
|
miiport_write(dev, data->phy_id & 0x1f,
|
|
data->reg_num & 0x1f,
|
|
data->val_in);
|
|
}
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void enable_wol_mode(struct net_device *dev, int enable_intr)
|
|
{
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
if (netif_msg_wol(np))
|
|
printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
|
|
dev->name);
|
|
|
|
/* For WOL we must restart the rx process in silent mode.
|
|
* Write NULL to the RxRingPtr. Only possible if
|
|
* rx process is stopped
|
|
*/
|
|
writel(0, ioaddr + RxRingPtr);
|
|
|
|
/* read WoL status to clear */
|
|
readl(ioaddr + WOLCmd);
|
|
|
|
/* PME on, clear status */
|
|
writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
|
|
|
|
/* and restart the rx process */
|
|
writel(RxOn, ioaddr + ChipCmd);
|
|
|
|
if (enable_intr) {
|
|
/* enable the WOL interrupt.
|
|
* Could be used to send a netlink message.
|
|
*/
|
|
writel(WOLPkt | LinkChange, ioaddr + IntrMask);
|
|
natsemi_irq_enable(dev);
|
|
}
|
|
}
|
|
|
|
static int netdev_close(struct net_device *dev)
|
|
{
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
if (netif_msg_ifdown(np))
|
|
printk(KERN_DEBUG
|
|
"%s: Shutting down ethercard, status was %#04x.\n",
|
|
dev->name, (int)readl(ioaddr + ChipCmd));
|
|
if (netif_msg_pktdata(np))
|
|
printk(KERN_DEBUG
|
|
"%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
|
|
dev->name, np->cur_tx, np->dirty_tx,
|
|
np->cur_rx, np->dirty_rx);
|
|
|
|
napi_disable(&np->napi);
|
|
|
|
/*
|
|
* FIXME: what if someone tries to close a device
|
|
* that is suspended?
|
|
* Should we reenable the nic to switch to
|
|
* the final WOL settings?
|
|
*/
|
|
|
|
del_timer_sync(&np->timer);
|
|
disable_irq(dev->irq);
|
|
spin_lock_irq(&np->lock);
|
|
natsemi_irq_disable(dev);
|
|
np->hands_off = 1;
|
|
spin_unlock_irq(&np->lock);
|
|
enable_irq(dev->irq);
|
|
|
|
free_irq(dev->irq, dev);
|
|
|
|
/* Interrupt disabled, interrupt handler released,
|
|
* queue stopped, timer deleted, rtnl_lock held
|
|
* All async codepaths that access the driver are disabled.
|
|
*/
|
|
spin_lock_irq(&np->lock);
|
|
np->hands_off = 0;
|
|
readl(ioaddr + IntrMask);
|
|
readw(ioaddr + MIntrStatus);
|
|
|
|
/* Freeze Stats */
|
|
writel(StatsFreeze, ioaddr + StatsCtrl);
|
|
|
|
/* Stop the chip's Tx and Rx processes. */
|
|
natsemi_stop_rxtx(dev);
|
|
|
|
__get_stats(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
|
|
/* clear the carrier last - an interrupt could reenable it otherwise */
|
|
netif_carrier_off(dev);
|
|
netif_stop_queue(dev);
|
|
|
|
dump_ring(dev);
|
|
drain_ring(dev);
|
|
free_ring(dev);
|
|
|
|
{
|
|
u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
|
|
if (wol) {
|
|
/* restart the NIC in WOL mode.
|
|
* The nic must be stopped for this.
|
|
*/
|
|
enable_wol_mode(dev, 0);
|
|
} else {
|
|
/* Restore PME enable bit unmolested */
|
|
writel(np->SavedClkRun, ioaddr + ClkRun);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void __devexit natsemi_remove1 (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
|
|
unregister_netdev (dev);
|
|
pci_release_regions (pdev);
|
|
iounmap(ioaddr);
|
|
free_netdev (dev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/*
|
|
* The ns83815 chip doesn't have explicit RxStop bits.
|
|
* Kicking the Rx or Tx process for a new packet reenables the Rx process
|
|
* of the nic, thus this function must be very careful:
|
|
*
|
|
* suspend/resume synchronization:
|
|
* entry points:
|
|
* netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
|
|
* start_tx, ns_tx_timeout
|
|
*
|
|
* No function accesses the hardware without checking np->hands_off.
