linux/arch/um/drivers/vector_kern.c
Mike Rapoport 8a7f97b902 treewide: add checks for the return value of memblock_alloc*()
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error.  The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.

The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.

  @@
  expression ptr, size, align;
  @@
  ptr = memblock_alloc(size, align);
  + if (!ptr)
  + 	panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);

[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
  Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
  Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
  Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com>		[c-sky]
Acked-by: Paul Burton <paul.burton@mips.com>		[MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>	[s390]
Reviewed-by: Juergen Gross <jgross@suse.com>		[Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com>		[xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12 10:04:02 -07:00

1640 lines
38 KiB
C

/*
* Copyright (C) 2017 - Cambridge Greys Limited
* Copyright (C) 2011 - 2014 Cisco Systems Inc
* Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
* James Leu (jleu@mindspring.net).
* Copyright (C) 2001 by various other people who didn't put their name here.
* Licensed under the GPL.
*/
#include <linux/version.h>
#include <linux/memblock.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <init.h>
#include <irq_kern.h>
#include <irq_user.h>
#include <net_kern.h>
#include <os.h>
#include "mconsole_kern.h"
#include "vector_user.h"
#include "vector_kern.h"
/*
* Adapted from network devices with the following major changes:
* All transports are static - simplifies the code significantly
* Multiple FDs/IRQs per device
* Vector IO optionally used for read/write, falling back to legacy
* based on configuration and/or availability
* Configuration is no longer positional - L2TPv3 and GRE require up to
* 10 parameters, passing this as positional is not fit for purpose.
* Only socket transports are supported
*/
#define DRIVER_NAME "uml-vector"
#define DRIVER_VERSION "01"
struct vector_cmd_line_arg {
struct list_head list;
int unit;
char *arguments;
};
struct vector_device {
struct list_head list;
struct net_device *dev;
struct platform_device pdev;
int unit;
int opened;
};
static LIST_HEAD(vec_cmd_line);
static DEFINE_SPINLOCK(vector_devices_lock);
static LIST_HEAD(vector_devices);
static int driver_registered;
static void vector_eth_configure(int n, struct arglist *def);
/* Argument accessors to set variables (and/or set default values)
* mtu, buffer sizing, default headroom, etc
*/
#define DEFAULT_HEADROOM 2
#define SAFETY_MARGIN 32
#define DEFAULT_VECTOR_SIZE 64
#define TX_SMALL_PACKET 128
#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
static const struct {
const char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "rx_queue_max" },
{ "rx_queue_running_average" },
{ "tx_queue_max" },
{ "tx_queue_running_average" },
{ "rx_encaps_errors" },
{ "tx_timeout_count" },
{ "tx_restart_queue" },
{ "tx_kicks" },
{ "tx_flow_control_xon" },
{ "tx_flow_control_xoff" },
{ "rx_csum_offload_good" },
{ "rx_csum_offload_errors"},
{ "sg_ok"},
{ "sg_linearized"},
};
#define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
static void vector_reset_stats(struct vector_private *vp)
{
vp->estats.rx_queue_max = 0;
vp->estats.rx_queue_running_average = 0;
vp->estats.tx_queue_max = 0;
vp->estats.tx_queue_running_average = 0;
vp->estats.rx_encaps_errors = 0;
vp->estats.tx_timeout_count = 0;
vp->estats.tx_restart_queue = 0;
vp->estats.tx_kicks = 0;
vp->estats.tx_flow_control_xon = 0;
vp->estats.tx_flow_control_xoff = 0;
vp->estats.sg_ok = 0;
vp->estats.sg_linearized = 0;
}
static int get_mtu(struct arglist *def)
{
char *mtu = uml_vector_fetch_arg(def, "mtu");
long result;
if (mtu != NULL) {
if (kstrtoul(mtu, 10, &result) == 0)
return result;
}
return ETH_MAX_PACKET;
}
static int get_depth(struct arglist *def)
{
char *mtu = uml_vector_fetch_arg(def, "depth");
long result;
if (mtu != NULL) {
if (kstrtoul(mtu, 10, &result) == 0)
return result;
}
return DEFAULT_VECTOR_SIZE;
}
static int get_headroom(struct arglist *def)
{
char *mtu = uml_vector_fetch_arg(def, "headroom");
long result;
if (mtu != NULL) {
if (kstrtoul(mtu, 10, &result) == 0)
return result;
}
return DEFAULT_HEADROOM;
}
static int get_req_size(struct arglist *def)
{
char *gro = uml_vector_fetch_arg(def, "gro");
long result;
if (gro != NULL) {
if (kstrtoul(gro, 10, &result) == 0) {
if (result > 0)
return 65536;
}
}
return get_mtu(def) + ETH_HEADER_OTHER +
get_headroom(def) + SAFETY_MARGIN;
}
static int get_transport_options(struct arglist *def)
{
char *transport = uml_vector_fetch_arg(def, "transport");
char *vector = uml_vector_fetch_arg(def, "vec");
int vec_rx = VECTOR_RX;
int vec_tx = VECTOR_TX;
long parsed;
if (vector != NULL) {
if (kstrtoul(vector, 10, &parsed) == 0) {
if (parsed == 0) {
vec_rx = 0;
vec_tx = 0;
}
}
}
if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
return (vec_rx | VECTOR_BPF);
if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
return (vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
return (vec_rx | vec_tx);
}
/* A mini-buffer for packet drop read
* All of our supported transports are datagram oriented and we always
* read using recvmsg or recvmmsg. If we pass a buffer which is smaller
* than the packet size it still counts as full packet read and will
* clean the incoming stream to keep sigio/epoll happy
*/
#define DROP_BUFFER_SIZE 32
static char *drop_buffer;
/* Array backed queues optimized for bulk enqueue/dequeue and
* 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
* For more details and full design rationale see
* http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
*/
/*
* Advance the mmsg queue head by n = advance. Resets the queue to
* maximum enqueue/dequeue-at-once capacity if possible. Called by
* dequeuers. Caller must hold the head_lock!
