2585 lines
70 KiB
C
2585 lines
70 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family.
|
|
*
|
|
* Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <media/dvb_math.h>
|
|
#include <media/dvb_frontend.h>
|
|
|
|
#include "dib9000.h"
|
|
#include "dibx000_common.h"
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
|
|
|
|
#define dprintk(fmt, arg...) do { \
|
|
if (debug) \
|
|
printk(KERN_DEBUG pr_fmt("%s: " fmt), \
|
|
__func__, ##arg); \
|
|
} while (0)
|
|
|
|
#define MAX_NUMBER_OF_FRONTENDS 6
|
|
|
|
struct i2c_device {
|
|
struct i2c_adapter *i2c_adap;
|
|
u8 i2c_addr;
|
|
u8 *i2c_read_buffer;
|
|
u8 *i2c_write_buffer;
|
|
};
|
|
|
|
struct dib9000_pid_ctrl {
|
|
#define DIB9000_PID_FILTER_CTRL 0
|
|
#define DIB9000_PID_FILTER 1
|
|
u8 cmd;
|
|
u8 id;
|
|
u16 pid;
|
|
u8 onoff;
|
|
};
|
|
|
|
struct dib9000_state {
|
|
struct i2c_device i2c;
|
|
|
|
struct dibx000_i2c_master i2c_master;
|
|
struct i2c_adapter tuner_adap;
|
|
struct i2c_adapter component_bus;
|
|
|
|
u16 revision;
|
|
u8 reg_offs;
|
|
|
|
enum frontend_tune_state tune_state;
|
|
u32 status;
|
|
struct dvb_frontend_parametersContext channel_status;
|
|
|
|
u8 fe_id;
|
|
|
|
#define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff
|
|
u16 gpio_dir;
|
|
#define DIB9000_GPIO_DEFAULT_VALUES 0x0000
|
|
u16 gpio_val;
|
|
#define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff
|
|
u16 gpio_pwm_pos;
|
|
|
|
union { /* common for all chips */
|
|
struct {
|
|
u8 mobile_mode:1;
|
|
} host;
|
|
|
|
struct {
|
|
struct dib9000_fe_memory_map {
|
|
u16 addr;
|
|
u16 size;
|
|
} fe_mm[18];
|
|
u8 memcmd;
|
|
|
|
struct mutex mbx_if_lock; /* to protect read/write operations */
|
|
struct mutex mbx_lock; /* to protect the whole mailbox handling */
|
|
|
|
struct mutex mem_lock; /* to protect the memory accesses */
|
|
struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */
|
|
|
|
#define MBX_MAX_WORDS (256 - 200 - 2)
|
|
#define DIB9000_MSG_CACHE_SIZE 2
|
|
u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS];
|
|
u8 fw_is_running;
|
|
} risc;
|
|
} platform;
|
|
|
|
union { /* common for all platforms */
|
|
struct {
|
|
struct dib9000_config cfg;
|
|
} d9;
|
|
} chip;
|
|
|
|
struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
|
|
u16 component_bus_speed;
|
|
|
|
/* for the I2C transfer */
|
|
struct i2c_msg msg[2];
|
|
u8 i2c_write_buffer[255];
|
|
u8 i2c_read_buffer[255];
|
|
struct mutex demod_lock;
|
|
u8 get_frontend_internal;
|
|
struct dib9000_pid_ctrl pid_ctrl[10];
|
|
s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */
|
|
};
|
|
|
|
static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
enum dib9000_power_mode {
|
|
DIB9000_POWER_ALL = 0,
|
|
|
|
DIB9000_POWER_NO,
|
|
DIB9000_POWER_INTERF_ANALOG_AGC,
|
|
DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
|
|
DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD,
|
|
DIB9000_POWER_INTERFACE_ONLY,
|
|
};
|
|
|
|
enum dib9000_out_messages {
|
|
OUT_MSG_HBM_ACK,
|
|
OUT_MSG_HOST_BUF_FAIL,
|
|
OUT_MSG_REQ_VERSION,
|
|
OUT_MSG_BRIDGE_I2C_W,
|
|
OUT_MSG_BRIDGE_I2C_R,
|
|
OUT_MSG_BRIDGE_APB_W,
|
|
OUT_MSG_BRIDGE_APB_R,
|
|
OUT_MSG_SCAN_CHANNEL,
|
|
OUT_MSG_MONIT_DEMOD,
|
|
OUT_MSG_CONF_GPIO,
|
|
OUT_MSG_DEBUG_HELP,
|
|
OUT_MSG_SUBBAND_SEL,
|
|
OUT_MSG_ENABLE_TIME_SLICE,
|
|
OUT_MSG_FE_FW_DL,
|
|
OUT_MSG_FE_CHANNEL_SEARCH,
|
|
OUT_MSG_FE_CHANNEL_TUNE,
|
|
OUT_MSG_FE_SLEEP,
|
|
OUT_MSG_FE_SYNC,
|
|
OUT_MSG_CTL_MONIT,
|
|
|
|
OUT_MSG_CONF_SVC,
|
|
OUT_MSG_SET_HBM,
|
|
OUT_MSG_INIT_DEMOD,
|
|
OUT_MSG_ENABLE_DIVERSITY,
|
|
OUT_MSG_SET_OUTPUT_MODE,
|
|
OUT_MSG_SET_PRIORITARY_CHANNEL,
|
|
OUT_MSG_ACK_FRG,
|
|
OUT_MSG_INIT_PMU,
|
|
};
|
|
|
|
enum dib9000_in_messages {
|
|
IN_MSG_DATA,
|
|
IN_MSG_FRAME_INFO,
|
|
IN_MSG_CTL_MONIT,
|
|
IN_MSG_ACK_FREE_ITEM,
|
|
IN_MSG_DEBUG_BUF,
|
|
IN_MSG_MPE_MONITOR,
|
|
IN_MSG_RAWTS_MONITOR,
|
|
IN_MSG_END_BRIDGE_I2C_RW,
|
|
IN_MSG_END_BRIDGE_APB_RW,
|
|
IN_MSG_VERSION,
|
|
IN_MSG_END_OF_SCAN,
|
|
IN_MSG_MONIT_DEMOD,
|
|
IN_MSG_ERROR,
|
|
IN_MSG_FE_FW_DL_DONE,
|
|
IN_MSG_EVENT,
|
|
IN_MSG_ACK_CHANGE_SVC,
|
|
IN_MSG_HBM_PROF,
|
|
};
|
|
|
|
/* memory_access requests */
|
|
#define FE_MM_W_CHANNEL 0
|
|
#define FE_MM_W_FE_INFO 1
|
|
#define FE_MM_RW_SYNC 2
|
|
|
|
#define FE_SYNC_CHANNEL 1
|
|
#define FE_SYNC_W_GENERIC_MONIT 2
|
|
#define FE_SYNC_COMPONENT_ACCESS 3
|
|
|
|
#define FE_MM_R_CHANNEL_SEARCH_STATE 3
|
|
#define FE_MM_R_CHANNEL_UNION_CONTEXT 4
|
|
#define FE_MM_R_FE_INFO 5
|
|
#define FE_MM_R_FE_MONITOR 6
|
|
|
|
#define FE_MM_W_CHANNEL_HEAD 7
|
|
#define FE_MM_W_CHANNEL_UNION 8
|
|
#define FE_MM_W_CHANNEL_CONTEXT 9
|
|
#define FE_MM_R_CHANNEL_UNION 10
|
|
#define FE_MM_R_CHANNEL_CONTEXT 11
|
|
#define FE_MM_R_CHANNEL_TUNE_STATE 12
|
|
|
|
#define FE_MM_R_GENERIC_MONITORING_SIZE 13
|
|
#define FE_MM_W_GENERIC_MONITORING 14
|
|
#define FE_MM_R_GENERIC_MONITORING 15
|
|
|
|
#define FE_MM_W_COMPONENT_ACCESS 16
|
|
#define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17
|
|
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len);
|
|
static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len);
|
|
|
|
static u16 to_fw_output_mode(u16 mode)
|
|
{
|
|
switch (mode) {
|
|
case OUTMODE_HIGH_Z:
|
|
return 0;
|
|
case OUTMODE_MPEG2_PAR_GATED_CLK:
|
|
return 4;
|
|
case OUTMODE_MPEG2_PAR_CONT_CLK:
|
|
return 8;
|
|
case OUTMODE_MPEG2_SERIAL:
|
|
return 16;
|
|
case OUTMODE_DIVERSITY:
|
|
return 128;
|
|
case OUTMODE_MPEG2_FIFO:
|
|
return 2;
|
|
case OUTMODE_ANALOG_ADC:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 *b, u32 len, u16 attribute)
|
|
{
|
|
u32 chunk_size = 126;
|
|
u32 l;
|
|
int ret;
|
|
|
|
if (state->platform.risc.fw_is_running && (reg < 1024))
|
|
return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len);
|
|
|
|
memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
|
|
state->msg[0].addr = state->i2c.i2c_addr >> 1;
|
|
state->msg[0].flags = 0;
|
|
state->msg[0].buf = state->i2c_write_buffer;
|
|
state->msg[0].len = 2;
|
|
state->msg[1].addr = state->i2c.i2c_addr >> 1;
|
|
state->msg[1].flags = I2C_M_RD;
|
|
state->msg[1].buf = b;
|
|
state->msg[1].len = len;
|
|
|
|
state->i2c_write_buffer[0] = reg >> 8;
|
|
state->i2c_write_buffer[1] = reg & 0xff;
|
|
|
|
if (attribute & DATA_BUS_ACCESS_MODE_8BIT)
|
|
state->i2c_write_buffer[0] |= (1 << 5);
|
|
if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
|
|
state->i2c_write_buffer[0] |= (1 << 4);
|
|
|
|
do {
|
|
l = len < chunk_size ? len : chunk_size;
|
|
state->msg[1].len = l;
|
|
state->msg[1].buf = b;
|
|
ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0;
|
|
if (ret != 0) {
|
|
dprintk("i2c read error on %d\n", reg);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
b += l;
|
|
len -= l;
|
|
|
|
if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT))
|
|
reg += l / 2;
|
|
} while ((ret == 0) && len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg)
|
|
{
|
|
struct i2c_msg msg[2] = {
|
|
{.addr = i2c->i2c_addr >> 1, .flags = 0,
|
|
.buf = i2c->i2c_write_buffer, .len = 2},
|
|
{.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD,
|
|
.buf = i2c->i2c_read_buffer, .len = 2},
|
|
};
|
|
|
|
i2c->i2c_write_buffer[0] = reg >> 8;
|
|
i2c->i2c_write_buffer[1] = reg & 0xff;
|
|
|
|
if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) {
|
|
dprintk("read register %x error\n", reg);
|
|
return 0;
|
|
}
|
|
|
|
return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1];
|
|
}
|
|
|
|
static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg)
|
|
{
|
|
if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0)
|
|
return 0;
|
|
return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
|
|
}
|
|
|
|
static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute)
|
|
{
|
|
if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2,
|
|
attribute) != 0)
|
|
return 0;
|
|
return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
|
|
}
|
|
|
|
#define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
|
|
|
|
static int dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 *buf, u32 len, u16 attribute)
|
|
{
|
|
u32 chunk_size = 126;
|
|
u32 l;
|
|
int ret;
|
|
|
|
if (state->platform.risc.fw_is_running && (reg < 1024)) {
|
|
if (dib9000_risc_apb_access_write
|
|
(state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
