c11baa02c5
Move the support to perform an HMAC calculation into the CCP operations file. This eliminates the need to perform a synchronous SHA operation used to calculate the HMAC. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2127 lines
52 KiB
C
2127 lines
52 KiB
C
/*
|
|
* AMD Cryptographic Coprocessor (CCP) driver
|
|
*
|
|
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ccp.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/sha.h>
|
|
|
|
#include "ccp-dev.h"
|
|
|
|
|
|
enum ccp_memtype {
|
|
CCP_MEMTYPE_SYSTEM = 0,
|
|
CCP_MEMTYPE_KSB,
|
|
CCP_MEMTYPE_LOCAL,
|
|
CCP_MEMTYPE__LAST,
|
|
};
|
|
|
|
struct ccp_dma_info {
|
|
dma_addr_t address;
|
|
unsigned int offset;
|
|
unsigned int length;
|
|
enum dma_data_direction dir;
|
|
};
|
|
|
|
struct ccp_dm_workarea {
|
|
struct device *dev;
|
|
struct dma_pool *dma_pool;
|
|
unsigned int length;
|
|
|
|
u8 *address;
|
|
struct ccp_dma_info dma;
|
|
};
|
|
|
|
struct ccp_sg_workarea {
|
|
struct scatterlist *sg;
|
|
unsigned int nents;
|
|
unsigned int length;
|
|
|
|
struct scatterlist *dma_sg;
|
|
struct device *dma_dev;
|
|
unsigned int dma_count;
|
|
enum dma_data_direction dma_dir;
|
|
|
|
unsigned int sg_used;
|
|
|
|
u64 bytes_left;
|
|
};
|
|
|
|
struct ccp_data {
|
|
struct ccp_sg_workarea sg_wa;
|
|
struct ccp_dm_workarea dm_wa;
|
|
};
|
|
|
|
struct ccp_mem {
|
|
enum ccp_memtype type;
|
|
union {
|
|
struct ccp_dma_info dma;
|
|
u32 ksb;
|
|
} u;
|
|
};
|
|
|
|
struct ccp_aes_op {
|
|
enum ccp_aes_type type;
|
|
enum ccp_aes_mode mode;
|
|
enum ccp_aes_action action;
|
|
};
|
|
|
|
struct ccp_xts_aes_op {
|
|
enum ccp_aes_action action;
|
|
enum ccp_xts_aes_unit_size unit_size;
|
|
};
|
|
|
|
struct ccp_sha_op {
|
|
enum ccp_sha_type type;
|
|
u64 msg_bits;
|
|
};
|
|
|
|
struct ccp_rsa_op {
|
|
u32 mod_size;
|
|
u32 input_len;
|
|
};
|
|
|
|
struct ccp_passthru_op {
|
|
enum ccp_passthru_bitwise bit_mod;
|
|
enum ccp_passthru_byteswap byte_swap;
|
|
};
|
|
|
|
struct ccp_ecc_op {
|
|
enum ccp_ecc_function function;
|
|
};
|
|
|
|
struct ccp_op {
|
|
struct ccp_cmd_queue *cmd_q;
|
|
|
|
u32 jobid;
|
|
u32 ioc;
|
|
u32 soc;
|
|
u32 ksb_key;
|
|
u32 ksb_ctx;
|
|
u32 init;
|
|
u32 eom;
|
|
|
|
struct ccp_mem src;
|
|
struct ccp_mem dst;
|
|
|
|
union {
|
|
struct ccp_aes_op aes;
|
|
struct ccp_xts_aes_op xts;
|
|
struct ccp_sha_op sha;
|
|
struct ccp_rsa_op rsa;
|
|
struct ccp_passthru_op passthru;
|
|
struct ccp_ecc_op ecc;
|
|
} u;
|
|
};
|
|
|
|
/* SHA initial context values */
|
|
static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
|
|
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
|
|
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
|
|
cpu_to_be32(SHA1_H4), 0, 0, 0,
|
|
};
|
|
|
|
static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
|
|
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
|
|
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
|
|
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
|
|
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
|
|
};
|
|
|
|
static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
|
|
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
|
|
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
|
|
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
|
|
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
|
|
};
|
|
|
|
/* The CCP cannot perform zero-length sha operations so the caller
|
|
* is required to buffer data for the final operation. However, a
|
|
* sha operation for a message with a total length of zero is valid
|
|
* so known values are required to supply the result.
|
|
*/
|
|
static const u8 ccp_sha1_zero[CCP_SHA_CTXSIZE] = {
|
|
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
|
|
0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
|
|
0xaf, 0xd8, 0x07, 0x09, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
|
|
static const u8 ccp_sha224_zero[CCP_SHA_CTXSIZE] = {
|
|
0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9,
|
|
0x47, 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4,
|
|
0x15, 0xa2, 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a,
|
|
0xc5, 0xb3, 0xe4, 0x2f, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
|
|
static const u8 ccp_sha256_zero[CCP_SHA_CTXSIZE] = {
|
|
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
|
|
0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
|
|
0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
|
|
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55,
|
|
};
|
|
|
|
static u32 ccp_addr_lo(struct ccp_dma_info *info)
|
|
{
|
|
return lower_32_bits(info->address + info->offset);
|
|
}
|
|
|
|
static u32 ccp_addr_hi(struct ccp_dma_info *info)
|
|
{
|
|
return upper_32_bits(info->address + info->offset) & 0x0000ffff;
|
|
}
|
|
|
|
static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
|
|
{
|
|
struct ccp_cmd_queue *cmd_q = op->cmd_q;
|
|
struct ccp_device *ccp = cmd_q->ccp;
|
|
void __iomem *cr_addr;
|
|
u32 cr0, cmd;
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
/* We could read a status register to see how many free slots
|
|
* are actually available, but reading that register resets it
|
|
* and you could lose some error information.