*/
static int vector_advancehead(struct vector_queue *qi, int advance)
{
int queue_depth;
qi->head =
(qi->head + advance)
% qi->max_depth;
spin_lock(&qi->tail_lock);
qi->queue_depth -= advance;
/* we are at 0, use this to
* reset head and tail so we can use max size vectors
*/
if (qi->queue_depth == 0) {
qi->head = 0;
qi->tail = 0;
}
queue_depth = qi->queue_depth;
spin_unlock(&qi->tail_lock);
return queue_depth;
}
/* Advance the queue tail by n = advance.
* This is called by enqueuers which should hold the
* head lock already
*/
static int vector_advancetail(struct vector_queue *qi, int advance)
{
int queue_depth;
qi->tail =
(qi->tail + advance)
% qi->max_depth;
spin_lock(&qi->head_lock);
qi->queue_depth += advance;
queue_depth = qi->queue_depth;
spin_unlock(&qi->head_lock);
return queue_depth;
}
static int prep_msg(struct vector_private *vp,
struct sk_buff *skb,
struct iovec *iov)
{
int iov_index = 0;
int nr_frags, frag;
skb_frag_t *skb_frag;
nr_frags = skb_shinfo(skb)->nr_frags;
if (nr_frags > MAX_IOV_SIZE) {
if (skb_linearize(skb) != 0)
goto drop;
}
if (vp->header_size > 0) {
iov[iov_index].iov_len = vp->header_size;
vp->form_header(iov[iov_index].iov_base, skb, vp);
iov_index++;
}
iov[iov_index].iov_base = skb->data;
if (nr_frags > 0) {
iov[iov_index].iov_len = skb->len - skb->data_len;
vp->estats.sg_ok++;
} else
iov[iov_index].iov_len = skb->len;
iov_index++;
for (frag = 0; frag < nr_frags; frag++) {
skb_frag = &skb_shinfo(skb)->frags[frag];
iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
iov[iov_index].iov_len = skb_frag_size(skb_frag);
iov_index++;
}
return iov_index;
drop:
return -1;
}
/*
* Generic vector enqueue with support for forming headers using transport
* specific callback. Allows GRE, L2TPv3, RAW and other transports
* to use a common enqueue procedure in vector mode
*/
static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
{
struct vector_private *vp = netdev_priv(qi->dev);
int queue_depth;
int packet_len;
struct mmsghdr *mmsg_vector = qi->mmsg_vector;
int iov_count;
spin_lock(&qi->tail_lock);
spin_lock(&qi->head_lock);
queue_depth = qi->queue_depth;
spin_unlock(&qi->head_lock);
if (skb)
packet_len = skb->len;
if (queue_depth < qi->max_depth) {
*(qi->skbuff_vector + qi->tail) = skb;
mmsg_vector += qi->tail;
iov_count = prep_msg(
vp,
skb,
mmsg_vector->msg_hdr.msg_iov
);
if (iov_count < 1)
goto drop;
mmsg_vector->msg_hdr.msg_iovlen = iov_count;
mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
queue_depth = vector_advancetail(qi, 1);
} else
goto drop;
spin_unlock(&qi->tail_lock);
return queue_depth;
drop:
qi->dev->stats.tx_dropped++;
if (skb != NULL) {
packet_len = skb->len;
dev_consume_skb_any(skb);
netdev_completed_queue(qi->dev, 1, packet_len);
}
spin_unlock(&qi->tail_lock);
return queue_depth;
}
static int consume_vector_skbs(struct vector_queue *qi, int count)
{
struct sk_buff *skb;
int skb_index;
int bytes_compl = 0;
for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
skb = *(qi->skbuff_vector + skb_index);
/* mark as empty to ensure correct destruction if
* needed
*/
bytes_compl += skb->len;
*(qi->skbuff_vector + skb_index) = NULL;
dev_consume_skb_any(skb);
}
qi->dev->stats.tx_bytes += bytes_compl;
qi->dev->stats.tx_packets += count;
netdev_completed_queue(qi->dev, count, bytes_compl);
return vector_advancehead(qi, count);
}
/*
* Generic vector deque via sendmmsg with support for forming headers
* using transport specific callback. Allows GRE, L2TPv3, RAW and
* other transports to use a common dequeue procedure in vector mode
*/
static int vector_send(struct vector_queue *qi)
{
struct vector_private *vp = netdev_priv(qi->dev);
struct mmsghdr *send_from;
int result = 0, send_len, queue_depth = qi->max_depth;
if (spin_trylock(&qi->head_lock)) {
if (spin_trylock(&qi->tail_lock)) {
/* update queue_depth to current value */
queue_depth = qi->queue_depth;
spin_unlock(&qi->tail_lock);
while (queue_depth > 0) {
/* Calculate the start of the vector */
send_len = queue_depth;
send_from = qi->mmsg_vector;
send_from += qi->head;
/* Adjust vector size if wraparound */
if (send_len + qi->head > qi->max_depth)
send_len = qi->max_depth - qi->head;
/* Try to TX as many packets as possible */
if (send_len > 0) {
result = uml_vector_sendmmsg(
vp->fds->tx_fd,
send_from,
send_len,
0
);
vp->in_write_poll =
(result != send_len);
}
/* For some of the sendmmsg error scenarios
* we may end being unsure in the TX success
* for all packets. It is safer to declare
* them all TX-ed and blame the network.