memset(&state->msg[0], 0, sizeof(struct i2c_msg));
|
|
state->msg[0].addr = state->i2c.i2c_addr >> 1;
|
|
state->msg[0].flags = 0;
|
|
state->msg[0].buf = state->i2c_write_buffer;
|
|
state->msg[0].len = len + 2;
|
|
|
|
state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
|
|
state->i2c_write_buffer[1] = (reg) & 0xff;
|
|
|
|
if (attribute & DATA_BUS_ACCESS_MODE_8BIT)
|
|
state->i2c_write_buffer[0] |= (1 << 5);
|
|
if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
|
|
state->i2c_write_buffer[0] |= (1 << 4);
|
|
|
|
do {
|
|
l = len < chunk_size ? len : chunk_size;
|
|
state->msg[0].len = l + 2;
|
|
memcpy(&state->i2c_write_buffer[2], buf, l);
|
|
|
|
ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0;
|
|
|
|
buf += l;
|
|
len -= l;
|
|
|
|
if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT))
|
|
reg += l / 2;
|
|
} while ((ret == 0) && len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
|
|
{
|
|
struct i2c_msg msg = {
|
|
.addr = i2c->i2c_addr >> 1, .flags = 0,
|
|
.buf = i2c->i2c_write_buffer, .len = 4
|
|
};
|
|
|
|
i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff;
|
|
i2c->i2c_write_buffer[1] = reg & 0xff;
|
|
i2c->i2c_write_buffer[2] = (val >> 8) & 0xff;
|
|
i2c->i2c_write_buffer[3] = val & 0xff;
|
|
|
|
return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
|
|
}
|
|
|
|
static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val)
|
|
{
|
|
u8 b[2] = { val >> 8, val & 0xff };
|
|
return dib9000_write16_attr(state, reg, b, 2, 0);
|
|
}
|
|
|
|
static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute)
|
|
{
|
|
u8 b[2] = { val >> 8, val & 0xff };
|
|
return dib9000_write16_attr(state, reg, b, 2, attribute);
|
|
}
|
|
|
|
#define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0)
|
|
#define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
|
|
#define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute))
|
|
|
|
#define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0)
|
|
#define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0)
|
|
|
|
#define MAC_IRQ (1 << 1)
|
|
#define IRQ_POL_MSK (1 << 4)
|
|
|
|
#define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
|
|
#define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)
|
|
|
|
static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading)
|
|
{
|
|
u8 b[14] = { 0 };
|
|
|
|
/* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */
|
|
/* b[0] = 0 << 7; */
|
|
b[1] = 1;
|
|
|
|
/* b[2] = 0; */
|
|
/* b[3] = 0; */
|
|
b[4] = (u8) (addr >> 8);
|
|
b[5] = (u8) (addr & 0xff);
|
|
|
|
/* b[10] = 0; */
|
|
/* b[11] = 0; */
|
|
b[12] = (u8) (addr >> 8);
|
|
b[13] = (u8) (addr & 0xff);
|
|
|
|
addr += len;
|
|
/* b[6] = 0; */
|
|
/* b[7] = 0; */
|
|
b[8] = (u8) (addr >> 8);
|
|
b[9] = (u8) (addr & 0xff);
|
|
|
|
dib9000_write(state, 1056, b, 14);
|
|
if (reading)
|
|
dib9000_write_word(state, 1056, (1 << 15) | 1);
|
|
state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */
|
|
}
|
|
|
|
static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd)
|
|
{
|
|
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f];
|
|
/* decide whether we need to "refresh" the memory controller */
|
|
if (state->platform.risc.memcmd == cmd && /* same command */
|
|
!(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
|
|
return;
|
|
dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80);
|
|
state->platform.risc.memcmd = cmd;
|
|
}
|
|
|
|
static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len)
|
|
{
|
|
if (!state->platform.risc.fw_is_running)
|
|
return -EIO;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
dib9000_risc_mem_setup(state, cmd | 0x80);
|
|
dib9000_risc_mem_read_chunks(state, b, len);
|
|
mutex_unlock(&state->platform.risc.mem_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b)
|
|
{
|
|
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd];
|
|
if (!state->platform.risc.fw_is_running)
|
|
return -EIO;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
dib9000_risc_mem_setup(state, cmd);
|
|
dib9000_risc_mem_write_chunks(state, b, m->size);
|
|
mutex_unlock(&state->platform.risc.mem_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len)
|
|
{
|
|
u16 offs;
|
|
|
|
if (risc_id == 1)
|
|
offs = 16;
|
|
else
|
|
offs = 0;
|
|
|
|
/* config crtl reg */
|
|
dib9000_write_word(state, 1024 + offs, 0x000f);
|
|
dib9000_write_word(state, 1025 + offs, 0);
|
|
dib9000_write_word(state, 1031 + offs, key);
|
|
|
|
dprintk("going to download %dB of microcode\n", len);
|
|
if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) {
|
|
dprintk("error while downloading microcode for RISC %c\n", 'A' + risc_id);
|
|
return -EIO;
|
|
}
|
|
|
|
dprintk("Microcode for RISC %c loaded\n", 'A' + risc_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id)
|
|
{
|
|
u16 mbox_offs;
|
|
u16 reset_reg;
|
|
u16 tries = 1000;
|
|
|
|
if (risc_id == 1)
|
|
mbox_offs = 16;
|
|
else
|
|
mbox_offs = 0;
|
|
|
|
/* Reset mailbox */
|
|
dib9000_write_word(state, 1027 + mbox_offs, 0x8000);
|
|
|
|
/* Read reset status */
|
|
do {
|
|
reset_reg = dib9000_read_word(state, 1027 + mbox_offs);
|
|
msleep(100);
|
|
} while ((reset_reg & 0x8000) && --tries);
|
|
|
|
if (reset_reg & 0x8000) {
|
|
dprintk("MBX: init ERROR, no response from RISC %c\n", 'A' + risc_id);
|
|
return -EIO;
|
|
}
|
|
dprintk("MBX: initialized\n");
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_MAILBOX_TRY 100
|
|
static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr)
|
|
{
|
|
u8 *d, b[2];
|
|
u16 tmp;
|
|
u16 size;
|
|
u32 i;
|
|
int ret = 0;
|
|
|
|
if (!state->platform.risc.fw_is_running)
|
|
return -EINVAL;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
tmp = MAX_MAILBOX_TRY;
|
|
do {
|
|
size = dib9000_read_word_attr(state, 1043, attr) & 0xff;
|
|
if ((size + len + 1) > MBX_MAX_WORDS && --tmp) {
|
|
dprintk("MBX: RISC mbx full, retrying\n");
|
|
msleep(100);
|
|
} else
|
|
break;
|
|
} while (1);
|
|
|
|
/*dprintk( "MBX: size: %d\n", size); */
|
|
|
|
if (tmp == 0) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
#ifdef DUMP_MSG
|
|
dprintk("--> %02x %d %*ph\n", id, len + 1, len, data);
|
|
#endif
|
|
|
|
/* byte-order conversion - works on big (where it is not necessary) or little endian */
|
|
d = (u8 *) data;
|
|
for (i = 0; i < len; i++) {
|
|
tmp = data[i];
|
|
*d++ = tmp >> 8;
|
|
*d++ = tmp & 0xff;
|
|
}
|
|
|
|
/* write msg */
|
|
b[0] = id;
|
|
b[1] = len + 1;
|
|
if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* update register nb_mes_in_RX */
|
|
ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr);
|
|
|
|
out:
|
|
mutex_unlock(&state->platform.risc.mbx_if_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr)
|
|
{
|
|
#ifdef DUMP_MSG
|
|
u16 *d = data;
|
|
#endif
|
|
|
|
u16 tmp, i;
|
|
u8 size;
|
|
u8 mc_base;
|
|
|
|
if (!state->platform.risc.fw_is_running)
|
|
return 0;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return 0;
|
|
}
|
|
if (risc_id == 1)
|
|
mc_base = 16;
|
|
else
|
|
mc_base = 0;
|
|
|
|
/* Length and type in the first word */
|
|
*data = dib9000_read_word_attr(state, 1029 + mc_base, attr);
|
|
|
|
size = *data & 0xff;
|
|
if (size <= MBX_MAX_WORDS) {
|
|
data++;
|
|
size--; /* Initial word already read */
|
|
|
|
dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr);
|
|
|
|
/* to word conversion */
|
|
for (i = 0; i < size; i++) {
|
|
tmp = *data;
|
|
*data = (tmp >> 8) | (tmp << 8);
|
|
data++;
|
|
}
|
|
|
|
#ifdef DUMP_MSG
|
|
dprintk("<--\n");
|
|
for (i = 0; i < size + 1; i++)
|
|
dprintk("%04x\n", d[i]);
|
|
dprintk("\n");
|
|
#endif
|
|
} else {
|
|
dprintk("MBX: message is too big for message cache (%d), flushing message\n", size);
|
|
size--; /* Initial word already read */
|
|
while (size--)
|
|
dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr);
|
|
}
|
|
/* Update register nb_mes_in_TX */
|
|
dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr);
|
|
|
|
mutex_unlock(&state->platform.risc.mbx_if_lock);
|
|
|
|
return size + 1;
|
|
}
|
|
|
|
static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size)
|
|
{
|
|
u32 ts = data[1] << 16 | data[0];
|
|
char *b = (char *)&data[2];
|
|
|
|
b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */
|
|
if (*b == '~') {
|
|
b++;
|
|
dprintk("%s\n", b);
|
|
} else
|
|
dprintk("RISC%d: %d.%04d %s\n",
|
|
state->fe_id,
|
|