|
|
*/
|
|
cmd_q->free_slots--;
|
|
|
|
cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
|
|
| (op->jobid << REQ0_JOBID_SHIFT)
|
|
| REQ0_WAIT_FOR_WRITE;
|
|
|
|
if (op->soc)
|
|
cr0 |= REQ0_STOP_ON_COMPLETE
|
|
| REQ0_INT_ON_COMPLETE;
|
|
|
|
if (op->ioc || !cmd_q->free_slots)
|
|
cr0 |= REQ0_INT_ON_COMPLETE;
|
|
|
|
/* Start at CMD_REQ1 */
|
|
cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
|
|
|
|
mutex_lock(&ccp->req_mutex);
|
|
|
|
/* Write CMD_REQ1 through CMD_REQx first */
|
|
for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
|
|
iowrite32(*(cr + i), cr_addr);
|
|
|
|
/* Tell the CCP to start */
|
|
wmb();
|
|
iowrite32(cr0, ccp->io_regs + CMD_REQ0);
|
|
|
|
mutex_unlock(&ccp->req_mutex);
|
|
|
|
if (cr0 & REQ0_INT_ON_COMPLETE) {
|
|
/* Wait for the job to complete */
|
|
ret = wait_event_interruptible(cmd_q->int_queue,
|
|
cmd_q->int_rcvd);
|
|
if (ret || cmd_q->cmd_error) {
|
|
/* On error delete all related jobs from the queue */
|
|
cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
|
|
| op->jobid;
|
|
|
|
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
|
|
|
|
if (!ret)
|
|
ret = -EIO;
|
|
} else if (op->soc) {
|
|
/* Delete just head job from the queue on SoC */
|
|
cmd = DEL_Q_ACTIVE
|
|
| (cmd_q->id << DEL_Q_ID_SHIFT)
|
|
| op->jobid;
|
|
|
|
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
|
|
}
|
|
|
|
cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
|
|
|
|
cmd_q->int_rcvd = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_perform_aes(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
|
|
| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
|
|
| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
|
|
| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
|
|
| (op->ksb_key << REQ1_KEY_KSB_SHIFT);
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
if (op->u.aes.mode == CCP_AES_MODE_CFB)
|
|
cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
|
|
|
|
if (op->eom)
|
|
cr[0] |= REQ1_EOM;
|
|
|
|
if (op->init)
|
|
cr[0] |= REQ1_INIT;
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_xts_aes(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
|
|
| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
|
|
| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
|
|
| (op->ksb_key << REQ1_KEY_KSB_SHIFT);
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
if (op->eom)
|
|
cr[0] |= REQ1_EOM;
|
|
|
|
if (op->init)
|
|
cr[0] |= REQ1_INIT;
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_sha(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
|
|
| (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
|
|
| REQ1_INIT;
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
|
|
if (op->eom) {
|
|
cr[0] |= REQ1_EOM;
|
|
cr[4] = lower_32_bits(op->u.sha.msg_bits);
|
|
cr[5] = upper_32_bits(op->u.sha.msg_bits);
|
|
} else {
|
|
cr[4] = 0;
|
|
cr[5] = 0;
|
|
}
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_rsa(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
|
|
| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
|
|
| (op->ksb_key << REQ1_KEY_KSB_SHIFT)
|
|
| REQ1_EOM;
|
|
cr[1] = op->u.rsa.input_len - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_passthru(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
|
|
| (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
|
|
| (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
|
|
|
|
if (op->src.type == CCP_MEMTYPE_SYSTEM)
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
else
|
|
cr[1] = op->dst.u.dma.length - 1;
|
|
|
|
if (op->src.type == CCP_MEMTYPE_SYSTEM) {
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
|
|
if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
|
|
cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT);
|
|
} else {
|
|
cr[2] = op->src.u.ksb * CCP_KSB_BYTES;
|
|
cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT);
|
|
}
|
|
|
|
if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
} else {
|
|
cr[4] = op->dst.u.ksb * CCP_KSB_BYTES;
|
|
cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT);
|
|
}
|
|
|
|
if (op->eom)
|
|
cr[0] |= REQ1_EOM;
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_ecc(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = REQ1_ECC_AFFINE_CONVERT
|
|
| (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
|
|
| (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
|
|
| REQ1_EOM;
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count)
|
|
{
|
|
int start;
|
|
|
|
for (;;) {
|
|
mutex_lock(&ccp->ksb_mutex);
|
|
|
|
start = (u32)bitmap_find_next_zero_area(ccp->ksb,
|
|
ccp->ksb_count,
|
|
ccp->ksb_start,
|
|
count, 0);
|
|
if (start <= ccp->ksb_count) {
|
|
bitmap_set(ccp->ksb, start, count);
|
|
|
|
mutex_unlock(&ccp->ksb_mutex);
|
|
break;
|
|
}
|
|
|
|
ccp->ksb_avail = 0;
|
|
|
|
mutex_unlock(&ccp->ksb_mutex);
|
|
|
|
/* Wait for KSB entries to become available */
|
|
if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail))
|
|
return 0;
|
|
}
|
|
|
|
return KSB_START + start;
|
|
}
|
|
|
|
static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start,
|
|
unsigned int count)
|
|
{
|
|
if (!start)
|
|
return;
|
|
|
|
mutex_lock(&ccp->ksb_mutex);
|
|
|
|
bitmap_clear(ccp->ksb, start - KSB_START, count);
|
|
|
|
ccp->ksb_avail = 1;
|
|
|
|
mutex_unlock(&ccp->ksb_mutex);
|
|
|
|
wake_up_interruptible_all(&ccp->ksb_queue);
|
|
}
|
|
|
|
static u32 ccp_gen_jobid(struct ccp_device *ccp)
|
|
{
|
|
return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
|
|
}
|
|
|
|
static void ccp_sg_free(struct ccp_sg_workarea *wa)
|
|
{
|
|
if (wa->dma_count)
|
|
dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
|
|
|
|
wa->dma_count = 0;
|
|
}
|
|
|
|
static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
|
|
struct scatterlist *sg, u64 len,
|
|
enum dma_data_direction dma_dir)