|
|
* the check occurs under spin_lock_irq(&np->lock);
|
|
* exceptions:
|
|
* * netdev_ioctl: noncritical access.
|
|
* * netdev_open: cannot happen due to the device_detach
|
|
* * netdev_close: doesn't hurt.
|
|
* * netdev_timer: timer stopped by natsemi_suspend.
|
|
* * intr_handler: doesn't acquire the spinlock. suspend calls
|
|
* disable_irq() to enforce synchronization.
|
|
* * natsemi_poll: checks before reenabling interrupts. suspend
|
|
* sets hands_off, disables interrupts and then waits with
|
|
* napi_disable().
|
|
*
|
|
* Interrupts must be disabled, otherwise hands_off can cause irq storms.
|
|
*/
|
|
|
|
static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata (pdev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem * ioaddr = ns_ioaddr(dev);
|
|
|
|
rtnl_lock();
|
|
if (netif_running (dev)) {
|
|
del_timer_sync(&np->timer);
|
|
|
|
disable_irq(dev->irq);
|
|
spin_lock_irq(&np->lock);
|
|
|
|
natsemi_irq_disable(dev);
|
|
np->hands_off = 1;
|
|
natsemi_stop_rxtx(dev);
|
|
netif_stop_queue(dev);
|
|
|
|
spin_unlock_irq(&np->lock);
|
|
enable_irq(dev->irq);
|
|
|
|
napi_disable(&np->napi);
|
|
|
|
/* Update the error counts. */
|
|
__get_stats(dev);
|
|
|
|
/* pci_power_off(pdev, -1); */
|
|
drain_ring(dev);
|
|
{
|
|
u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
|
|
/* Restore PME enable bit */
|
|
if (wol) {
|
|
/* restart the NIC in WOL mode.
|
|
* The nic must be stopped for this.
|
|
* FIXME: use the WOL interrupt
|
|
*/
|
|
enable_wol_mode(dev, 0);
|
|
} else {
|
|
/* Restore PME enable bit unmolested */
|
|
writel(np->SavedClkRun, ioaddr + ClkRun);
|
|
}
|
|
}
|
|
}
|
|
netif_device_detach(dev);
|
|
rtnl_unlock();
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int natsemi_resume (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata (pdev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int ret = 0;
|
|
|
|
rtnl_lock();
|
|
if (netif_device_present(dev))
|
|
goto out;
|
|
if (netif_running(dev)) {
|
|
BUG_ON(!np->hands_off);
|
|
ret = pci_enable_device(pdev);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev,
|
|
"pci_enable_device() failed: %d\n", ret);
|
|
goto out;
|
|
}
|
|
/* pci_power_on(pdev); */
|
|
|
|
napi_enable(&np->napi);
|
|
|
|
natsemi_reset(dev);
|
|
init_ring(dev);
|
|
disable_irq(dev->irq);
|
|
spin_lock_irq(&np->lock);
|
|
np->hands_off = 0;
|
|
init_registers(dev);
|
|
netif_device_attach(dev);
|
|
spin_unlock_irq(&np->lock);
|
|
enable_irq(dev->irq);
|
|
|
|
mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
|
|
}
|
|
netif_device_attach(dev);
|
|
out:
|
|
rtnl_unlock();
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
static struct pci_driver natsemi_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = natsemi_pci_tbl,
|
|
.probe = natsemi_probe1,
|
|
.remove = __devexit_p(natsemi_remove1),
|
|
#ifdef CONFIG_PM
|
|
.suspend = natsemi_suspend,
|
|
.resume = natsemi_resume,
|
|
#endif
|
|
};
|
|
|
|
static int __init natsemi_init_mod (void)
|
|
{
|
|
/* when a module, this is printed whether or not devices are found in probe */
|
|
#ifdef MODULE
|
|
printk(version);
|
|
#endif
|
|
|
|
return pci_register_driver(&natsemi_driver);
|
|
}
|
|
|
|
static void __exit natsemi_exit_mod (void)
|
|
{
|
|
pci_unregister_driver (&natsemi_driver);
|
|
}
|
|
|
|
module_init(natsemi_init_mod);
|
|
module_exit(natsemi_exit_mod);
|
|
|