65f27f3844
Pass the work_struct pointer to the work function rather than context data. The work function can use container_of() to work out the data. For the cases where the container of the work_struct may go away the moment the pending bit is cleared, it is made possible to defer the release of the structure by deferring the clearing of the pending bit. To make this work, an extra flag is introduced into the management side of the work_struct. This governs auto-release of the structure upon execution. Ordinarily, the work queue executor would release the work_struct for further scheduling or deallocation by clearing the pending bit prior to jumping to the work function. This means that, unless the driver makes some guarantee itself that the work_struct won't go away, the work function may not access anything else in the work_struct or its container lest they be deallocated.. This is a problem if the auxiliary data is taken away (as done by the last patch). However, if the pending bit is *not* cleared before jumping to the work function, then the work function *may* access the work_struct and its container with no problems. But then the work function must itself release the work_struct by calling work_release(). In most cases, automatic release is fine, so this is the default. Special initiators exist for the non-auto-release case (ending in _NAR). Signed-Off-By: David Howells <dhowells@redhat.com>
369 lines
8.7 KiB
C
369 lines
8.7 KiB
C
/*
|
|
* linux/fs/file.c
|
|
*
|
|
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
|
|
*
|
|
* Manage the dynamic fd arrays in the process files_struct.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/time.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/file.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
struct fdtable_defer {
|
|
spinlock_t lock;
|
|
struct work_struct wq;
|
|
struct timer_list timer;
|
|
struct fdtable *next;
|
|
};
|
|
|
|
/*
|
|
* We use this list to defer free fdtables that have vmalloced
|
|
* sets/arrays. By keeping a per-cpu list, we avoid having to embed
|
|
* the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
|
|
* this per-task structure.
|
|
*/
|
|
static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
|
|
|
|
|
|
/*
|
|
* Allocate an fd array, using kmalloc or vmalloc.
|
|
* Note: the array isn't cleared at allocation time.
|
|
*/
|
|
struct file ** alloc_fd_array(int num)
|
|
{
|
|
struct file **new_fds;
|
|
int size = num * sizeof(struct file *);
|
|
|
|
if (size <= PAGE_SIZE)
|
|
new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
|
|
else
|
|
new_fds = (struct file **) vmalloc(size);
|
|
return new_fds;
|
|
}
|
|
|
|
void free_fd_array(struct file **array, int num)
|
|
{
|
|
int size = num * sizeof(struct file *);
|
|
|
|
if (!array) {
|
|
printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
|
|
return;
|
|
}
|
|
|
|
if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
|
|
return;
|
|
else if (size <= PAGE_SIZE)
|
|
kfree(array);
|
|
else
|
|
vfree(array);
|
|
}
|
|
|
|
static void __free_fdtable(struct fdtable *fdt)
|
|
{
|
|
free_fdset(fdt->open_fds, fdt->max_fdset);
|
|
free_fdset(fdt->close_on_exec, fdt->max_fdset);
|
|
free_fd_array(fdt->fd, fdt->max_fds);
|
|
kfree(fdt);
|
|
}
|
|
|
|
static void fdtable_timer(unsigned long data)
|
|
{
|
|
struct fdtable_defer *fddef = (struct fdtable_defer *)data;
|
|
|
|
spin_lock(&fddef->lock);
|
|
/*
|
|
* If someone already emptied the queue return.
|
|
*/
|
|
if (!fddef->next)
|
|
goto out;
|
|
if (!schedule_work(&fddef->wq))
|
|
mod_timer(&fddef->timer, 5);
|
|
out:
|
|
spin_unlock(&fddef->lock);
|
|
}
|
|
|
|
static void free_fdtable_work(struct work_struct *work)
|
|
{
|
|
struct fdtable_defer *f =
|
|
container_of(work, struct fdtable_defer, wq);
|
|
struct fdtable *fdt;
|
|
|
|
spin_lock_bh(&f->lock);
|
|
fdt = f->next;
|
|
f->next = NULL;
|
|
spin_unlock_bh(&f->lock);
|
|
while(fdt) {
|
|
struct fdtable *next = fdt->next;
|
|
__free_fdtable(fdt);
|
|
fdt = next;
|
|
}
|
|
}
|
|
|
|
static void free_fdtable_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
|
|
int fdset_size, fdarray_size;
|
|
struct fdtable_defer *fddef;
|
|
|
|
BUG_ON(!fdt);
|
|
fdset_size = fdt->max_fdset / 8;
|
|
fdarray_size = fdt->max_fds * sizeof(struct file *);
|
|
|
|
if (fdt->free_files) {
|
|
/*
|
|
* The this fdtable was embedded in the files structure
|
|
* and the files structure itself was getting destroyed.