*/
if (result < 0) {
if (net_ratelimit())
netdev_err(vp->dev, "sendmmsg err=%i\n",
result);
result = send_len;
}
if (result > 0) {
queue_depth =
consume_vector_skbs(qi, result);
/* This is equivalent to an TX IRQ.
* Restart the upper layers to feed us
* more packets.
*/
if (result > vp->estats.tx_queue_max)
vp->estats.tx_queue_max = result;
vp->estats.tx_queue_running_average =
(vp->estats.tx_queue_running_average + result) >> 1;
}
netif_trans_update(qi->dev);
netif_wake_queue(qi->dev);
/* if TX is busy, break out of the send loop,
* poll write IRQ will reschedule xmit for us
*/
if (result != send_len) {
vp->estats.tx_restart_queue++;
break;
}
}
}
spin_unlock(&qi->head_lock);
} else {
tasklet_schedule(&vp->tx_poll);
}
return queue_depth;
}
/* Queue destructor. Deliberately stateless so we can use
* it in queue cleanup if initialization fails.
*/
static void destroy_queue(struct vector_queue *qi)
{
int i;
struct iovec *iov;
struct vector_private *vp = netdev_priv(qi->dev);
struct mmsghdr *mmsg_vector;
if (qi == NULL)
return;
/* deallocate any skbuffs - we rely on any unused to be
* set to NULL.
*/
if (qi->skbuff_vector != NULL) {
for (i = 0; i < qi->max_depth; i++) {
if (*(qi->skbuff_vector + i) != NULL)
dev_kfree_skb_any(*(qi->skbuff_vector + i));
}
kfree(qi->skbuff_vector);
}
/* deallocate matching IOV structures including header buffs */
if (qi->mmsg_vector != NULL) {
mmsg_vector = qi->mmsg_vector;
for (i = 0; i < qi->max_depth; i++) {
iov = mmsg_vector->msg_hdr.msg_iov;
if (iov != NULL) {
if ((vp->header_size > 0) &&
(iov->iov_base != NULL))
kfree(iov->iov_base);
kfree(iov);
}
mmsg_vector++;
}
kfree(qi->mmsg_vector);
}
kfree(qi);
}
/*
* Queue constructor. Create a queue with a given side.
*/
static struct vector_queue *create_queue(
struct vector_private *vp,
int max_size,
int header_size,
int num_extra_frags)
{
struct vector_queue *result;
int i;
struct iovec *iov;
struct mmsghdr *mmsg_vector;
result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
if (result == NULL)
return NULL;
result->max_depth = max_size;
result->dev = vp->dev;
result->mmsg_vector = kmalloc(
(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
if (result->mmsg_vector == NULL)
goto out_mmsg_fail;
result->skbuff_vector = kmalloc(
(sizeof(void *) * max_size), GFP_KERNEL);
if (result->skbuff_vector == NULL)
goto out_skb_fail;
/* further failures can be handled safely by destroy_queue*/
mmsg_vector = result->mmsg_vector;
for (i = 0; i < max_size; i++) {
/* Clear all pointers - we use non-NULL as marking on
* what to free on destruction
*/
*(result->skbuff_vector + i) = NULL;
mmsg_vector->msg_hdr.msg_iov = NULL;
mmsg_vector++;
}
mmsg_vector = result->mmsg_vector;
result->max_iov_frags = num_extra_frags;
for (i = 0; i < max_size; i++) {
if (vp->header_size > 0)
iov = kmalloc_array(3 + num_extra_frags,
sizeof(struct iovec),
GFP_KERNEL
);
else
iov = kmalloc_array(2 + num_extra_frags,
sizeof(struct iovec),
GFP_KERNEL
);
if (iov == NULL)
goto out_fail;
mmsg_vector->msg_hdr.msg_iov = iov;
mmsg_vector->msg_hdr.msg_iovlen = 1;
mmsg_vector->msg_hdr.msg_control = NULL;
mmsg_vector->msg_hdr.msg_controllen = 0;
mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
mmsg_vector->msg_hdr.msg_name = NULL;
mmsg_vector->msg_hdr.msg_namelen = 0;
if (vp->header_size > 0) {
iov->iov_base = kmalloc(header_size, GFP_KERNEL);
if (iov->iov_base == NULL)
goto out_fail;
iov->iov_len = header_size;
mmsg_vector->msg_hdr.msg_iovlen = 2;
iov++;
}
iov->iov_base = NULL;
iov->iov_len = 0;
mmsg_vector++;
}
spin_lock_init(&result->head_lock);
spin_lock_init(&result->tail_lock);
result->queue_depth = 0;
result->head = 0;
result->tail = 0;
return result;
out_skb_fail:
kfree(result->mmsg_vector);
out_mmsg_fail:
kfree(result);
return NULL;
out_fail:
destroy_queue(result);
return NULL;
}
/*
* We do not use the RX queue as a proper wraparound queue for now
* This is not necessary because the consumption via netif_rx()
* happens in-line. While we can try using the return code of
* netif_rx() for flow control there are no drivers doing this today.