ts / 10000, ts % 10000, *b ? b : "<empty>");
|
|
return 1;
|
|
}
|
|
|
|
static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr)
|
|
{
|
|
int i;
|
|
u8 size;
|
|
u16 *block;
|
|
/* find a free slot */
|
|
for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) {
|
|
block = state->platform.risc.message_cache[i];
|
|
if (*block == 0) {
|
|
size = dib9000_mbx_read(state, block, 1, attr);
|
|
|
|
/* dprintk( "MBX: fetched %04x message to cache\n", *block); */
|
|
|
|
switch (*block >> 8) {
|
|
case IN_MSG_DEBUG_BUF:
|
|
dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */
|
|
*block = 0; /* free the block */
|
|
break;
|
|
#if 0
|
|
case IN_MSG_DATA: /* FE-TRACE */
|
|
dib9000_risc_data_process(state, block + 1, size);
|
|
*block = 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
dprintk("MBX: no free cache-slot found for new message...\n");
|
|
return -1;
|
|
}
|
|
|
|
static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr)
|
|
{
|
|
if (risc_id == 0)
|
|
return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */
|
|
else
|
|
return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */
|
|
}
|
|
|
|
static int dib9000_mbx_process(struct dib9000_state *state, u16 attr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!state->platform.risc.fw_is_running)
|
|
return -1;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -1;
|
|
}
|
|
|
|
if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */
|
|
ret = dib9000_mbx_fetch_to_cache(state, attr);
|
|
|
|
dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */
|
|
/* if (tmp) */
|
|
/* dprintk( "cleared IRQ: %x\n", tmp); */
|
|
mutex_unlock(&state->platform.risc.mbx_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr)
|
|
{
|
|
u8 i;
|
|
u16 *block;
|
|
u16 timeout = 30;
|
|
|
|
*msg = 0;
|
|
do {
|
|
/* dib9000_mbx_get_from_cache(); */
|
|
for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) {
|
|
block = state->platform.risc.message_cache[i];
|
|
if ((*block >> 8) == id) {
|
|
*size = (*block & 0xff) - 1;
|
|
memcpy(msg, block + 1, (*size) * 2);
|
|
*block = 0; /* free the block */
|
|
i = 0; /* signal that we found a message */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == 0)
|
|
break;
|
|
|
|
if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */
|
|
return -1;
|
|
|
|
} while (--timeout);
|
|
|
|
if (timeout == 0) {
|
|
dprintk("waiting for message %d timed out\n", id);
|
|
return -1;
|
|
}
|
|
|
|
return i == 0;
|
|
}
|
|
|
|
static int dib9000_risc_check_version(struct dib9000_state *state)
|
|
{
|
|
u8 r[4];
|
|
u8 size;
|
|
u16 fw_version = 0;
|
|
|
|
if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0)
|
|
return -EIO;
|
|
|
|
if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0)
|
|
return -EIO;
|
|
|
|
fw_version = (r[0] << 8) | r[1];
|
|
dprintk("RISC: ver: %d.%02d (IC: %d)\n", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]);
|
|
|
|
if ((fw_version >> 10) != 7)
|
|
return -EINVAL;
|
|
|
|
switch (fw_version & 0x3ff) {
|
|
case 11:
|
|
case 12:
|
|
case 14:
|
|
case 15:
|
|
case 16:
|
|
case 17:
|
|
break;
|
|
default:
|
|
dprintk("RISC: invalid firmware version");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dprintk("RISC: valid firmware version");
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB)
|
|
{
|
|
/* Reconfig pool mac ram */
|
|
dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */
|
|
dib9000_write_word(state, 1226, 0x05);
|
|
|
|
/* Toggles IP crypto to Host APB interface. */
|
|
dib9000_write_word(state, 1542, 1);
|
|
|
|
/* Set jump and no jump in the dma box */
|
|
dib9000_write_word(state, 1074, 0);
|
|
dib9000_write_word(state, 1075, 0);
|
|
|
|
/* Set MAC as APB Master. */
|
|
dib9000_write_word(state, 1237, 0);
|
|
|
|
/* Reset the RISCs */
|
|
if (codeA != NULL)
|
|
dib9000_write_word(state, 1024, 2);
|
|
else
|
|
dib9000_write_word(state, 1024, 15);
|
|
if (codeB != NULL)
|
|
dib9000_write_word(state, 1040, 2);
|
|
|
|
if (codeA != NULL)
|
|
dib9000_firmware_download(state, 0, 0x1234, codeA, lenA);
|
|
if (codeB != NULL)
|
|
dib9000_firmware_download(state, 1, 0x1234, codeB, lenB);
|
|
|
|
/* Run the RISCs */
|
|
if (codeA != NULL)
|
|
dib9000_write_word(state, 1024, 0);
|
|
if (codeB != NULL)
|
|
dib9000_write_word(state, 1040, 0);
|
|
|
|
if (codeA != NULL)
|
|
if (dib9000_mbx_host_init(state, 0) != 0)
|
|
return -EIO;
|
|
if (codeB != NULL)
|
|
if (dib9000_mbx_host_init(state, 1) != 0)
|
|
return -EIO;
|
|
|
|
msleep(100);
|
|
state->platform.risc.fw_is_running = 1;
|
|
|
|
if (dib9000_risc_check_version(state) != 0)
|
|
return -EINVAL;
|
|
|
|
state->platform.risc.memcmd = 0xff;
|
|
return 0;
|
|
}
|
|
|
|
static u16 dib9000_identify(struct i2c_device *client)
|
|
{
|
|
u16 value;
|
|
|
|
value = dib9000_i2c_read16(client, 896);
|
|
if (value != 0x01b3) {
|
|
dprintk("wrong Vendor ID (0x%x)\n", value);
|
|
return 0;
|
|
}
|
|
|
|
value = dib9000_i2c_read16(client, 897);
|
|
if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) {
|
|
dprintk("wrong Device ID (0x%x)\n", value);
|
|
return 0;
|
|
}
|
|
|
|
/* protect this driver to be used with 7000PC */
|
|
if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) {
|
|
dprintk("this driver does not work with DiB7000PC\n");
|
|
return 0;
|
|
}
|
|
|
|
switch (value) {
|
|
case 0x4000:
|
|
dprintk("found DiB7000MA/PA/MB/PB\n");
|
|
break;
|
|
case 0x4001:
|
|
dprintk("found DiB7000HC\n");
|
|
break;
|
|
case 0x4002:
|
|
dprintk("found DiB7000MC\n");
|
|
break;
|
|
case 0x4003:
|
|
dprintk("found DiB9000A\n");
|
|
break;
|
|
case 0x4004:
|
|
dprintk("found DiB9000H\n");
|
|
break;
|
|
case 0x4005:
|
|
dprintk("found DiB9000M\n");
|
|
break;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode)
|
|
{
|
|
/* by default everything is going to be powered off */
|
|
u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906;
|
|
u8 offset;
|
|
|
|
if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005)
|
|
offset = 1;
|
|
else
|
|
offset = 0;
|
|
|
|
reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */
|
|
|
|
/* now, depending on the requested mode, we power on */
|
|
switch (mode) {
|
|
/* power up everything in the demod */
|
|
case DIB9000_POWER_ALL:
|
|
reg_903 = 0x0000;
|
|
reg_904 = 0x0000;
|
|
reg_905 = 0x0000;
|
|
reg_906 = 0x0000;
|
|
break;
|
|
|
|
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */
|
|
case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */
|
|
reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
|
|
break;
|
|
|
|
case DIB9000_POWER_INTERF_ANALOG_AGC:
|
|
reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
|
|
reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
|
|
reg_906 &= ~((1 << 0));
|
|
break;
|
|
|
|
case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
|
|
reg_903 = 0x0000;
|
|
reg_904 = 0x801f;
|
|
reg_905 = 0x0000;
|
|
reg_906 &= ~((1 << 0));
|
|
break;
|
|
|
|
case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD:
|
|
reg_903 = 0x0000;
|
|
reg_904 = 0x8000;
|
|
reg_905 = 0x010b;
|
|
reg_906 &= ~((1 << 0));
|
|
break;
|
|
default:
|
|
case DIB9000_POWER_NO:
|
|
break;
|
|
}
|
|
|
|
/* always power down unused parts */
|
|
if (!state->platform.host.mobile_mode)
|
|
reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
|
|
|
|
/* P_sdio_select_clk = 0 on MC and after */
|
|
if (state->revision != 0x4000)
|
|
reg_906 <<= 1;
|
|
|
|
dib9000_write_word(state, 903 + offset, reg_903);
|
|
dib9000_write_word(state, 904 + offset, reg_904);
|
|
dib9000_write_word(state, 905 + offset, reg_905);
|
|
dib9000_write_word(state, 906 + offset, reg_906);
|
|
}
|
|
|
|
static int dib9000_fw_reset(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
|
|
dib9000_write_word(state, 1817, 0x0003);
|
|
|
|
dib9000_write_word(state, 1227, 1);
|
|
dib9000_write_word(state, 1227, 0);
|
|
|
|
switch ((state->revision = dib9000_identify(&state->i2c))) {
|
|
case 0x4003:
|
|
case 0x4004:
|
|
case 0x4005:
|
|
state->reg_offs = 1;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* reset the i2c-master to use the host interface */
|
|
dibx000_reset_i2c_master(&state->i2c_master);
|
|
|
|
dib9000_set_power_mode(state, DIB9000_POWER_ALL);
|
|
|
|
/* unforce divstr regardless whether i2c enumeration was done or not */
|
|
dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1));
|
|