|
|
{
|
|
memset(wa, 0, sizeof(*wa));
|
|
|
|
wa->sg = sg;
|
|
if (!sg)
|
|
return 0;
|
|
|
|
wa->nents = sg_nents(sg);
|
|
wa->length = sg->length;
|
|
wa->bytes_left = len;
|
|
wa->sg_used = 0;
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
if (dma_dir == DMA_NONE)
|
|
return 0;
|
|
|
|
wa->dma_sg = sg;
|
|
wa->dma_dev = dev;
|
|
wa->dma_dir = dma_dir;
|
|
wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
|
|
if (!wa->dma_count)
|
|
return -ENOMEM;
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
|
|
{
|
|
unsigned int nbytes = min_t(u64, len, wa->bytes_left);
|
|
|
|
if (!wa->sg)
|
|
return;
|
|
|
|
wa->sg_used += nbytes;
|
|
wa->bytes_left -= nbytes;
|
|
if (wa->sg_used == wa->sg->length) {
|
|
wa->sg = sg_next(wa->sg);
|
|
wa->sg_used = 0;
|
|
}
|
|
}
|
|
|
|
static void ccp_dm_free(struct ccp_dm_workarea *wa)
|
|
{
|
|
if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
|
|
if (wa->address)
|
|
dma_pool_free(wa->dma_pool, wa->address,
|
|
wa->dma.address);
|
|
} else {
|
|
if (wa->dma.address)
|
|
dma_unmap_single(wa->dev, wa->dma.address, wa->length,
|
|
wa->dma.dir);
|
|
kfree(wa->address);
|
|
}
|
|
|
|
wa->address = NULL;
|
|
wa->dma.address = 0;
|
|
}
|
|
|
|
static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
|
|
struct ccp_cmd_queue *cmd_q,
|
|
unsigned int len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
memset(wa, 0, sizeof(*wa));
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
wa->dev = cmd_q->ccp->dev;
|
|
wa->length = len;
|
|
|
|
if (len <= CCP_DMAPOOL_MAX_SIZE) {
|
|
wa->dma_pool = cmd_q->dma_pool;
|
|
|
|
wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
|
|
&wa->dma.address);
|
|
if (!wa->address)
|
|
return -ENOMEM;
|
|
|
|
wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
|
|
|
|
memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
|
|
} else {
|
|
wa->address = kzalloc(len, GFP_KERNEL);
|
|
if (!wa->address)
|
|
return -ENOMEM;
|
|
|
|
wa->dma.address = dma_map_single(wa->dev, wa->address, len,
|
|
dir);
|
|
if (!wa->dma.address)
|
|
return -ENOMEM;
|
|
|
|
wa->dma.length = len;
|
|
}
|
|
wa->dma.dir = dir;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
|
|
struct scatterlist *sg, unsigned int sg_offset,
|
|
unsigned int len)
|
|
{
|
|
WARN_ON(!wa->address);
|
|
|
|
scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
|
|
0);
|
|
}
|
|
|
|
static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
|
|
struct scatterlist *sg, unsigned int sg_offset,
|
|
unsigned int len)
|
|
{
|
|
WARN_ON(!wa->address);
|
|
|
|
scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
|
|
1);
|
|
}
|
|
|
|
static void ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
|
|
struct scatterlist *sg,
|
|
unsigned int len, unsigned int se_len,
|
|
bool sign_extend)
|
|
{
|
|
unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
|
|
u8 buffer[CCP_REVERSE_BUF_SIZE];
|
|
|
|
BUG_ON(se_len > sizeof(buffer));
|
|
|
|
sg_offset = len;
|
|
dm_offset = 0;
|
|
nbytes = len;
|
|
while (nbytes) {
|
|
ksb_len = min_t(unsigned int, nbytes, se_len);
|
|
sg_offset -= ksb_len;
|
|
|
|
scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0);
|
|
for (i = 0; i < ksb_len; i++)
|
|
wa->address[dm_offset + i] = buffer[ksb_len - i - 1];
|
|
|
|
dm_offset += ksb_len;
|
|
nbytes -= ksb_len;
|
|
|
|
if ((ksb_len != se_len) && sign_extend) {
|
|
/* Must sign-extend to nearest sign-extend length */
|
|
if (wa->address[dm_offset - 1] & 0x80)
|
|
memset(wa->address + dm_offset, 0xff,
|
|
se_len - ksb_len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
|
|
struct scatterlist *sg,
|
|
unsigned int len)
|
|
{
|
|
unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
|
|
u8 buffer[CCP_REVERSE_BUF_SIZE];
|
|
|
|
sg_offset = 0;
|
|
dm_offset = len;
|
|
nbytes = len;
|
|
while (nbytes) {
|
|
ksb_len = min_t(unsigned int, nbytes, sizeof(buffer));
|
|
dm_offset -= ksb_len;
|
|
|
|
for (i = 0; i < ksb_len; i++)
|
|
buffer[ksb_len - i - 1] = wa->address[dm_offset + i];
|
|
scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1);
|
|
|
|
sg_offset += ksb_len;
|
|
nbytes -= ksb_len;
|
|
}
|
|
}
|
|
|
|
static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
|
|
{
|
|
ccp_dm_free(&data->dm_wa);
|
|
ccp_sg_free(&data->sg_wa);
|
|
}
|
|
|
|
static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
|
|
struct scatterlist *sg, u64 sg_len,
|
|
unsigned int dm_len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
int ret;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
|
|
ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
|
|
dir);
|
|
if (ret)
|
|
goto e_err;
|
|
|
|
ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
|
|
if (ret)
|
|
goto e_err;
|
|
|
|
return 0;
|
|
|
|
e_err:
|
|
ccp_free_data(data, cmd_q);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
|
|
{
|
|
struct ccp_sg_workarea *sg_wa = &data->sg_wa;
|
|
struct ccp_dm_workarea *dm_wa = &data->dm_wa;
|
|
unsigned int buf_count, nbytes;
|
|
|
|
/* Clear the buffer if setting it */
|
|
if (!from)
|
|
memset(dm_wa->address, 0, dm_wa->length);
|
|
|
|
if (!sg_wa->sg)
|
|
return 0;
|
|
|
|
/* Perform the copy operation
|
|
* nbytes will always be <= UINT_MAX because dm_wa->length is
|
|
* an unsigned int
|
|
*/
|
|
nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
|
|
scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
|
|
nbytes, from);
|
|
|
|
/* Update the structures and generate the count */
|
|
buf_count = 0;
|
|
while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
|
|
nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
|
|
dm_wa->length - buf_count);
|
|
nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
|
|
|
|
buf_count += nbytes;
|
|
ccp_update_sg_workarea(sg_wa, nbytes);
|
|
}
|
|
|
|
return buf_count;
|
|
}
|
|
|
|
static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