* For this RX specific use we ignore the tail/head locks and
* just read into a prepared queue filled with skbuffs.
*/
static struct sk_buff *prep_skb(
struct vector_private *vp,
struct user_msghdr *msg)
{
int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
struct sk_buff *result;
int iov_index = 0, len;
struct iovec *iov = msg->msg_iov;
int err, nr_frags, frag;
skb_frag_t *skb_frag;
if (vp->req_size <= linear)
len = linear;
else
len = vp->req_size;
result = alloc_skb_with_frags(
linear,
len - vp->max_packet,
3,
&err,
GFP_ATOMIC
);
if (vp->header_size > 0)
iov_index++;
if (result == NULL) {
iov[iov_index].iov_base = NULL;
iov[iov_index].iov_len = 0;
goto done;
}
skb_reserve(result, vp->headroom);
result->dev = vp->dev;
skb_put(result, vp->max_packet);
result->data_len = len - vp->max_packet;
result->len += len - vp->max_packet;
skb_reset_mac_header(result);
result->ip_summed = CHECKSUM_NONE;
iov[iov_index].iov_base = result->data;
iov[iov_index].iov_len = vp->max_packet;
iov_index++;
nr_frags = skb_shinfo(result)->nr_frags;
for (frag = 0; frag < nr_frags; frag++) {
skb_frag = &skb_shinfo(result)->frags[frag];
iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
if (iov[iov_index].iov_base != NULL)
iov[iov_index].iov_len = skb_frag_size(skb_frag);
else
iov[iov_index].iov_len = 0;
iov_index++;
}
done:
msg->msg_iovlen = iov_index;
return result;
}
/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
static void prep_queue_for_rx(struct vector_queue *qi)
{
struct vector_private *vp = netdev_priv(qi->dev);
struct mmsghdr *mmsg_vector = qi->mmsg_vector;
void **skbuff_vector = qi->skbuff_vector;
int i;
if (qi->queue_depth == 0)
return;
for (i = 0; i < qi->queue_depth; i++) {
/* it is OK if allocation fails - recvmmsg with NULL data in
* iov argument still performs an RX, just drops the packet
* This allows us stop faffing around with a "drop buffer"
*/
*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
skbuff_vector++;
mmsg_vector++;
}
qi->queue_depth = 0;
}
static struct vector_device *find_device(int n)
{
struct vector_device *device;
struct list_head *ele;
spin_lock(&vector_devices_lock);
list_for_each(ele, &vector_devices) {
device = list_entry(ele, struct vector_device, list);
if (device->unit == n)
goto out;
}
device = NULL;
out:
spin_unlock(&vector_devices_lock);
return device;
}
static int vector_parse(char *str, int *index_out, char **str_out,
char **error_out)
{
int n, len, err;
char *start = str;
len = strlen(str);
while ((*str != ':') && (strlen(str) > 1))
str++;
if (*str != ':') {
*error_out = "Expected ':' after device number";
return -EINVAL;
}
*str = '\0';
err = kstrtouint(start, 0, &n);
if (err < 0) {
*error_out = "Bad device number";
return err;
}
str++;
if (find_device(n)) {
*error_out = "Device already configured";
return -EINVAL;
}
*index_out = n;
*str_out = str;
return 0;
}
static int vector_config(char *str, char **error_out)
{
int err, n;
char *params;
struct arglist *parsed;
err = vector_parse(str, &n, &params, error_out);
if (err != 0)
return err;
/* This string is broken up and the pieces used by the underlying
* driver. We should copy it to make sure things do not go wrong
* later.