dib9000_write_word(state, 1796, 0);
|
|
dib9000_write_word(state, 1805, 0x805);
|
|
|
|
/* restart all parts */
|
|
dib9000_write_word(state, 898, 0xffff);
|
|
dib9000_write_word(state, 899, 0xffff);
|
|
dib9000_write_word(state, 900, 0x0001);
|
|
dib9000_write_word(state, 901, 0xff19);
|
|
dib9000_write_word(state, 902, 0x003c);
|
|
|
|
dib9000_write_word(state, 898, 0);
|
|
dib9000_write_word(state, 899, 0);
|
|
dib9000_write_word(state, 900, 0);
|
|
dib9000_write_word(state, 901, 0);
|
|
dib9000_write_word(state, 902, 0);
|
|
|
|
dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives);
|
|
|
|
dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len)
|
|
{
|
|
u16 mb[10];
|
|
u8 i, s;
|
|
|
|
if (address >= 1024 || !state->platform.risc.fw_is_running)
|
|
return -EINVAL;
|
|
|
|
/* dprintk( "APB access through rd fw %d %x\n", address, attribute); */
|
|
|
|
mb[0] = (u16) address;
|
|
mb[1] = len / 2;
|
|
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute);
|
|
switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) {
|
|
case 1:
|
|
s--;
|
|
for (i = 0; i < s; i++) {
|
|
b[i * 2] = (mb[i + 1] >> 8) & 0xff;
|
|
b[i * 2 + 1] = (mb[i + 1]) & 0xff;
|
|
}
|
|
return 0;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len)
|
|
{
|
|
u16 mb[10];
|
|
u8 s, i;
|
|
|
|
if (address >= 1024 || !state->platform.risc.fw_is_running)
|
|
return -EINVAL;
|
|
|
|
if (len > 18)
|
|
return -EINVAL;
|
|
|
|
/* dprintk( "APB access through wr fw %d %x\n", address, attribute); */
|
|
|
|
mb[0] = (u16)address;
|
|
for (i = 0; i + 1 < len; i += 2)
|
|
mb[1 + i / 2] = b[i] << 8 | b[i + 1];
|
|
if (len & 1)
|
|
mb[1 + len / 2] = b[len - 1] << 8;
|
|
|
|
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute);
|
|
return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL;
|
|
}
|
|
|
|
static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i)
|
|
{
|
|
u8 index_loop = 10;
|
|
|
|
if (!state->platform.risc.fw_is_running)
|
|
return 0;
|
|
dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i);
|
|
do {
|
|
dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1);
|
|
} while (state->i2c_read_buffer[0] && index_loop--);
|
|
|
|
if (index_loop > 0)
|
|
return 0;
|
|
return -EIO;
|
|
}
|
|
|
|
static int dib9000_fw_init(struct dib9000_state *state)
|
|
{
|
|
struct dibGPIOFunction *f;
|
|
u16 b[40] = { 0 };
|
|
u8 i;
|
|
u8 size;
|
|
|
|
if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0)
|
|
return -EIO;
|
|
|
|
/* initialize the firmware */
|
|
for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) {
|
|
f = &state->chip.d9.cfg.gpio_function[i];
|
|
if (f->mask) {
|
|
switch (f->function) {
|
|
case BOARD_GPIO_FUNCTION_COMPONENT_ON:
|
|
b[0] = (u16) f->mask;
|
|
b[1] = (u16) f->direction;
|
|
b[2] = (u16) f->value;
|
|
break;
|
|
case BOARD_GPIO_FUNCTION_COMPONENT_OFF:
|
|
b[3] = (u16) f->mask;
|
|
b[4] = (u16) f->direction;
|
|
b[5] = (u16) f->value;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0)
|
|
return -EIO;
|
|
|
|
/* subband */
|
|
b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */
|
|
for (i = 0; i < state->chip.d9.cfg.subband.size; i++) {
|
|
b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz;
|
|
b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask;
|
|
b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction;
|
|
b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value;
|
|
}
|
|
b[1 + i * 4] = 0; /* fe_id */
|
|
if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0)
|
|
return -EIO;
|
|
|
|
/* 0 - id, 1 - no_of_frontends */
|
|
b[0] = (0 << 8) | 1;
|
|
/* 0 = i2c-address demod, 0 = tuner */
|
|
b[1] = (0 << 8) | (0);
|
|
b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff);
|
|
b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff);
|
|
b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff);
|
|
b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff);
|
|
b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff);
|
|
b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff);
|
|
b[29] = state->chip.d9.cfg.if_drives;
|
|
if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0)
|
|
return -EIO;
|
|
|
|
if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0)
|
|
return -EIO;
|
|
|
|
if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0)
|
|
return -EIO;
|
|
|
|
if (size > ARRAY_SIZE(b)) {
|
|
dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size,
|
|
(int)ARRAY_SIZE(b));
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < size; i += 2) {
|
|
state->platform.risc.fe_mm[i / 2].addr = b[i + 0];
|
|
state->platform.risc.fe_mm[i / 2].size = b[i + 1];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dib9000_fw_set_channel_head(struct dib9000_state *state)
|
|
{
|
|
u8 b[9];
|
|
u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000;
|
|
if (state->fe_id % 2)
|
|
freq += 101;
|
|
|
|
b[0] = (u8) ((freq >> 0) & 0xff);
|
|
b[1] = (u8) ((freq >> 8) & 0xff);
|
|
b[2] = (u8) ((freq >> 16) & 0xff);
|
|
b[3] = (u8) ((freq >> 24) & 0xff);
|
|
b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff);
|
|
b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff);
|
|
b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff);
|
|
b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff);
|
|
b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */
|
|
if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT)
|
|
b[8] |= 1;
|
|
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b);
|
|
}
|
|
|
|
static int dib9000_fw_get_channel(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
struct dibDVBTChannel {
|
|
s8 spectrum_inversion;
|
|
|
|
s8 nfft;
|
|
s8 guard;
|
|
s8 constellation;
|
|
|
|
s8 hrch;
|
|
s8 alpha;
|
|
s8 code_rate_hp;
|
|
s8 code_rate_lp;
|
|
s8 select_hp;
|
|
|
|
s8 intlv_native;
|
|
};
|
|
struct dibDVBTChannel *ch;
|
|
int ret = 0;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
|
|
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION,
|
|
state->i2c_read_buffer, sizeof(struct dibDVBTChannel));
|
|
ch = (struct dibDVBTChannel *)state->i2c_read_buffer;
|
|
|
|
|
|
switch (ch->spectrum_inversion & 0x7) {
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.inversion = INVERSION_ON;
|
|
break;
|
|
case 0:
|
|
state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO;
|
|
break;
|
|
}
|
|
switch (ch->nfft) {
|
|
case 0:
|
|
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
|
|
break;
|
|
case 2:
|
|
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K;
|
|
break;
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO;
|
|
break;
|
|
}
|
|
switch (ch->guard) {
|
|
case 0:
|
|
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
|
|
break;
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
|
|
break;
|
|
case 2:
|
|
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
|
|
break;
|
|
case 3:
|
|
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO;
|
|
break;
|
|
}
|
|
switch (ch->constellation) {
|
|
case 2:
|
|
state->fe[0]->dtv_property_cache.modulation = QAM_64;
|
|
break;
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.modulation = QAM_16;
|
|
break;
|
|
case 0:
|
|
state->fe[0]->dtv_property_cache.modulation = QPSK;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.modulation = QAM_AUTO;
|
|
break;
|
|
}
|
|
switch (ch->hrch) {
|
|
case 0:
|
|
state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE;
|
|
break;
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO;
|
|
break;
|
|
}
|
|
switch (ch->code_rate_hp) {
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2;
|
|
break;
|
|
case 2:
|
|
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3;
|
|
break;
|
|
case 3:
|
|
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4;
|
|
break;
|
|
case 5:
|
|
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6;
|
|
break;
|
|
case 7:
|
|
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO;
|
|
break;
|
|
}
|
|
switch (ch->code_rate_lp) {
|
|
case 1:
|
|
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2;
|
|
break;
|
|
case 2:
|
|
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3;
|
|
break;
|
|
case 3:
|
|
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4;
|
|
break;
|
|
case 5:
|
|
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6;
|
|
break;
|
|
case 7:
|
|
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8;