|
|
{
|
|
return ccp_queue_buf(data, 0);
|
|
}
|
|
|
|
static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
|
|
{
|
|
return ccp_queue_buf(data, 1);
|
|
}
|
|
|
|
static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
|
|
struct ccp_op *op, unsigned int block_size,
|
|
bool blocksize_op)
|
|
{
|
|
unsigned int sg_src_len, sg_dst_len, op_len;
|
|
|
|
/* The CCP can only DMA from/to one address each per operation. This
|
|
* requires that we find the smallest DMA area between the source
|
|
* and destination. The resulting len values will always be <= UINT_MAX
|
|
* because the dma length is an unsigned int.
|
|
*/
|
|
sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
|
|
sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
|
|
|
|
if (dst) {
|
|
sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
|
|
sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
|
|
op_len = min(sg_src_len, sg_dst_len);
|
|
} else
|
|
op_len = sg_src_len;
|
|
|
|
/* The data operation length will be at least block_size in length
|
|
* or the smaller of available sg room remaining for the source or
|
|
* the destination
|
|
*/
|
|
op_len = max(op_len, block_size);
|
|
|
|
/* Unless we have to buffer data, there's no reason to wait */
|
|
op->soc = 0;
|
|
|
|
if (sg_src_len < block_size) {
|
|
/* Not enough data in the sg element, so it
|
|
* needs to be buffered into a blocksize chunk
|
|
*/
|
|
int cp_len = ccp_fill_queue_buf(src);
|
|
|
|
op->soc = 1;
|
|
op->src.u.dma.address = src->dm_wa.dma.address;
|
|
op->src.u.dma.offset = 0;
|
|
op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
|
|
} else {
|
|
/* Enough data in the sg element, but we need to
|
|
* adjust for any previously copied data
|
|
*/
|
|
op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
|
|
op->src.u.dma.offset = src->sg_wa.sg_used;
|
|
op->src.u.dma.length = op_len & ~(block_size - 1);
|
|
|
|
ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
|
|
}
|
|
|
|
if (dst) {
|
|
if (sg_dst_len < block_size) {
|
|
/* Not enough room in the sg element or we're on the
|
|
* last piece of data (when using padding), so the
|
|
* output needs to be buffered into a blocksize chunk
|
|
*/
|
|
op->soc = 1;
|
|
op->dst.u.dma.address = dst->dm_wa.dma.address;
|
|
op->dst.u.dma.offset = 0;
|
|
op->dst.u.dma.length = op->src.u.dma.length;
|
|
} else {
|
|
/* Enough room in the sg element, but we need to
|
|
* adjust for any previously used area
|
|
*/
|
|
op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
|
|
op->dst.u.dma.offset = dst->sg_wa.sg_used;
|
|
op->dst.u.dma.length = op->src.u.dma.length;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
|
|
struct ccp_op *op)
|
|
{
|
|
op->init = 0;
|
|
|
|
if (dst) {
|
|
if (op->dst.u.dma.address == dst->dm_wa.dma.address)
|
|
ccp_empty_queue_buf(dst);
|
|
else
|
|
ccp_update_sg_workarea(&dst->sg_wa,
|
|
op->dst.u.dma.length);
|
|
}
|
|
}
|
|
|
|
static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
|
|
u32 byte_swap, bool from)
|
|
{
|
|
struct ccp_op op;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = jobid;
|
|
op.eom = 1;
|
|
|
|
if (from) {
|
|
op.soc = 1;
|
|
op.src.type = CCP_MEMTYPE_KSB;
|
|
op.src.u.ksb = ksb;
|
|
op.dst.type = CCP_MEMTYPE_SYSTEM;
|
|
op.dst.u.dma.address = wa->dma.address;
|
|
op.dst.u.dma.length = wa->length;
|
|
} else {
|
|
op.src.type = CCP_MEMTYPE_SYSTEM;
|
|
op.src.u.dma.address = wa->dma.address;
|
|
op.src.u.dma.length = wa->length;
|
|
op.dst.type = CCP_MEMTYPE_KSB;
|
|
op.dst.u.ksb = ksb;
|
|
}
|
|
|
|
op.u.passthru.byte_swap = byte_swap;
|
|
|
|
return ccp_perform_passthru(&op);
|
|
}
|
|
|
|
static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
|
|
u32 byte_swap)
|
|
{
|
|
return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false);
|
|
}
|
|
|
|
static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
|
|
u32 byte_swap)
|
|
{
|
|
return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true);
|
|
}
|
|
|
|
static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_aes_engine *aes = &cmd->u.aes;
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src;
|
|
struct ccp_op op;
|
|
unsigned int dm_offset;
|
|
int ret;
|
|
|
|
if (!((aes->key_len == AES_KEYSIZE_128) ||
|
|
(aes->key_len == AES_KEYSIZE_192) ||
|
|
(aes->key_len == AES_KEYSIZE_256)))
|
|
return -EINVAL;
|
|
|
|
if (aes->src_len & (AES_BLOCK_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
if (aes->iv_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!aes->key || !aes->iv || !aes->src)
|
|
return -EINVAL;
|
|
|
|
if (aes->cmac_final) {
|
|
if (aes->cmac_key_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!aes->cmac_key)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
|
|
BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
|
|
|
|
ret = -EIO;
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
op.ksb_key = cmd_q->ksb_key;
|
|
op.ksb_ctx = cmd_q->ksb_ctx;
|
|
op.init = 1;
|
|
op.u.aes.type = aes->type;
|
|
op.u.aes.mode = aes->mode;
|
|
op.u.aes.action = aes->action;
|
|
|
|
/* All supported key sizes fit in a single (32-byte) KSB entry
|
|
* and must be in little endian format. Use the 256-bit byte
|
|
* swap passthru option to convert from big endian to little
|
|
* endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dm_offset = CCP_KSB_BYTES - aes->key_len;
|
|
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* The AES context fits in a single (32-byte) KSB entry and
|
|
* must be in little endian format. Use the 256-bit byte swap
|
|
* passthru option to convert from big endian to little endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
/* Send data to the CCP AES engine */
|
|
ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
|
|
if (aes->cmac_final && !src.sg_wa.bytes_left) {
|
|
op.eom = 1;
|
|
|
|