|
|
* It is now safe to free the files structure.
|
|
*/
|
|
kmem_cache_free(files_cachep, fdt->free_files);
|
|
return;
|
|
}
|
|
if (fdt->max_fdset <= EMBEDDED_FD_SET_SIZE &&
|
|
fdt->max_fds <= NR_OPEN_DEFAULT) {
|
|
/*
|
|
* The fdtable was embedded
|
|
*/
|
|
return;
|
|
}
|
|
if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) {
|
|
kfree(fdt->open_fds);
|
|
kfree(fdt->close_on_exec);
|
|
kfree(fdt->fd);
|
|
kfree(fdt);
|
|
} else {
|
|
fddef = &get_cpu_var(fdtable_defer_list);
|
|
spin_lock(&fddef->lock);
|
|
fdt->next = fddef->next;
|
|
fddef->next = fdt;
|
|
/*
|
|
* vmallocs are handled from the workqueue context.
|
|
* If the per-cpu workqueue is running, then we
|
|
* defer work scheduling through a timer.
|
|
*/
|
|
if (!schedule_work(&fddef->wq))
|
|
mod_timer(&fddef->timer, 5);
|
|
spin_unlock(&fddef->lock);
|
|
put_cpu_var(fdtable_defer_list);
|
|
}
|
|
}
|
|
|
|
void free_fdtable(struct fdtable *fdt)
|
|
{
|
|
if (fdt->free_files ||
|
|
fdt->max_fdset > EMBEDDED_FD_SET_SIZE ||
|
|
fdt->max_fds > NR_OPEN_DEFAULT)
|
|
call_rcu(&fdt->rcu, free_fdtable_rcu);
|
|
}
|
|
|
|
/*
|
|
* Expand the fdset in the files_struct. Called with the files spinlock
|
|
* held for write.
|
|
*/
|
|
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt)
|
|
{
|
|
int i;
|
|
int count;
|
|
|
|
BUG_ON(nfdt->max_fdset < fdt->max_fdset);
|
|
BUG_ON(nfdt->max_fds < fdt->max_fds);
|
|
/* Copy the existing tables and install the new pointers */
|
|
|
|
i = fdt->max_fdset / (sizeof(unsigned long) * 8);
|
|
count = (nfdt->max_fdset - fdt->max_fdset) / 8;
|
|
|
|
/*
|
|
* Don't copy the entire array if the current fdset is
|
|
* not yet initialised.
|
|
*/
|
|
if (i) {
|
|
memcpy (nfdt->open_fds, fdt->open_fds,
|
|
fdt->max_fdset/8);
|
|
memcpy (nfdt->close_on_exec, fdt->close_on_exec,
|
|
fdt->max_fdset/8);
|
|
memset (&nfdt->open_fds->fds_bits[i], 0, count);
|
|
memset (&nfdt->close_on_exec->fds_bits[i], 0, count);
|
|
}
|
|
|
|
/* Don't copy/clear the array if we are creating a new
|
|
fd array for fork() */
|
|
if (fdt->max_fds) {
|
|
memcpy(nfdt->fd, fdt->fd,
|
|
fdt->max_fds * sizeof(struct file *));
|
|
/* clear the remainder of the array */
|
|
memset(&nfdt->fd[fdt->max_fds], 0,
|
|
(nfdt->max_fds - fdt->max_fds) *
|
|
sizeof(struct file *));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate an fdset array, using kmalloc or vmalloc.
|
|
* Note: the array isn't cleared at allocation time.
|
|
*/
|
|
fd_set * alloc_fdset(int num)
|
|
{
|
|
fd_set *new_fdset;
|
|
int size = num / 8;
|
|
|
|
if (size <= PAGE_SIZE)
|
|
new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
|
|
else
|
|
new_fdset = (fd_set *) vmalloc(size);
|
|
return new_fdset;
|
|
}
|
|
|
|
void free_fdset(fd_set *array, int num)
|
|
{
|
|
if (num <= EMBEDDED_FD_SET_SIZE) /* Don't free an embedded fdset */
|
|
return;
|
|
else if (num <= 8 * PAGE_SIZE)
|
|
kfree(array);
|
|
else
|
|
vfree(array);
|
|
}
|
|
|
|
static struct fdtable *alloc_fdtable(int nr)
|
|
{
|
|
struct fdtable *fdt = NULL;
|
|
int nfds = 0;
|
|
fd_set *new_openset = NULL, *new_execset = NULL;
|
|
struct file **new_fds;
|
|
|
|
fdt = kzalloc(sizeof(*fdt), GFP_KERNEL);
|
|
if (!fdt)
|
|
goto out;
|
|
|
|
nfds = max_t(int, 8 * L1_CACHE_BYTES, roundup_pow_of_two(nr + 1));
|
|
if (nfds > NR_OPEN)
|
|
nfds = NR_OPEN;
|
|
|
|
new_openset = alloc_fdset(nfds);
|
|
new_execset = alloc_fdset(nfds);
|
|
if (!new_openset || !new_execset)
|
|
goto out;
|
|
fdt->open_fds = new_openset;
|
|
fdt->close_on_exec = new_execset;
|
|
fdt->max_fdset = nfds;
|
|
|
|
nfds = NR_OPEN_DEFAULT;
|
|
/*
|
|
* Expand to the max in easy steps, and keep expanding it until
|
|
* we have enough for the requested fd array size.