*/
params = kstrdup(params, GFP_KERNEL);
if (params == NULL) {
*error_out = "vector_config failed to strdup string";
return -ENOMEM;
}
parsed = uml_parse_vector_ifspec(params);
if (parsed == NULL) {
*error_out = "vector_config failed to parse parameters";
return -EINVAL;
}
vector_eth_configure(n, parsed);
return 0;
}
static int vector_id(char **str, int *start_out, int *end_out)
{
char *end;
int n;
n = simple_strtoul(*str, &end, 0);
if ((*end != '\0') || (end == *str))
return -1;
*start_out = n;
*end_out = n;
*str = end;
return n;
}
static int vector_remove(int n, char **error_out)
{
struct vector_device *vec_d;
struct net_device *dev;
struct vector_private *vp;
vec_d = find_device(n);
if (vec_d == NULL)
return -ENODEV;
dev = vec_d->dev;
vp = netdev_priv(dev);
if (vp->fds != NULL)
return -EBUSY;
unregister_netdev(dev);
platform_device_unregister(&vec_d->pdev);
return 0;
}
/*
* There is no shared per-transport initialization code, so
* we will just initialize each interface one by one and
* add them to a list
*/
static struct platform_driver uml_net_driver = {
.driver = {
.name = DRIVER_NAME,
},
};
static void vector_device_release(struct device *dev)
{
struct vector_device *device = dev_get_drvdata(dev);
struct net_device *netdev = device->dev;
list_del(&device->list);
kfree(device);
free_netdev(netdev);
}
/* Bog standard recv using recvmsg - not used normally unless the user
* explicitly specifies not to use recvmmsg vector RX.
*/
static int vector_legacy_rx(struct vector_private *vp)
{
int pkt_len;
struct user_msghdr hdr;
struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
int iovpos = 0;
struct sk_buff *skb;
int header_check;
hdr.msg_name = NULL;
hdr.msg_namelen = 0;
hdr.msg_iov = (struct iovec *) &iov;
hdr.msg_control = NULL;
hdr.msg_controllen = 0;
hdr.msg_flags = 0;
if (vp->header_size > 0) {
iov[0].iov_base = vp->header_rxbuffer;
iov[0].iov_len = vp->header_size;
}
skb = prep_skb(vp, &hdr);
if (skb == NULL) {
/* Read a packet into drop_buffer and don't do
* anything with it.
*/
iov[iovpos].iov_base = drop_buffer;
iov[iovpos].iov_len = DROP_BUFFER_SIZE;
hdr.msg_iovlen = 1;
vp->dev->stats.rx_dropped++;
}
pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
if (skb != NULL) {
if (pkt_len > vp->header_size) {
if (vp->header_size > 0) {
header_check = vp->verify_header(
vp->header_rxbuffer, skb, vp);
if (header_check < 0) {
dev_kfree_skb_irq(skb);
vp->dev->stats.rx_dropped++;
vp->estats.rx_encaps_errors++;
return 0;
}
if (header_check > 0) {
vp->estats.rx_csum_offload_good++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
pskb_trim(skb, pkt_len - vp->rx_header_size);
skb->protocol = eth_type_trans(skb, skb->dev);
vp->dev->stats.rx_bytes += skb->len;
vp->dev->stats.rx_packets++;
netif_rx(skb);
} else {
dev_kfree_skb_irq(skb);
}
}
return pkt_len;
}
/*
* Packet at a time TX which falls back to vector TX if the
* underlying transport is busy.
*/
static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
{
struct iovec iov[3 + MAX_IOV_SIZE];
int iov_count, pkt_len = 0;
iov[0].iov_base = vp->header_txbuffer;
iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
if (iov_count < 1)
goto drop;
pkt_len = uml_vector_writev(
vp->fds->tx_fd,
(struct iovec *) &iov,
iov_count
);
netif_trans_update(vp->dev);
netif_wake_queue(vp->dev);
if (pkt_len > 0) {
vp->dev->stats.tx_bytes += skb->len;
vp->dev->stats.tx_packets++;
} else {
vp->dev->stats.tx_dropped++;
}
consume_skb(skb);
return pkt_len;
drop:
vp->dev->stats.tx_dropped++;
consume_skb(skb);
return pkt_len;
}
/*
* Receive as many messages as we can in one call using the special
* mmsg vector matched to an skb vector which we prepared earlier.
*/
static int vector_mmsg_rx(struct vector_private *vp)
{
int packet_count, i;
struct vector_queue *qi = vp->rx_queue;
struct sk_buff *skb;
struct mmsghdr *mmsg_vector = qi->mmsg_vector;
void **skbuff_vector = qi->skbuff_vector;
int header_check;
/* Refresh the vector and make sure it is with new skbs and the
* iovs are updated to point to them.
*/
prep_queue_for_rx(qi);
/* Fire the Lazy Gun - get as many packets as we can in one go. */
packet_count = uml_vector_recvmmsg(
vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
if (packet_count <= 0)
return packet_count;
/* We treat packet processing as enqueue, buffer refresh as dequeue
* The queue_depth tells us how many buffers have been used and how
* many do we need to prep the next time prep_queue_for_rx() is called.
*/
qi->queue_depth = packet_count;
for (i = 0; i < packet_count; i++) {
skb = (*skbuff_vector);
if (mmsg_vector->msg_len > vp->header_size) {
if (vp->header_size > 0) {
header_check = vp->verify_header(
mmsg_vector->msg_hdr.msg_iov->iov_base,
skb,
vp
);
if (header_check < 0) {
/* Overlay header failed to verify - discard.
* We can actually keep this skb and reuse it,
* but that will make the prep logic too
* complex.
*/
dev_kfree_skb_irq(skb);
vp->estats.rx_encaps_errors++;
continue;
}
if (header_check > 0) {
vp->estats.rx_csum_offload_good++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
pskb_trim(skb,
mmsg_vector->msg_len - vp->rx_header_size);
skb->protocol = eth_type_trans(skb, skb->dev);
/*
* We do not need to lock on updating stats here
* The interrupt loop is non-reentrant.