|
|
break;
|
|
default:
|
|
case -1:
|
|
state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO;
|
|
break;
|
|
}
|
|
|
|
error:
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_fw_set_channel_union(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
struct dibDVBTChannel {
|
|
s8 spectrum_inversion;
|
|
|
|
s8 nfft;
|
|
s8 guard;
|
|
s8 constellation;
|
|
|
|
s8 hrch;
|
|
s8 alpha;
|
|
s8 code_rate_hp;
|
|
s8 code_rate_lp;
|
|
s8 select_hp;
|
|
|
|
s8 intlv_native;
|
|
};
|
|
struct dibDVBTChannel ch;
|
|
|
|
switch (state->fe[0]->dtv_property_cache.inversion) {
|
|
case INVERSION_ON:
|
|
ch.spectrum_inversion = 1;
|
|
break;
|
|
case INVERSION_OFF:
|
|
ch.spectrum_inversion = 0;
|
|
break;
|
|
default:
|
|
case INVERSION_AUTO:
|
|
ch.spectrum_inversion = -1;
|
|
break;
|
|
}
|
|
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
|
|
case TRANSMISSION_MODE_2K:
|
|
ch.nfft = 0;
|
|
break;
|
|
case TRANSMISSION_MODE_4K:
|
|
ch.nfft = 2;
|
|
break;
|
|
case TRANSMISSION_MODE_8K:
|
|
ch.nfft = 1;
|
|
break;
|
|
default:
|
|
case TRANSMISSION_MODE_AUTO:
|
|
ch.nfft = 1;
|
|
break;
|
|
}
|
|
switch (state->fe[0]->dtv_property_cache.guard_interval) {
|
|
case GUARD_INTERVAL_1_32:
|
|
ch.guard = 0;
|
|
break;
|
|
case GUARD_INTERVAL_1_16:
|
|
ch.guard = 1;
|
|
break;
|
|
case GUARD_INTERVAL_1_8:
|
|
ch.guard = 2;
|
|
break;
|
|
case GUARD_INTERVAL_1_4:
|
|
ch.guard = 3;
|
|
break;
|
|
default:
|
|
case GUARD_INTERVAL_AUTO:
|
|
ch.guard = -1;
|
|
break;
|
|
}
|
|
switch (state->fe[0]->dtv_property_cache.modulation) {
|
|
case QAM_64:
|
|
ch.constellation = 2;
|
|
break;
|
|
case QAM_16:
|
|
ch.constellation = 1;
|
|
break;
|
|
case QPSK:
|
|
ch.constellation = 0;
|
|
break;
|
|
default:
|
|
case QAM_AUTO:
|
|
ch.constellation = -1;
|
|
break;
|
|
}
|
|
switch (state->fe[0]->dtv_property_cache.hierarchy) {
|
|
case HIERARCHY_NONE:
|
|
ch.hrch = 0;
|
|
break;
|
|
case HIERARCHY_1:
|
|
case HIERARCHY_2:
|
|
case HIERARCHY_4:
|
|
ch.hrch = 1;
|
|
break;
|
|
default:
|
|
case HIERARCHY_AUTO:
|
|
ch.hrch = -1;
|
|
break;
|
|
}
|
|
ch.alpha = 1;
|
|
switch (state->fe[0]->dtv_property_cache.code_rate_HP) {
|
|
case FEC_1_2:
|
|
ch.code_rate_hp = 1;
|
|
break;
|
|
case FEC_2_3:
|
|
ch.code_rate_hp = 2;
|
|
break;
|
|
case FEC_3_4:
|
|
ch.code_rate_hp = 3;
|
|
break;
|
|
case FEC_5_6:
|
|
ch.code_rate_hp = 5;
|
|
break;
|
|
case FEC_7_8:
|
|
ch.code_rate_hp = 7;
|
|
break;
|
|
default:
|
|
case FEC_AUTO:
|
|
ch.code_rate_hp = -1;
|
|
break;
|
|
}
|
|
switch (state->fe[0]->dtv_property_cache.code_rate_LP) {
|
|
case FEC_1_2:
|
|
ch.code_rate_lp = 1;
|
|
break;
|
|
case FEC_2_3:
|
|
ch.code_rate_lp = 2;
|
|
break;
|
|
case FEC_3_4:
|
|
ch.code_rate_lp = 3;
|
|
break;
|
|
case FEC_5_6:
|
|
ch.code_rate_lp = 5;
|
|
break;
|
|
case FEC_7_8:
|
|
ch.code_rate_lp = 7;
|
|
break;
|
|
default:
|
|
case FEC_AUTO:
|
|
ch.code_rate_lp = -1;
|
|
break;
|
|
}
|
|
ch.select_hp = 1;
|
|
ch.intlv_native = 1;
|
|
|
|
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_fw_tune(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN;
|
|
s8 i;
|
|
|
|
switch (state->tune_state) {
|
|
case CT_DEMOD_START:
|
|
dib9000_fw_set_channel_head(state);
|
|
|
|
/* write the channel context - a channel is initialized to 0, so it is OK */
|
|
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info);
|
|
dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info);
|
|
|
|
if (search)
|
|
dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0);
|
|
else {
|
|
dib9000_fw_set_channel_union(fe);
|
|
dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0);
|
|
}
|
|
state->tune_state = CT_DEMOD_STEP_1;
|
|
break;
|
|
case CT_DEMOD_STEP_1:
|
|
if (search)
|
|
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1);
|
|
else
|
|
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1);
|
|
i = (s8)state->i2c_read_buffer[0];
|
|
switch (i) { /* something happened */
|
|
case 0:
|
|
break;
|
|
case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */
|
|
if (search)
|
|
state->status = FE_STATUS_DEMOD_SUCCESS;
|
|
else {
|
|
state->tune_state = CT_DEMOD_STOP;
|
|
state->status = FE_STATUS_LOCKED;
|
|
}
|
|
break;
|
|
default:
|
|
state->status = FE_STATUS_TUNE_FAILED;
|
|
state->tune_state = CT_DEMOD_STOP;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ret = FE_CALLBACK_TIME_NEVER;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u16 mode = (u16) onoff;
|
|
return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1);
|
|
}
|
|
|
|
static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u16 outreg, smo_mode;
|
|
|
|
dprintk("setting output mode for demod %p to %d\n", fe, mode);
|
|
|
|
switch (mode) {
|
|
case OUTMODE_MPEG2_PAR_GATED_CLK:
|
|
outreg = (1 << 10); /* 0x0400 */
|
|
break;
|
|
case OUTMODE_MPEG2_PAR_CONT_CLK:
|
|
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
|
|
break;
|
|
case OUTMODE_MPEG2_SERIAL:
|
|
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
|
|
break;
|
|
case OUTMODE_DIVERSITY:
|
|
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
|
|
break;
|
|
case OUTMODE_MPEG2_FIFO:
|
|
outreg = (1 << 10) | (5 << 6);
|
|
break;
|
|
case OUTMODE_HIGH_Z:
|
|
outreg = 0;
|
|
break;
|
|
default:
|
|
dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->fe[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dib9000_write_word(state, 1795, outreg);
|
|
|
|
switch (mode) {
|
|
case OUTMODE_MPEG2_PAR_GATED_CLK:
|
|
case OUTMODE_MPEG2_PAR_CONT_CLK:
|
|
case OUTMODE_MPEG2_SERIAL:
|
|
case OUTMODE_MPEG2_FIFO:
|
|
smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1);
|
|
if (state->chip.d9.cfg.output_mpeg2_in_188_bytes)
|
|
smo_mode |= (1 << 5);
|
|
dib9000_write_word(state, 295, smo_mode);
|
|
break;
|
|
}
|
|
|
|
outreg = to_fw_output_mode(mode);
|
|
return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1);
|
|
}
|
|
|
|
static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
|
|
{
|
|
struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
|
|
u16 i, len, t, index_msg;
|
|
|
|
for (index_msg = 0; index_msg < num; index_msg++) {
|
|
if (msg[index_msg].flags & I2C_M_RD) { /* read */
|
|
len = msg[index_msg].len;
|
|
if (len > 16)
|
|
len = 16;
|
|
|
|
if (dib9000_read_word(state, 790) != 0)
|
|
dprintk("TunerITF: read busy\n");
|
|
|
|
dib9000_write_word(state, 784, (u16) (msg[index_msg].addr));
|
|
dib9000_write_word(state, 787, (len / 2) - 1);
|
|
dib9000_write_word(state, 786, 1); /* start read */
|
|
|
|
i = 1000;
|
|
while (dib9000_read_word(state, 790) != (len / 2) && i)
|
|
i--;
|
|
|
|
if (i == 0)
|
|
dprintk("TunerITF: read failed\n");
|
|
|
|
for (i = 0; i < len; i += 2) {
|
|
t = dib9000_read_word(state, 785);
|
|
msg[index_msg].buf[i] = (t >> 8) & 0xff;
|
|
msg[index_msg].buf[i + 1] = (t) & 0xff;
|
|
}
|
|
if (dib9000_read_word(state, 790) != 0)
|
|
dprintk("TunerITF: read more data than expected\n");
|
|
} else {
|
|
i = 1000;
|
|
while (dib9000_read_word(state, 789) && i)
|
|
i--;
|
|
if (i == 0)
|
|
dprintk("TunerITF: write busy\n");
|
|
|
|
len = msg[index_msg].len;
|
|
if (len > 16)
|
|
len = 16;
|
|
|
|
for (i = 0; i < len; i += 2)
|
|
dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]);
|
|
dib9000_write_word(state, 784, (u16) msg[index_msg].addr);
|
|
dib9000_write_word(state, 787, (len / 2) - 1);
|
|
dib9000_write_word(state, 786, 0); /* start write */
|
|
|
|
i = 1000;
|
|
while (dib9000_read_word(state, 791) > 0 && i)
|
|
i--;
|
|
if (i == 0)
|
|
dprintk("TunerITF: write failed\n");
|
|
}
|
|
}
|
|
return num;
|
|
}
|
|
|
|
int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
|
|
state->component_bus_speed = speed;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed);
|
|
|
|
static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
|
|
{
|
|
struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
|
|
u8 type = 0; /* I2C */
|
|
u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4;
|
|
u16 scl = state->component_bus_speed; /* SCL frequency */
|
|
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER];
|
|
u8 p[13] = { 0 };
|
|
|
|
p[0] = type;
|
|
p[1] = port;
|
|
p[2] = msg[0].addr << 1;
|
|
|
|
p[3] = (u8) scl & 0xff; /* scl */
|
|
p[4] = (u8) (scl >> 8);
|
|
|
|
p[7] = 0;
|
|
p[8] = 0;
|
|
|
|
p[9] = (u8) (msg[0].len);
|
|
p[10] = (u8) (msg[0].len >> 8);
|
|
if ((num > 1) && (msg[1].flags & I2C_M_RD)) {