/* Push the K1/K2 key to the CCP now */
|
|
ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid,
|
|
op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
|
|
ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
|
|
aes->cmac_key_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
}
|
|
|
|
ret = ccp_perform_aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
|
|
ccp_process_data(&src, NULL, &op);
|
|
}
|
|
|
|
/* Retrieve the AES context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping
|
|
*/
|
|
ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
|
|
/* ...but we only need AES_BLOCK_SIZE bytes */
|
|
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_aes_engine *aes = &cmd->u.aes;
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
unsigned int dm_offset;
|
|
bool in_place = false;
|
|
int ret;
|
|
|
|
if (aes->mode == CCP_AES_MODE_CMAC)
|
|
return ccp_run_aes_cmac_cmd(cmd_q, cmd);
|
|
|
|
if (!((aes->key_len == AES_KEYSIZE_128) ||
|
|
(aes->key_len == AES_KEYSIZE_192) ||
|
|
(aes->key_len == AES_KEYSIZE_256)))
|
|
return -EINVAL;
|
|
|
|
if (((aes->mode == CCP_AES_MODE_ECB) ||
|
|
(aes->mode == CCP_AES_MODE_CBC) ||
|
|
(aes->mode == CCP_AES_MODE_CFB)) &&
|
|
(aes->src_len & (AES_BLOCK_SIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!aes->key || !aes->src || !aes->dst)
|
|
return -EINVAL;
|
|
|
|
if (aes->mode != CCP_AES_MODE_ECB) {
|
|
if (aes->iv_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!aes->iv)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
|
|
BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
|
|
|
|
ret = -EIO;
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
op.ksb_key = cmd_q->ksb_key;
|
|
op.ksb_ctx = cmd_q->ksb_ctx;
|
|
op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
|
|
op.u.aes.type = aes->type;
|
|
op.u.aes.mode = aes->mode;
|
|
op.u.aes.action = aes->action;
|
|
|
|
/* All supported key sizes fit in a single (32-byte) KSB entry
|
|
* and must be in little endian format. Use the 256-bit byte
|
|
* swap passthru option to convert from big endian to little
|
|
* endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dm_offset = CCP_KSB_BYTES - aes->key_len;
|
|
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* The AES context fits in a single (32-byte) KSB entry and
|
|
* must be in little endian format. Use the 256-bit byte swap
|
|
* passthru option to convert from big endian to little endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
if (aes->mode != CCP_AES_MODE_ECB) {
|
|
/* Load the AES context - conver to LE */
|
|
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
}
|
|
|
|
/* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(aes->src) == sg_virt(aes->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
|
|
AES_BLOCK_SIZE,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
if (in_place)
|
|
dst = src;
|
|
else {
|
|
ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
|
|
AES_BLOCK_SIZE, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP AES engine */
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
|
|
if (!src.sg_wa.bytes_left) {
|
|
op.eom = 1;
|
|
|
|
/* Since we don't retrieve the AES context in ECB
|
|
* mode we have to wait for the operation to complete
|
|
* on the last piece of data
|
|
*/
|
|
if (aes->mode == CCP_AES_MODE_ECB)
|
|
op.soc = 1;
|
|
}
|
|
|
|
ret = ccp_perform_aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_process_data(&src, &dst, &op);
|
|
}
|
|
|
|
if (aes->mode != CCP_AES_MODE_ECB) {
|
|
/* Retrieve the AES context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping
|
|
*/
|
|
ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* ...but we only need AES_BLOCK_SIZE bytes */
|
|
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
}
|
|
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_xts_aes_engine *xts = &cmd->u.xts;
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
unsigned int unit_size, dm_offset;
|
|
bool in_place = false;
|
|
int ret;
|
|
|
|
switch (xts->unit_size) {
|
|
case CCP_XTS_AES_UNIT_SIZE_16:
|
|
unit_size = 16;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_512:
|
|
unit_size = 512;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_1024:
|
|
unit_size = 1024;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_2048:
|
|
unit_size = 2048;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_4096:
|
|
unit_size = 4096;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (xts->key_len != AES_KEYSIZE_128)
|
|
return -EINVAL;
|
|
|
|
if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (xts->iv_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!xts->key || !xts->iv || !xts->src || !xts->dst)
|
|
return -EINVAL;
|
|
|
|
BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1);
|
|
BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1);
|
|
|
|
ret = -EIO;
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
op.ksb_key = cmd_q->ksb_key;
|
|
op.ksb_ctx = cmd_q->ksb_ctx;
|
|
op.init = 1;
|
|
op.u.xts.action = xts->action;
|
|
op.u.xts.unit_size = xts->unit_size;
|
|
|
|
/* All supported key sizes fit in a single (32-byte) KSB entry
|
|
* and must be in little endian format. Use the 256-bit byte
|
|
* swap passthru option to convert from big endian to little
|
|
* endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128;
|
|
ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
|
|
ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* The AES context fits in a single (32-byte) KSB entry and
|
|
* for XTS is already in little endian format so no byte swapping
|
|
* is needed.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
/* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(xts->src) == sg_virt(xts->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
|
|
unit_size,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