*/
vp->dev->stats.rx_bytes += skb->len;
vp->dev->stats.rx_packets++;
netif_rx(skb);
} else {
/* Overlay header too short to do anything - discard.
* We can actually keep this skb and reuse it,
* but that will make the prep logic too complex.
*/
if (skb != NULL)
dev_kfree_skb_irq(skb);
}
(*skbuff_vector) = NULL;
/* Move to the next buffer element */
mmsg_vector++;
skbuff_vector++;
}
if (packet_count > 0) {
if (vp->estats.rx_queue_max < packet_count)
vp->estats.rx_queue_max = packet_count;
vp->estats.rx_queue_running_average =
(vp->estats.rx_queue_running_average + packet_count) >> 1;
}
return packet_count;
}
static void vector_rx(struct vector_private *vp)
{
int err;
if ((vp->options & VECTOR_RX) > 0)
while ((err = vector_mmsg_rx(vp)) > 0)
;
else
while ((err = vector_legacy_rx(vp)) > 0)
;
if ((err != 0) && net_ratelimit())
netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
}
static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct vector_private *vp = netdev_priv(dev);
int queue_depth = 0;
if ((vp->options & VECTOR_TX) == 0) {
writev_tx(vp, skb);
return NETDEV_TX_OK;
}
/* We do BQL only in the vector path, no point doing it in
* packet at a time mode as there is no device queue
*/
netdev_sent_queue(vp->dev, skb->len);
queue_depth = vector_enqueue(vp->tx_queue, skb);
/* if the device queue is full, stop the upper layers and
* flush it.
*/
if (queue_depth >= vp->tx_queue->max_depth - 1) {
vp->estats.tx_kicks++;
netif_stop_queue(dev);
vector_send(vp->tx_queue);
return NETDEV_TX_OK;
}
if (skb->xmit_more) {
mod_timer(&vp->tl, vp->coalesce);
return NETDEV_TX_OK;
}
if (skb->len < TX_SMALL_PACKET) {
vp->estats.tx_kicks++;
vector_send(vp->tx_queue);
} else
tasklet_schedule(&vp->tx_poll);
return NETDEV_TX_OK;
}
static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct vector_private *vp = netdev_priv(dev);
if (!netif_running(dev))
return IRQ_NONE;
vector_rx(vp);
return IRQ_HANDLED;
}
static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct vector_private *vp = netdev_priv(dev);
if (!netif_running(dev))
return IRQ_NONE;
/* We need to pay attention to it only if we got
* -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
* we ignore it. In the future, it may be worth
* it to improve the IRQ controller a bit to make
* tweaking the IRQ mask less costly
*/
if (vp->in_write_poll)
tasklet_schedule(&vp->tx_poll);
return IRQ_HANDLED;
}
static int irq_rr;
static int vector_net_close(struct net_device *dev)
{
struct vector_private *vp = netdev_priv(dev);
unsigned long flags;
netif_stop_queue(dev);
del_timer(&vp->tl);
if (vp->fds == NULL)
return 0;
/* Disable and free all IRQS */
if (vp->rx_irq > 0) {
um_free_irq(vp->rx_irq, dev);
vp->rx_irq = 0;
}
if (vp->tx_irq > 0) {
um_free_irq(vp->tx_irq, dev);
vp->tx_irq = 0;
}
tasklet_kill(&vp->tx_poll);
if (vp->fds->rx_fd > 0) {
os_close_file(vp->fds->rx_fd);
vp->fds->rx_fd = -1;
}
if (vp->fds->tx_fd > 0) {
os_close_file(vp->fds->tx_fd);
vp->fds->tx_fd = -1;
}
kfree(vp->bpf);
kfree(vp->fds->remote_addr);
kfree(vp->transport_data);
kfree(vp->header_rxbuffer);
kfree(vp->header_txbuffer);
if (vp->rx_queue != NULL)
destroy_queue(vp->rx_queue);
if (vp->tx_queue != NULL)
destroy_queue(vp->tx_queue);
kfree(vp->fds);
vp->fds = NULL;
spin_lock_irqsave(&vp->lock, flags);
vp->opened = false;
spin_unlock_irqrestore(&vp->lock, flags);
return 0;
}
/* TX tasklet */
static void vector_tx_poll(unsigned long data)
{
struct vector_private *vp = (struct vector_private *)data;
vp->estats.tx_kicks++;
vector_send(vp->tx_queue);
}
static void vector_reset_tx(struct work_struct *work)
{
struct vector_private *vp =
container_of(work, struct vector_private, reset_tx);
netdev_reset_queue(vp->dev);
netif_start_queue(vp->dev);
netif_wake_queue(vp->dev);
}
static int vector_net_open(struct net_device *dev)
{
struct vector_private *vp = netdev_priv(dev);
unsigned long flags;
int err = -EINVAL;
struct vector_device *vdevice;
spin_lock_irqsave(&vp->lock, flags);
if (vp->opened) {
spin_unlock_irqrestore(&vp->lock, flags);
return -ENXIO;
}
vp->opened = true;
spin_unlock_irqrestore(&vp->lock, flags);
vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
if (vp->fds == NULL)
goto out_close;
if (build_transport_data(vp) < 0)
goto out_close;
if ((vp->options & VECTOR_RX) > 0) {
vp->rx_queue = create_queue(
vp,
get_depth(vp->parsed),
vp->rx_header_size,
MAX_IOV_SIZE
);
vp->rx_queue->queue_depth = get_depth(vp->parsed);
} else {
vp->header_rxbuffer = kmalloc(
vp->rx_header_size,
GFP_KERNEL
);
if (vp->header_rxbuffer == NULL)
goto out_close;
}
if ((vp->options & VECTOR_TX) > 0) {
vp->tx_queue = create_queue(
vp,
get_depth(vp->parsed),
vp->header_size,
MAX_IOV_SIZE
);
} else {
vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
if (vp->header_txbuffer == NULL)
goto out_close;
}
/* READ IRQ */
err = um_request_irq(
irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
IRQ_READ, vector_rx_interrupt,
IRQF_SHARED, dev->name, dev);
if (err != 0) {
netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
err = -ENETUNREACH;
goto out_close;
}
vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
dev->irq = irq_rr + VECTOR_BASE_IRQ;
irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