|
|
*/
|
|
do {
|
|
#if NR_OPEN_DEFAULT < 256
|
|
if (nfds < 256)
|
|
nfds = 256;
|
|
else
|
|
#endif
|
|
if (nfds < (PAGE_SIZE / sizeof(struct file *)))
|
|
nfds = PAGE_SIZE / sizeof(struct file *);
|
|
else {
|
|
nfds = nfds * 2;
|
|
if (nfds > NR_OPEN)
|
|
nfds = NR_OPEN;
|
|
}
|
|
} while (nfds <= nr);
|
|
new_fds = alloc_fd_array(nfds);
|
|
if (!new_fds)
|
|
goto out2;
|
|
fdt->fd = new_fds;
|
|
fdt->max_fds = nfds;
|
|
fdt->free_files = NULL;
|
|
return fdt;
|
|
out2:
|
|
nfds = fdt->max_fdset;
|
|
out:
|
|
free_fdset(new_openset, nfds);
|
|
free_fdset(new_execset, nfds);
|
|
kfree(fdt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Expand the file descriptor table.
|
|
* This function will allocate a new fdtable and both fd array and fdset, of
|
|
* the given size.
|
|
* Return <0 error code on error; 1 on successful completion.
|
|
* The files->file_lock should be held on entry, and will be held on exit.
|
|
*/
|
|
static int expand_fdtable(struct files_struct *files, int nr)
|
|
__releases(files->file_lock)
|
|
__acquires(files->file_lock)
|
|
{
|
|
struct fdtable *new_fdt, *cur_fdt;
|
|
|
|
spin_unlock(&files->file_lock);
|
|
new_fdt = alloc_fdtable(nr);
|
|
spin_lock(&files->file_lock);
|
|
if (!new_fdt)
|
|
return -ENOMEM;
|
|
/*
|
|
* Check again since another task may have expanded the fd table while
|
|
* we dropped the lock
|
|
*/
|
|
cur_fdt = files_fdtable(files);
|
|
if (nr >= cur_fdt->max_fds || nr >= cur_fdt->max_fdset) {
|
|
/* Continue as planned */
|
|
copy_fdtable(new_fdt, cur_fdt);
|
|
rcu_assign_pointer(files->fdt, new_fdt);
|
|
free_fdtable(cur_fdt);
|
|
} else {
|
|
/* Somebody else expanded, so undo our attempt */
|
|
__free_fdtable(new_fdt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Expand files.
|
|
* This function will expand the file structures, if the requested size exceeds
|
|
* the current capacity and there is room for expansion.
|
|
* Return <0 error code on error; 0 when nothing done; 1 when files were
|
|
* expanded and execution may have blocked.
|
|
* The files->file_lock should be held on entry, and will be held on exit.
|
|
*/
|
|
int expand_files(struct files_struct *files, int nr)
|
|
{
|
|
struct fdtable *fdt;
|
|
|
|
fdt = files_fdtable(files);
|
|
/* Do we need to expand? */
|
|
if (nr < fdt->max_fdset && nr < fdt->max_fds)
|
|
return 0;
|
|
/* Can we expand? */
|
|
if (fdt->max_fdset >= NR_OPEN || fdt->max_fds >= NR_OPEN ||
|
|
nr >= NR_OPEN)
|
|
return -EMFILE;
|
|
|
|
/* All good, so we try */
|
|
return expand_fdtable(files, nr);
|
|
}
|
|
|
|
static void __devinit fdtable_defer_list_init(int cpu)
|
|
{
|
|
struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
|
|
spin_lock_init(&fddef->lock);
|
|
INIT_WORK(&fddef->wq, free_fdtable_work);
|
|
init_timer(&fddef->timer);
|
|
fddef->timer.data = (unsigned long)fddef;
|
|
fddef->timer.function = fdtable_timer;
|
|
fddef->next = NULL;
|
|
}
|
|
|
|
void __init files_defer_init(void)
|
|
{
|
|
int i;
|
|
for_each_possible_cpu(i)
|
|
fdtable_defer_list_init(i);
|
|
}
|