|
|
p[11] = (u8) (msg[1].len);
|
|
p[12] = (u8) (msg[1].len >> 8);
|
|
} else {
|
|
p[11] = 0;
|
|
p[12] = 0;
|
|
}
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return 0;
|
|
}
|
|
|
|
dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p);
|
|
|
|
{ /* write-part */
|
|
dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0);
|
|
dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len);
|
|
}
|
|
|
|
/* do the transaction */
|
|
if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) {
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* read back any possible result */
|
|
if ((num > 1) && (msg[1].flags & I2C_M_RD))
|
|
dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len);
|
|
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
|
|
return num;
|
|
}
|
|
|
|
static u32 dib9000_i2c_func(struct i2c_adapter *adapter)
|
|
{
|
|
return I2C_FUNC_I2C;
|
|
}
|
|
|
|
static const struct i2c_algorithm dib9000_tuner_algo = {
|
|
.master_xfer = dib9000_tuner_xfer,
|
|
.functionality = dib9000_i2c_func,
|
|
};
|
|
|
|
static const struct i2c_algorithm dib9000_component_bus_algo = {
|
|
.master_xfer = dib9000_fw_component_bus_xfer,
|
|
.functionality = dib9000_i2c_func,
|
|
};
|
|
|
|
struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *st = fe->demodulator_priv;
|
|
return &st->tuner_adap;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_get_tuner_interface);
|
|
|
|
struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *st = fe->demodulator_priv;
|
|
return &st->component_bus;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_get_component_bus_interface);
|
|
|
|
struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
|
|
{
|
|
struct dib9000_state *st = fe->demodulator_priv;
|
|
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
|
|
}
|
|
EXPORT_SYMBOL(dib9000_get_i2c_master);
|
|
|
|
int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c)
|
|
{
|
|
struct dib9000_state *st = fe->demodulator_priv;
|
|
|
|
st->i2c.i2c_adap = i2c;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_set_i2c_adapter);
|
|
|
|
static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val)
|
|
{
|
|
st->gpio_dir = dib9000_read_word(st, 773);
|
|
st->gpio_dir &= ~(1 << num); /* reset the direction bit */
|
|
st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
|
|
dib9000_write_word(st, 773, st->gpio_dir);
|
|
|
|
st->gpio_val = dib9000_read_word(st, 774);
|
|
st->gpio_val &= ~(1 << num); /* reset the direction bit */
|
|
st->gpio_val |= (val & 0x01) << num; /* set the new value */
|
|
dib9000_write_word(st, 774, st->gpio_val);
|
|
|
|
dprintk("gpio dir: %04x: gpio val: %04x\n", st->gpio_dir, st->gpio_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
return dib9000_cfg_gpio(state, num, dir, val);
|
|
}
|
|
EXPORT_SYMBOL(dib9000_set_gpio);
|
|
|
|
int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u16 val;
|
|
int ret;
|
|
|
|
if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) {
|
|
/* postpone the pid filtering cmd */
|
|
dprintk("pid filter cmd postpone\n");
|
|
state->pid_ctrl_index++;
|
|
state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL;
|
|
state->pid_ctrl[state->pid_ctrl_index].onoff = onoff;
|
|
return 0;
|
|
}
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
|
|
val = dib9000_read_word(state, 294 + 1) & 0xffef;
|
|
val |= (onoff & 0x1) << 4;
|
|
|
|
dprintk("PID filter enabled %d\n", onoff);
|
|
ret = dib9000_write_word(state, 294 + 1, val);
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
|
|
}
|
|
EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl);
|
|
|
|
int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
int ret;
|
|
|
|
if (state->pid_ctrl_index != -2) {
|
|
/* postpone the pid filtering cmd */
|
|
dprintk("pid filter postpone\n");
|
|
if (state->pid_ctrl_index < 9) {
|
|
state->pid_ctrl_index++;
|
|
state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER;
|
|
state->pid_ctrl[state->pid_ctrl_index].id = id;
|
|
state->pid_ctrl[state->pid_ctrl_index].pid = pid;
|
|
state->pid_ctrl[state->pid_ctrl_index].onoff = onoff;
|
|
} else
|
|
dprintk("can not add any more pid ctrl cmd\n");
|
|
return 0;
|
|
}
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff);
|
|
ret = dib9000_write_word(state, 300 + 1 + id,
|
|
onoff ? (1 << 13) | pid : 0);
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_fw_pid_filter);
|
|
|
|
int dib9000_firmware_post_pll_init(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
return dib9000_fw_init(state);
|
|
}
|
|
EXPORT_SYMBOL(dib9000_firmware_post_pll_init);
|
|
|
|
static void dib9000_release(struct dvb_frontend *demod)
|
|
{
|
|
struct dib9000_state *st = demod->demodulator_priv;
|
|
u8 index_frontend;
|
|
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
|
|
dvb_frontend_detach(st->fe[index_frontend]);
|
|
|
|
dibx000_exit_i2c_master(&st->i2c_master);
|
|
|
|
i2c_del_adapter(&st->tuner_adap);
|
|
i2c_del_adapter(&st->component_bus);
|
|
kfree(st->fe[0]);
|
|
kfree(st);
|
|
}
|
|
|
|
static int dib9000_wakeup(struct dvb_frontend *fe)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_sleep(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u8 index_frontend;
|
|
int ret = 0;
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
|
|
if (ret < 0)
|
|
goto error;
|
|
}
|
|
ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0);
|
|
|
|
error:
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
|
|
{
|
|
tune->min_delay_ms = 1000;
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_get_frontend(struct dvb_frontend *fe,
|
|
struct dtv_frontend_properties *c)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u8 index_frontend, sub_index_frontend;
|
|
enum fe_status stat;
|
|
int ret = 0;
|
|
|
|
if (state->get_frontend_internal == 0) {
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
}
|
|
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
|
|
if (stat & FE_HAS_SYNC) {
|
|
dprintk("TPS lock on the slave%i\n", index_frontend);
|
|
|
|
/* synchronize the cache with the other frontends */
|
|
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c);
|
|
for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL);
|
|
sub_index_frontend++) {
|
|
if (sub_index_frontend != index_frontend) {
|
|
state->fe[sub_index_frontend]->dtv_property_cache.modulation =
|
|
state->fe[index_frontend]->dtv_property_cache.modulation;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.inversion =
|
|
state->fe[index_frontend]->dtv_property_cache.inversion;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode =
|
|
state->fe[index_frontend]->dtv_property_cache.transmission_mode;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.guard_interval =
|
|
state->fe[index_frontend]->dtv_property_cache.guard_interval;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.hierarchy =
|
|
state->fe[index_frontend]->dtv_property_cache.hierarchy;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP =
|
|
state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP =
|
|
state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
|
|
state->fe[sub_index_frontend]->dtv_property_cache.rolloff =
|
|
state->fe[index_frontend]->dtv_property_cache.rolloff;
|
|
}
|
|
}
|
|
ret = 0;
|
|
goto return_value;
|
|
}
|
|
}
|
|
|
|
/* get the channel from master chip */
|
|
ret = dib9000_fw_get_channel(fe);
|
|
if (ret != 0)
|
|
goto return_value;
|
|
|
|
/* synchronize the cache with the other frontends */
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion;
|
|
state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode;
|
|
state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval;
|
|
state->fe[index_frontend]->dtv_property_cache.modulation = c->modulation;
|
|
state->fe[index_frontend]->dtv_property_cache.hierarchy = c->hierarchy;
|
|
state->fe[index_frontend]->dtv_property_cache.code_rate_HP = c->code_rate_HP;
|
|
state->fe[index_frontend]->dtv_property_cache.code_rate_LP = c->code_rate_LP;
|
|
state->fe[index_frontend]->dtv_property_cache.rolloff = c->rolloff;
|
|
}
|
|
ret = 0;
|
|
|
|
return_value:
|
|
if (state->get_frontend_internal == 0)
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
state->tune_state = tune_state;
|
|
if (tune_state == CT_DEMOD_START)
|
|