if (in_place)
|
|
dst = src;
|
|
else {
|
|
ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
|
|
unit_size, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP AES engine */
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, &dst, &op, unit_size, true);
|
|
if (!src.sg_wa.bytes_left)
|
|
op.eom = 1;
|
|
|
|
ret = ccp_perform_xts_aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_process_data(&src, &dst, &op);
|
|
}
|
|
|
|
/* Retrieve the AES context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping
|
|
*/
|
|
ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* ...but we only need AES_BLOCK_SIZE bytes */
|
|
dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
|
|
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_sha_engine *sha = &cmd->u.sha;
|
|
struct ccp_dm_workarea ctx;
|
|
struct ccp_data src;
|
|
struct ccp_op op;
|
|
int ret;
|
|
|
|
if (sha->ctx_len != CCP_SHA_CTXSIZE)
|
|
return -EINVAL;
|
|
|
|
if (!sha->ctx)
|
|
return -EINVAL;
|
|
|
|
if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!sha->src_len) {
|
|
const u8 *sha_zero;
|
|
|
|
/* Not final, just return */
|
|
if (!sha->final)
|
|
return 0;
|
|
|
|
/* CCP can't do a zero length sha operation so the caller
|
|
* must buffer the data.
|
|
*/
|
|
if (sha->msg_bits)
|
|
return -EINVAL;
|
|
|
|
/* A sha operation for a message with a total length of zero,
|
|
* return known result.
|
|
*/
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
sha_zero = ccp_sha1_zero;
|
|
break;
|
|
case CCP_SHA_TYPE_224:
|
|
sha_zero = ccp_sha224_zero;
|
|
break;
|
|
case CCP_SHA_TYPE_256:
|
|
sha_zero = ccp_sha256_zero;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
|
|
sha->ctx_len, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!sha->src)
|
|
return -EINVAL;
|
|
|
|
BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1);
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
op.ksb_ctx = cmd_q->ksb_ctx;
|
|
op.u.sha.type = sha->type;
|
|
op.u.sha.msg_bits = sha->msg_bits;
|
|
|
|
/* The SHA context fits in a single (32-byte) KSB entry and
|
|
* must be in little endian format. Use the 256-bit byte swap
|
|
* passthru option to convert from big endian to little endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_SHA_KSB_COUNT * CCP_KSB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sha->first) {
|
|
const __be32 *init;
|
|
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
init = ccp_sha1_init;
|
|
break;
|
|
case CCP_SHA_TYPE_224:
|
|
init = ccp_sha224_init;
|
|
break;
|
|
case CCP_SHA_TYPE_256:
|
|
init = ccp_sha256_init;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto e_ctx;
|
|
}
|
|
memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
|
|
} else
|
|
ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
|
|
|
|
ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
/* Send data to the CCP SHA engine */
|
|
ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
|
|
CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
|
|
if (sha->final && !src.sg_wa.bytes_left)
|
|
op.eom = 1;
|
|
|
|
ret = ccp_perform_sha(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_data;
|
|
}
|
|
|
|
ccp_process_data(&src, NULL, &op);
|
|
}
|
|
|
|
/* Retrieve the SHA context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping to BE
|
|
*/
|
|
ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_data;
|
|
}
|
|
|
|
ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
|
|
|
|
if (sha->final && sha->opad) {
|
|
/* HMAC operation, recursively perform final SHA */
|
|
struct ccp_cmd hmac_cmd;
|
|
struct scatterlist sg;
|
|
u64 block_size, digest_size;
|
|
u8 *hmac_buf;
|
|
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
block_size = SHA1_BLOCK_SIZE;
|
|
digest_size = SHA1_DIGEST_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_224:
|
|
block_size = SHA224_BLOCK_SIZE;
|
|
digest_size = SHA224_DIGEST_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_256:
|
|
block_size = SHA256_BLOCK_SIZE;
|
|
digest_size = SHA256_DIGEST_SIZE;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto e_data;
|
|
}
|
|
|
|
if (sha->opad_len != block_size) {
|
|
ret = -EINVAL;
|
|
goto e_data;
|
|
}
|
|
|
|
hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
|
|
if (!hmac_buf) {
|
|
ret = -ENOMEM;
|
|
goto e_data;
|
|
}
|
|
sg_init_one(&sg, hmac_buf, block_size + digest_size);
|
|
|
|
scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
|
|
memcpy(hmac_buf + block_size, ctx.address, digest_size);
|
|
|
|
memset(&hmac_cmd, 0, sizeof(hmac_cmd));
|
|
hmac_cmd.engine = CCP_ENGINE_SHA;
|
|
hmac_cmd.u.sha.type = sha->type;
|
|
hmac_cmd.u.sha.ctx = sha->ctx;
|
|
hmac_cmd.u.sha.ctx_len = sha->ctx_len;
|
|
hmac_cmd.u.sha.src = &sg;
|
|
hmac_cmd.u.sha.src_len = block_size + digest_size;
|
|
hmac_cmd.u.sha.opad = NULL;
|
|
hmac_cmd.u.sha.opad_len = 0;
|
|
hmac_cmd.u.sha.first = 1;
|
|
hmac_cmd.u.sha.final = 1;
|
|
hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
|
|
|
|
ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
|
|
if (ret)
|
|
cmd->engine_error = hmac_cmd.engine_error;
|
|
|
|
kfree(hmac_buf);
|
|
}
|
|
|
|
e_data:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_rsa_engine *rsa = &cmd->u.rsa;
|
|
struct ccp_dm_workarea exp, src;
|
|
struct ccp_data dst;
|
|
struct ccp_op op;
|
|
unsigned int ksb_count, i_len, o_len;
|
|
int ret;
|
|
|
|
if (rsa->key_size > CCP_RSA_MAX_WIDTH)
|
|
return -EINVAL;
|
|
|
|
if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
|
|
return -EINVAL;
|
|
|
|
/* The RSA modulus must precede the message being acted upon, so
|
|
* it must be copied to a DMA area where the message and the
|
|
* modulus can be concatenated. Therefore the input buffer
|
|
* length required is twice the output buffer length (which
|
|
* must be a multiple of 256-bits).