/* WRITE IRQ - we need it only if we have vector TX */
if ((vp->options & VECTOR_TX) > 0) {
err = um_request_irq(
irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
IRQ_WRITE, vector_tx_interrupt,
IRQF_SHARED, dev->name, dev);
if (err != 0) {
netdev_err(dev,
"vector_open: failed to get tx irq(%d)\n", err);
err = -ENETUNREACH;
goto out_close;
}
vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
}
if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
vp->options |= VECTOR_BPF;
}
if ((vp->options & VECTOR_BPF) != 0)
vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr);
netif_start_queue(dev);
/* clear buffer - it can happen that the host side of the interface
* is full when we get here. In this case, new data is never queued,
* SIGIOs never arrive, and the net never works.
*/
vector_rx(vp);
vector_reset_stats(vp);
vdevice = find_device(vp->unit);
vdevice->opened = 1;
if ((vp->options & VECTOR_TX) != 0)
add_timer(&vp->tl);
return 0;
out_close:
vector_net_close(dev);
return err;
}
static void vector_net_set_multicast_list(struct net_device *dev)
{
/* TODO: - we can do some BPF games here */
return;
}
static void vector_net_tx_timeout(struct net_device *dev)
{
struct vector_private *vp = netdev_priv(dev);
vp->estats.tx_timeout_count++;
netif_trans_update(dev);
schedule_work(&vp->reset_tx);
}
static netdev_features_t vector_fix_features(struct net_device *dev,
netdev_features_t features)
{
features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
return features;
}
static int vector_set_features(struct net_device *dev,
netdev_features_t features)
{
struct vector_private *vp = netdev_priv(dev);
/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
* no way to negotiate it on raw sockets, so we can change
* only our side.
*/
if (features & NETIF_F_GRO)
/* All new frame buffers will be GRO-sized */
vp->req_size = 65536;
else
/* All new frame buffers will be normal sized */
vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void vector_net_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
vector_rx_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
static void vector_net_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
}
static void vector_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct vector_private *vp = netdev_priv(netdev);
ring->rx_max_pending = vp->rx_queue->max_depth;
ring->tx_max_pending = vp->tx_queue->max_depth;
ring->rx_pending = vp->rx_queue->max_depth;
ring->tx_pending = vp->tx_queue->max_depth;
}
static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_TEST:
*buf = '\0';
break;
case ETH_SS_STATS:
memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
break;
default:
WARN_ON(1);
break;
}
}
static int vector_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return 0;
case ETH_SS_STATS:
return VECTOR_NUM_STATS;
default:
return -EOPNOTSUPP;
}
}
static void vector_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats,
u64 *tmp_stats)
{
struct vector_private *vp = netdev_priv(dev);
memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
}
static int vector_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct vector_private *vp = netdev_priv(netdev);
ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
return 0;
}
static int vector_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct vector_private *vp = netdev_priv(netdev);
vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
if (vp->coalesce == 0)
vp->coalesce = 1;
return 0;
}
static const struct ethtool_ops vector_net_ethtool_ops = {
.get_drvinfo = vector_net_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_ts_info = ethtool_op_get_ts_info,
.get_ringparam = vector_get_ringparam,
.get_strings = vector_get_strings,
.get_sset_count = vector_get_sset_count,
.get_ethtool_stats = vector_get_ethtool_stats,
.get_coalesce = vector_get_coalesce,
.set_coalesce = vector_set_coalesce,
};
static const struct net_device_ops vector_netdev_ops = {
.ndo_open = vector_net_open,
.ndo_stop = vector_net_close,
.ndo_start_xmit = vector_net_start_xmit,
.ndo_set_rx_mode = vector_net_set_multicast_list,
.ndo_tx_timeout = vector_net_tx_timeout,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_fix_features = vector_fix_features,
.ndo_set_features = vector_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = vector_net_poll_controller,
#endif
};
static void vector_timer_expire(struct timer_list *t)
{
struct vector_private *vp = from_timer(vp, t, tl);
vp->estats.tx_kicks++;
vector_send(vp->tx_queue);
}
static void vector_eth_configure(
int n,
struct arglist *def
)
{
struct vector_device *device;
struct net_device *dev;
struct vector_private *vp;
int err;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (device == NULL) {
printk(KERN_ERR "eth_configure failed to allocate struct "
"vector_device\n");
return;
}
dev = alloc_etherdev(sizeof(struct vector_private));
if (dev == NULL) {
printk(KERN_ERR "eth_configure: failed to allocate struct "
"net_device for vec%d\n", n);
goto out_free_device;
}
dev->mtu = get_mtu(def);
INIT_LIST_HEAD(&device->list);
device->unit = n;
/* If this name ends up conflicting with an existing registered
* netdevice, that is OK, register_netdev{,ice}() will notice this
* and fail.