state->status = FE_STATUS_TUNE_PENDING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 dib9000_get_status(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
return state->status;
|
|
}
|
|
|
|
static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
|
|
memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext));
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_set_frontend(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
int sleep_time, sleep_time_slave;
|
|
u32 frontend_status;
|
|
u8 nbr_pending, exit_condition, index_frontend, index_frontend_success;
|
|
struct dvb_frontend_parametersContext channel_status;
|
|
|
|
/* check that the correct parameters are set */
|
|
if (state->fe[0]->dtv_property_cache.frequency == 0) {
|
|
dprintk("dib9000: must specify frequency\n");
|
|
return 0;
|
|
}
|
|
|
|
if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) {
|
|
dprintk("dib9000: must specify bandwidth\n");
|
|
return 0;
|
|
}
|
|
|
|
state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return 0;
|
|
}
|
|
|
|
fe->dtv_property_cache.delivery_system = SYS_DVBT;
|
|
|
|
/* set the master status */
|
|
if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO ||
|
|
state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO ||
|
|
state->fe[0]->dtv_property_cache.modulation == QAM_AUTO ||
|
|
state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) {
|
|
/* no channel specified, autosearch the channel */
|
|
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN;
|
|
} else
|
|
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
|
|
|
|
/* set mode and status for the different frontends */
|
|
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
dib9000_fw_set_diversity_in(state->fe[index_frontend], 1);
|
|
|
|
/* synchronization of the cache */
|
|
memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
|
|
|
|
state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT;
|
|
dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z);
|
|
|
|
dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status);
|
|
dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
|
|
}
|
|
|
|
/* actual tune */
|
|
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
|
|
index_frontend_success = 0;
|
|
do {
|
|
sleep_time = dib9000_fw_tune(state->fe[0]);
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]);
|
|
if (sleep_time == FE_CALLBACK_TIME_NEVER)
|
|
sleep_time = sleep_time_slave;
|
|
else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time))
|
|
sleep_time = sleep_time_slave;
|
|
}
|
|
if (sleep_time != FE_CALLBACK_TIME_NEVER)
|
|
msleep(sleep_time / 10);
|
|
else
|
|
break;
|
|
|
|
nbr_pending = 0;
|
|
exit_condition = 0;
|
|
index_frontend_success = 0;
|
|
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
|
|
if (frontend_status > -FE_STATUS_TUNE_PENDING) {
|
|
exit_condition = 2; /* tune success */
|
|
index_frontend_success = index_frontend;
|
|
break;
|
|
}
|
|
if (frontend_status == -FE_STATUS_TUNE_PENDING)
|
|
nbr_pending++; /* some frontends are still tuning */
|
|
}
|
|
if ((exit_condition != 2) && (nbr_pending == 0))
|
|
exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
|
|
|
|
} while (exit_condition == 0);
|
|
|
|
/* check the tune result */
|
|
if (exit_condition == 1) { /* tune failed */
|
|
dprintk("tune failed\n");
|
|
mutex_unlock(&state->demod_lock);
|
|
/* tune failed; put all the pid filtering cmd to junk */
|
|
state->pid_ctrl_index = -1;
|
|
return 0;
|
|
}
|
|
|
|
dprintk("tune success on frontend%i\n", index_frontend_success);
|
|
|
|
/* synchronize all the channel cache */
|
|
state->get_frontend_internal = 1;
|
|
dib9000_get_frontend(state->fe[0], &state->fe[0]->dtv_property_cache);
|
|
state->get_frontend_internal = 0;
|
|
|
|
/* retune the other frontends with the found channel */
|
|
channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
|
|
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
/* only retune the frontends which was not tuned success */
|
|
if (index_frontend != index_frontend_success) {
|
|
dib9000_set_channel_status(state->fe[index_frontend], &channel_status);
|
|
dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
|
|
}
|
|
}
|
|
do {
|
|
sleep_time = FE_CALLBACK_TIME_NEVER;
|
|
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
if (index_frontend != index_frontend_success) {
|
|
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]);
|
|
if (sleep_time == FE_CALLBACK_TIME_NEVER)
|
|
sleep_time = sleep_time_slave;
|
|
else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time))
|
|
sleep_time = sleep_time_slave;
|
|
}
|
|
}
|
|
if (sleep_time != FE_CALLBACK_TIME_NEVER)
|
|
msleep(sleep_time / 10);
|
|
else
|
|
break;
|
|
|
|
nbr_pending = 0;
|
|
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
if (index_frontend != index_frontend_success) {
|
|
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
|
|
if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING))
|
|
nbr_pending++; /* some frontends are still tuning */
|
|
}
|
|
}
|
|
} while (nbr_pending != 0);
|
|
|
|
/* set the output mode */
|
|
dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode);
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
|
|
dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
|
|
|
|
/* turn off the diversity for the last frontend */
|
|
dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0);
|
|
|
|
mutex_unlock(&state->demod_lock);
|
|
if (state->pid_ctrl_index >= 0) {
|
|
u8 index_pid_filter_cmd;
|
|
u8 pid_ctrl_index = state->pid_ctrl_index;
|
|
|
|
state->pid_ctrl_index = -2;
|
|
for (index_pid_filter_cmd = 0;
|
|
index_pid_filter_cmd <= pid_ctrl_index;
|
|
index_pid_filter_cmd++) {
|
|
if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL)
|
|
dib9000_fw_pid_filter_ctrl(state->fe[0],
|
|
state->pid_ctrl[index_pid_filter_cmd].onoff);
|
|
else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER)
|
|
dib9000_fw_pid_filter(state->fe[0],
|
|
state->pid_ctrl[index_pid_filter_cmd].id,
|
|
state->pid_ctrl[index_pid_filter_cmd].pid,
|
|
state->pid_ctrl[index_pid_filter_cmd].onoff);
|
|
}
|
|
}
|
|
/* do not postpone any more the pid filtering */
|
|
state->pid_ctrl_index = -2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u16 dib9000_read_lock(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
|
|
return dib9000_read_word(state, 535);
|
|
}
|
|
|
|
static int dib9000_read_status(struct dvb_frontend *fe, enum fe_status *stat)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u8 index_frontend;
|
|
u16 lock = 0, lock_slave = 0;
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
|
|
lock_slave |= dib9000_read_lock(state->fe[index_frontend]);
|
|
|
|
lock = dib9000_read_word(state, 535);
|
|
|
|
*stat = 0;
|
|
|
|
if ((lock & 0x8000) || (lock_slave & 0x8000))
|
|
*stat |= FE_HAS_SIGNAL;
|
|
if ((lock & 0x3000) || (lock_slave & 0x3000))
|
|
*stat |= FE_HAS_CARRIER;
|
|
if ((lock & 0x0100) || (lock_slave & 0x0100))
|
|
*stat |= FE_HAS_VITERBI;
|
|
if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38))
|
|
*stat |= FE_HAS_SYNC;
|
|
if ((lock & 0x0008) || (lock_slave & 0x0008))
|
|
*stat |= FE_HAS_LOCK;
|
|
|
|
mutex_unlock(&state->demod_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u16 *c;
|
|
int ret = 0;
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
ret = -EINTR;
|
|
goto error;
|
|
}
|
|
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR,
|
|
state->i2c_read_buffer, 16 * 2);
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
|
|
c = (u16 *)state->i2c_read_buffer;
|
|
|
|
*ber = c[10] << 16 | c[11];
|
|
|
|
error:
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u8 index_frontend;
|
|
u16 *c = (u16 *)state->i2c_read_buffer;
|
|
u16 val;
|
|
int ret = 0;
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
*strength = 0;
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
|
|
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
|
|
if (val > 65535 - *strength)
|
|
*strength = 65535;
|
|
else
|
|
*strength += val;
|
|
}
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
ret = -EINTR;
|
|
goto error;
|
|
}
|
|
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
|
|
val = 65535 - c[4];
|
|
if (val > 65535 - *strength)
|
|
*strength = 65535;
|
|
else
|
|
*strength += val;
|
|
|
|
error:
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
}
|
|
|
|