|
|
*/
|
|
o_len = ((rsa->key_size + 255) / 256) * 32;
|
|
i_len = o_len * 2;
|
|
|
|
ksb_count = o_len / CCP_KSB_BYTES;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count);
|
|
if (!op.ksb_key)
|
|
return -EIO;
|
|
|
|
/* The RSA exponent may span multiple (32-byte) KSB entries and must
|
|
* be in little endian format. Reverse copy each 32-byte chunk
|
|
* of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
|
|
* and each byte within that chunk and do not perform any byte swap
|
|
* operations on the passthru operation.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ksb;
|
|
|
|
ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len, CCP_KSB_BYTES,
|
|
true);
|
|
ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_exp;
|
|
}
|
|
|
|
/* Concatenate the modulus and the message. Both the modulus and
|
|
* the operands must be in little endian format. Since the input
|
|
* is in big endian format it must be converted.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_exp;
|
|
|
|
ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len, CCP_KSB_BYTES,
|
|
true);
|
|
src.address += o_len; /* Adjust the address for the copy operation */
|
|
ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len, CCP_KSB_BYTES,
|
|
true);
|
|
src.address -= o_len; /* Reset the address to original value */
|
|
|
|
/* Prepare the output area for the operation */
|
|
ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
|
|
o_len, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
op.soc = 1;
|
|
op.src.u.dma.address = src.dma.address;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = i_len;
|
|
op.dst.u.dma.address = dst.dm_wa.dma.address;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = o_len;
|
|
|
|
op.u.rsa.mod_size = rsa->key_size;
|
|
op.u.rsa.input_len = i_len;
|
|
|
|
ret = ccp_perform_rsa(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
|
|
|
|
e_dst:
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_dm_free(&src);
|
|
|
|
e_exp:
|
|
ccp_dm_free(&exp);
|
|
|
|
e_ksb:
|
|
ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_passthru_engine *pt = &cmd->u.passthru;
|
|
struct ccp_dm_workarea mask;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
bool in_place = false;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!pt->src || !pt->dst)
|
|
return -EINVAL;
|
|
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
|
|
if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
|
|
return -EINVAL;
|
|
if (!pt->mask)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
|
|
/* Load the mask */
|
|
op.ksb_key = cmd_q->ksb_key;
|
|
|
|
ret = ccp_init_dm_workarea(&mask, cmd_q,
|
|
CCP_PASSTHRU_KSB_COUNT *
|
|
CCP_KSB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
|
|
ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_mask;
|
|
}
|
|
}
|
|
|
|
/* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(pt->src) == sg_virt(pt->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
|
|
CCP_PASSTHRU_MASKSIZE,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_mask;
|
|
|
|
if (in_place)
|
|
dst = src;
|
|
else {
|
|
ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
|
|
CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP Passthru engine
|
|
* Because the CCP engine works on a single source and destination
|
|
* dma address at a time, each entry in the source scatterlist
|
|
* (after the dma_map_sg call) must be less than or equal to the
|
|
* (remaining) length in the destination scatterlist entry and the
|
|
* length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
|
|
*/
|
|
dst.sg_wa.sg_used = 0;
|
|
for (i = 1; i <= src.sg_wa.dma_count; i++) {
|
|
if (!dst.sg_wa.sg ||
|
|
(dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
|
|
ret = -EINVAL;
|
|
goto e_dst;
|
|
}
|
|
|
|
if (i == src.sg_wa.dma_count) {
|
|
op.eom = 1;
|
|
op.soc = 1;
|
|
}
|
|
|
|
op.src.type = CCP_MEMTYPE_SYSTEM;
|
|
op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
|
|
|
|
op.dst.type = CCP_MEMTYPE_SYSTEM;
|
|
op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
|
|
op.dst.u.dma.offset = dst.sg_wa.sg_used;
|
|
op.dst.u.dma.length = op.src.u.dma.length;
|
|
|
|
ret = ccp_perform_passthru(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
dst.sg_wa.sg_used += src.sg_wa.sg->length;
|
|
if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
|
|
dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
|
|
dst.sg_wa.sg_used = 0;
|
|
}
|
|
src.sg_wa.sg = sg_next(src.sg_wa.sg);
|
|
}
|
|
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_mask:
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
|
|
ccp_dm_free(&mask);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_ecc_engine *ecc = &cmd->u.ecc;
|
|
struct ccp_dm_workarea src, dst;
|
|
struct ccp_op op;
|
|
int ret;
|
|
u8 *save;
|
|
|
|
if (!ecc->u.mm.operand_1 ||
|
|
(ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
|
|
if (!ecc->u.mm.operand_2 ||
|
|
(ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (!ecc->u.mm.result ||
|
|
(ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
|
|
/* Concatenate the modulus and the operands. Both the modulus and
|
|
* the operands must be in little endian format. Since the input
|
|
* is in big endian format it must be converted and placed in a
|
|
* fixed length buffer.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Save the workarea address since it is updated in order to perform
|
|
* the concatenation
|
|
*/
|
|
save = src.address;
|
|
|
|
/* Copy the ECC modulus */
|
|
ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Copy the first operand */
|
|
ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
|
|
ecc->u.mm.operand_1_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
|
|
/* Copy the second operand */
|
|
ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
|
|
ecc->u.mm.operand_2_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
}
|
|
|
|
/* Restore the workarea address */
|
|
src.address = save;
|
|
|
|
/* Prepare the output area for the operation */