*/
snprintf(dev->name, sizeof(dev->name), "vec%d", n);
uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
vp = netdev_priv(dev);
/* sysfs register */
if (!driver_registered) {
platform_driver_register(&uml_net_driver);
driver_registered = 1;
}
device->pdev.id = n;
device->pdev.name = DRIVER_NAME;
device->pdev.dev.release = vector_device_release;
dev_set_drvdata(&device->pdev.dev, device);
if (platform_device_register(&device->pdev))
goto out_free_netdev;
SET_NETDEV_DEV(dev, &device->pdev.dev);
device->dev = dev;
*vp = ((struct vector_private)
{
.list = LIST_HEAD_INIT(vp->list),
.dev = dev,
.unit = n,
.options = get_transport_options(def),
.rx_irq = 0,
.tx_irq = 0,
.parsed = def,
.max_packet = get_mtu(def) + ETH_HEADER_OTHER,
/* TODO - we need to calculate headroom so that ip header
* is 16 byte aligned all the time
*/
.headroom = get_headroom(def),
.form_header = NULL,
.verify_header = NULL,
.header_rxbuffer = NULL,
.header_txbuffer = NULL,
.header_size = 0,
.rx_header_size = 0,
.rexmit_scheduled = false,
.opened = false,
.transport_data = NULL,
.in_write_poll = false,
.coalesce = 2,
.req_size = get_req_size(def)
});
dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
INIT_WORK(&vp->reset_tx, vector_reset_tx);
timer_setup(&vp->tl, vector_timer_expire, 0);
spin_lock_init(&vp->lock);
/* FIXME */
dev->netdev_ops = &vector_netdev_ops;
dev->ethtool_ops = &vector_net_ethtool_ops;
dev->watchdog_timeo = (HZ >> 1);
/* primary IRQ - fixme */
dev->irq = 0; /* we will adjust this once opened */
rtnl_lock();
err = register_netdevice(dev);
rtnl_unlock();
if (err)
goto out_undo_user_init;
spin_lock(&vector_devices_lock);
list_add(&device->list, &vector_devices);
spin_unlock(&vector_devices_lock);
return;
out_undo_user_init:
return;
out_free_netdev:
free_netdev(dev);
out_free_device:
kfree(device);
}
/*
* Invoked late in the init
*/
static int __init vector_init(void)
{
struct list_head *ele;
struct vector_cmd_line_arg *def;
struct arglist *parsed;
list_for_each(ele, &vec_cmd_line) {
def = list_entry(ele, struct vector_cmd_line_arg, list);
parsed = uml_parse_vector_ifspec(def->arguments);
if (parsed != NULL)
vector_eth_configure(def->unit, parsed);
}
return 0;
}
/* Invoked at initial argument parsing, only stores
* arguments until a proper vector_init is called
* later
*/
static int __init vector_setup(char *str)
{
char *error;
int n, err;
struct vector_cmd_line_arg *new;
err = vector_parse(str, &n, &str, &error);
if (err) {
printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
str, error);
return 1;
}
new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
if (!new)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*new));
INIT_LIST_HEAD(&new->list);
new->unit = n;
new->arguments = str;
list_add_tail(&new->list, &vec_cmd_line);
return 1;
}
__setup("vec", vector_setup);
__uml_help(vector_setup,
"vec[0-9]+:<option>=<value>,<option>=<value>\n"
" Configure a vector io network device.\n\n"
);
late_initcall(vector_init);
static struct mc_device vector_mc = {
.list = LIST_HEAD_INIT(vector_mc.list),
.name = "vec",
.config = vector_config,
.get_config = NULL,
.id = vector_id,
.remove = vector_remove,
};
#ifdef CONFIG_INET
static int vector_inetaddr_event(
struct notifier_block *this,
unsigned long event,
void *ptr)
{
return NOTIFY_DONE;
}
static struct notifier_block vector_inetaddr_notifier = {
.notifier_call = vector_inetaddr_event,
};
static void inet_register(void)
{
register_inetaddr_notifier(&vector_inetaddr_notifier);
}
#else
static inline void inet_register(void)
{
}
#endif
static int vector_net_init(void)
{
mconsole_register_dev(&vector_mc);
inet_register();
return 0;
}
__initcall(vector_net_init);