static u32 dib9000_get_snr(struct dvb_frontend *fe)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u16 *c = (u16 *)state->i2c_read_buffer;
|
|
u32 n, s, exp;
|
|
u16 val;
|
|
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return 0;
|
|
}
|
|
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
return 0;
|
|
}
|
|
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
|
|
val = c[7];
|
|
n = (val >> 4) & 0xff;
|
|
exp = ((val & 0xf) << 2);
|
|
val = c[8];
|
|
exp += ((val >> 14) & 0x3);
|
|
if ((exp & 0x20) != 0)
|
|
exp -= 0x40;
|
|
n <<= exp + 16;
|
|
|
|
s = (val >> 6) & 0xFF;
|
|
exp = (val & 0x3F);
|
|
if ((exp & 0x20) != 0)
|
|
exp -= 0x40;
|
|
s <<= exp + 16;
|
|
|
|
if (n > 0) {
|
|
u32 t = (s / n) << 16;
|
|
return t + ((s << 16) - n * t) / n;
|
|
}
|
|
return 0xffffffff;
|
|
}
|
|
|
|
static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u8 index_frontend;
|
|
u32 snr_master;
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
snr_master = dib9000_get_snr(fe);
|
|
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
|
|
snr_master += dib9000_get_snr(state->fe[index_frontend]);
|
|
|
|
if ((snr_master >> 16) != 0) {
|
|
snr_master = 10 * intlog10(snr_master >> 16);
|
|
*snr = snr_master / ((1 << 24) / 10);
|
|
} else
|
|
*snr = 0;
|
|
|
|
mutex_unlock(&state->demod_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u16 *c = (u16 *)state->i2c_read_buffer;
|
|
int ret = 0;
|
|
|
|
if (mutex_lock_interruptible(&state->demod_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
return -EINTR;
|
|
}
|
|
if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) {
|
|
dprintk("could not get the lock\n");
|
|
ret = -EINTR;
|
|
goto error;
|
|
}
|
|
if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) {
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2);
|
|
mutex_unlock(&state->platform.risc.mem_mbx_lock);
|
|
|
|
*unc = c[12];
|
|
|
|
error:
|
|
mutex_unlock(&state->demod_lock);
|
|
return ret;
|
|
}
|
|
|
|
int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr)
|
|
{
|
|
int k = 0, ret = 0;
|
|
u8 new_addr = 0;
|
|
struct i2c_device client = {.i2c_adap = i2c };
|
|
|
|
client.i2c_write_buffer = kzalloc(4, GFP_KERNEL);
|
|
if (!client.i2c_write_buffer) {
|
|
dprintk("%s: not enough memory\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
client.i2c_read_buffer = kzalloc(4, GFP_KERNEL);
|
|
if (!client.i2c_read_buffer) {
|
|
dprintk("%s: not enough memory\n", __func__);
|
|
ret = -ENOMEM;
|
|
goto error_memory;
|
|
}
|
|
|
|
client.i2c_addr = default_addr + 16;
|
|
dib9000_i2c_write16(&client, 1796, 0x0);
|
|
|
|
for (k = no_of_demods - 1; k >= 0; k--) {
|
|
/* designated i2c address */
|
|
new_addr = first_addr + (k << 1);
|
|
client.i2c_addr = default_addr;
|
|
|
|
dib9000_i2c_write16(&client, 1817, 3);
|
|
dib9000_i2c_write16(&client, 1796, 0);
|
|
dib9000_i2c_write16(&client, 1227, 1);
|
|
dib9000_i2c_write16(&client, 1227, 0);
|
|
|
|
client.i2c_addr = new_addr;
|
|
dib9000_i2c_write16(&client, 1817, 3);
|
|
dib9000_i2c_write16(&client, 1796, 0);
|
|
dib9000_i2c_write16(&client, 1227, 1);
|
|
dib9000_i2c_write16(&client, 1227, 0);
|
|
|
|
if (dib9000_identify(&client) == 0) {
|
|
client.i2c_addr = default_addr;
|
|
if (dib9000_identify(&client) == 0) {
|
|
dprintk("DiB9000 #%d: not identified\n", k);
|
|
ret = -EIO;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6));
|
|
dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2);
|
|
|
|
dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
|
|
}
|
|
|
|
for (k = 0; k < no_of_demods; k++) {
|
|
new_addr = first_addr | (k << 1);
|
|
client.i2c_addr = new_addr;
|
|
|
|
dib9000_i2c_write16(&client, 1794, (new_addr << 2));
|
|
dib9000_i2c_write16(&client, 1795, 0);
|
|
}
|
|
|
|
error:
|
|
kfree(client.i2c_read_buffer);
|
|
error_memory:
|
|
kfree(client.i2c_write_buffer);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_i2c_enumeration);
|
|
|
|
int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
u8 index_frontend = 1;
|
|
|
|
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
|
|
index_frontend++;
|
|
if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
|
|
dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend);
|
|
state->fe[index_frontend] = fe_slave;
|
|
return 0;
|
|
}
|
|
|
|
dprintk("too many slave frontend\n");
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_set_slave_frontend);
|
|
|
|
struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
|
|
{
|
|
struct dib9000_state *state = fe->demodulator_priv;
|
|
|
|
if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
|
|
return NULL;
|
|
return state->fe[slave_index];
|
|
}
|
|
EXPORT_SYMBOL(dib9000_get_slave_frontend);
|
|
|
|
static const struct dvb_frontend_ops dib9000_ops;
|
|
struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg)
|
|
{
|
|
struct dvb_frontend *fe;
|
|
struct dib9000_state *st;
|
|
st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return NULL;
|
|
fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
|
|
if (fe == NULL) {
|
|
kfree(st);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config));
|
|
st->i2c.i2c_adap = i2c_adap;
|
|
st->i2c.i2c_addr = i2c_addr;
|
|
st->i2c.i2c_write_buffer = st->i2c_write_buffer;
|
|
st->i2c.i2c_read_buffer = st->i2c_read_buffer;
|
|
|
|
st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS;
|
|
st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES;
|
|
st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS;
|
|
|
|
mutex_init(&st->platform.risc.mbx_if_lock);
|
|
mutex_init(&st->platform.risc.mbx_lock);
|
|
mutex_init(&st->platform.risc.mem_lock);
|
|
mutex_init(&st->platform.risc.mem_mbx_lock);
|
|
mutex_init(&st->demod_lock);
|
|
st->get_frontend_internal = 0;
|
|
|
|
st->pid_ctrl_index = -2;
|
|
|
|
st->fe[0] = fe;
|
|
fe->demodulator_priv = st;
|
|
memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops));
|
|
|
|
/* Ensure the output mode remains at the previous default if it's
|
|
* not specifically set by the caller.
|
|
*/
|
|
if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
|
|
st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO;
|
|
|
|
if (dib9000_identify(&st->i2c) == 0)
|
|
goto error;
|
|
|
|
dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr);
|
|
|
|
st->tuner_adap.dev.parent = i2c_adap->dev.parent;
|
|
strscpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS",
|
|
sizeof(st->tuner_adap.name));
|
|
st->tuner_adap.algo = &dib9000_tuner_algo;
|
|
st->tuner_adap.algo_data = NULL;
|
|
i2c_set_adapdata(&st->tuner_adap, st);
|
|
if (i2c_add_adapter(&st->tuner_adap) < 0)
|
|
goto error;
|
|
|
|
st->component_bus.dev.parent = i2c_adap->dev.parent;
|
|
strscpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS",
|
|
sizeof(st->component_bus.name));
|
|
st->component_bus.algo = &dib9000_component_bus_algo;
|
|
st->component_bus.algo_data = NULL;
|
|
st->component_bus_speed = 340;
|
|
i2c_set_adapdata(&st->component_bus, st);
|
|
if (i2c_add_adapter(&st->component_bus) < 0)
|
|
goto component_bus_add_error;
|
|
|
|
dib9000_fw_reset(fe);
|
|
|
|
return fe;
|
|
|
|
component_bus_add_error:
|
|
i2c_del_adapter(&st->tuner_adap);
|
|
error:
|
|
kfree(st);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dib9000_attach);
|
|
|
|
static const struct dvb_frontend_ops dib9000_ops = {
|
|
.delsys = { SYS_DVBT },
|
|
.info = {
|
|
.name = "DiBcom 9000",
|
|
.frequency_min_hz = 44250 * kHz,
|
|
.frequency_max_hz = 867250 * kHz,
|
|
.frequency_stepsize_hz = 62500,
|
|
.caps = FE_CAN_INVERSION_AUTO |
|
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
|
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
|
|
},
|
|
|
|
.release = dib9000_release,
|
|
|
|
.init = dib9000_wakeup,
|
|
.sleep = dib9000_sleep,
|
|
|
|
.set_frontend = dib9000_set_frontend,
|
|
.get_tune_settings = dib9000_fe_get_tune_settings,
|
|
.get_frontend = dib9000_get_frontend,
|
|
|
|
.read_status = dib9000_read_status,
|
|
.read_ber = dib9000_read_ber,
|
|
.read_signal_strength = dib9000_read_signal_strength,
|
|
.read_snr = dib9000_read_snr,
|
|
.read_ucblocks = dib9000_read_unc_blocks,
|
|
};
|
|
|
|
MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
|
|
MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
|
|
MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator");
|
|
MODULE_LICENSE("GPL");
|