|
|
ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
op.soc = 1;
|
|
op.src.u.dma.address = src.dma.address;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = src.length;
|
|
op.dst.u.dma.address = dst.dma.address;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = dst.length;
|
|
|
|
op.u.ecc.function = cmd->u.ecc.function;
|
|
|
|
ret = ccp_perform_ecc(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ecc->ecc_result = le16_to_cpup(
|
|
(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
|
|
if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
|
|
ret = -EIO;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* Save the ECC result */
|
|
ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
|
|
|
|
e_dst:
|
|
ccp_dm_free(&dst);
|
|
|
|
e_src:
|
|
ccp_dm_free(&src);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_ecc_engine *ecc = &cmd->u.ecc;
|
|
struct ccp_dm_workarea src, dst;
|
|
struct ccp_op op;
|
|
int ret;
|
|
u8 *save;
|
|
|
|
if (!ecc->u.pm.point_1.x ||
|
|
(ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
|
|
!ecc->u.pm.point_1.y ||
|
|
(ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
|
|
if (!ecc->u.pm.point_2.x ||
|
|
(ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
|
|
!ecc->u.pm.point_2.y ||
|
|
(ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
} else {
|
|
if (!ecc->u.pm.domain_a ||
|
|
(ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
|
|
if (!ecc->u.pm.scalar ||
|
|
(ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ecc->u.pm.result.x ||
|
|
(ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
|
|
!ecc->u.pm.result.y ||
|
|
(ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = ccp_gen_jobid(cmd_q->ccp);
|
|
|
|
/* Concatenate the modulus and the operands. Both the modulus and
|
|
* the operands must be in little endian format. Since the input
|
|
* is in big endian format it must be converted and placed in a
|
|
* fixed length buffer.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Save the workarea address since it is updated in order to perform
|
|
* the concatenation
|
|
*/
|
|
save = src.address;
|
|
|
|
/* Copy the ECC modulus */
|
|
ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Copy the first point X and Y coordinate */
|
|
ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
|
|
ecc->u.pm.point_1.x_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
|
|
ecc->u.pm.point_1.y_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Set the first point Z coordianate to 1 */
|
|
*(src.address) = 0x01;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
|
|
/* Copy the second point X and Y coordinate */
|
|
ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
|
|
ecc->u.pm.point_2.x_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
|
|
ecc->u.pm.point_2.y_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Set the second point Z coordianate to 1 */
|
|
*(src.address) = 0x01;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
} else {
|
|
/* Copy the Domain "a" parameter */
|
|
ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
|
|
ecc->u.pm.domain_a_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
|
|
/* Copy the scalar value */
|
|
ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
|
|
ecc->u.pm.scalar_len,
|
|
CCP_ECC_OPERAND_SIZE, true);
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Restore the workarea address */
|
|
src.address = save;
|
|
|
|
/* Prepare the output area for the operation */
|
|
ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
op.soc = 1;
|
|
op.src.u.dma.address = src.dma.address;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = src.length;
|
|
op.dst.u.dma.address = dst.dma.address;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = dst.length;
|
|
|
|
op.u.ecc.function = cmd->u.ecc.function;
|
|
|
|
ret = ccp_perform_ecc(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ecc->ecc_result = le16_to_cpup(
|
|
(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
|
|
if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
|
|
ret = -EIO;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* Save the workarea address since it is updated as we walk through
|
|
* to copy the point math result
|
|
*/
|
|
save = dst.address;
|
|
|
|
/* Save the ECC result X and Y coordinates */
|
|
ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
|
|
CCP_ECC_MODULUS_BYTES);
|
|
dst.address += CCP_ECC_OUTPUT_SIZE;
|
|
ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
|
|
CCP_ECC_MODULUS_BYTES);
|
|
dst.address += CCP_ECC_OUTPUT_SIZE;
|
|
|
|
/* Restore the workarea address */
|
|
dst.address = save;
|
|
|
|
e_dst:
|
|
ccp_dm_free(&dst);
|
|
|
|
e_src:
|
|
ccp_dm_free(&src);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_ecc_engine *ecc = &cmd->u.ecc;
|
|
|
|
ecc->ecc_result = 0;
|
|
|
|
if (!ecc->mod ||
|
|
(ecc->mod_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
switch (ecc->function) {
|
|
case CCP_ECC_FUNCTION_MMUL_384BIT:
|
|
case CCP_ECC_FUNCTION_MADD_384BIT:
|
|
case CCP_ECC_FUNCTION_MINV_384BIT:
|
|
return ccp_run_ecc_mm_cmd(cmd_q, cmd);
|
|
|
|
case CCP_ECC_FUNCTION_PADD_384BIT:
|
|
case CCP_ECC_FUNCTION_PMUL_384BIT:
|
|
case CCP_ECC_FUNCTION_PDBL_384BIT:
|
|
return ccp_run_ecc_pm_cmd(cmd_q, cmd);
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
int ret;
|
|
|
|
cmd->engine_error = 0;
|
|
cmd_q->cmd_error = 0;
|
|
cmd_q->int_rcvd = 0;
|
|
cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
|
|
|
|
switch (cmd->engine) {
|
|
case CCP_ENGINE_AES:
|
|
ret = ccp_run_aes_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_XTS_AES_128:
|
|
ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_SHA:
|
|
ret = ccp_run_sha_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_RSA:
|
|
ret = ccp_run_rsa_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_PASSTHRU:
|
|
ret = ccp_run_passthru_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_ECC:
|
|
ret = ccp_run_ecc_cmd(cmd_q, cmd);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|