linux/arch/alpha/kernel/setup.c
Brian Uhrain says 917b1f78a9 [PATCH] alpha: SMP boot fixes
I've encountered two problems with 2.6.16 and newer kernels on my API CS20
(dual 833MHz Alpha 21264b processors).  The first is the kernel OOPSing
because of a NULL pointer dereference while trying to populate SysFS with the
CPU information.  The other is that only one processor was being brought up.
I've included a small Alpha-specific patch that fixes both problems.

The first problem was caused by the CPUs never being properly registered using
register_cpu(), the way it's done on other architectures.

The second problem has to do with the removal of hwrpb_cpu_present_mask in
arch/alpha/kernel/smp.c.  In setup_smp() in the 2.6.15 kernel sources,
hwrpb_cpu_present_mask has a bit set for each processor that is probed, and
afterwards cpu_present_mask is set to the cpumask for the boot CPU.  In the
same function of the same file in the 2.6.16 sources, instead of
hwrpb_cpu_present_mask being set, cpu_possible_map is updated for each probed
CPU.  cpu_present_mask is still set to the cpumask of the boot CPU afterwards.
 The problem lies in include/asm-alpha/smp.h, where cpu_possible_map is
#define'd to be cpu_present_mask.

Cleanups from: Ivan Kokshaysky <ink@jurassic.park.msu.ru>

 - cpu_present_mask and cpu_possible_map are essentially the same thing
   on alpha, as it doesn't support CPU hotplug;
 - allocate "struct cpu" only for present CPUs, like sparc64 does.
   Static array of "struct cpu" is just a waste of memory.

Signed-off-by: Brian Uhrain <buhrain@rosettastone.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-11 06:18:34 -07:00

1516 lines
38 KiB
C

/*
* linux/arch/alpha/kernel/setup.c
*
* Copyright (C) 1995 Linus Torvalds
*/
/* 2.3.x bootmem, 1999 Andrea Arcangeli <andrea@suse.de> */
/*
* Bootup setup stuff.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/delay.h>
#include <linux/config.h> /* CONFIG_ALPHA_LCA etc */
#include <linux/mc146818rtc.h>
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/bootmem.h>
#include <linux/pci.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/initrd.h>
#include <linux/eisa.h>
#include <linux/pfn.h>
#ifdef CONFIG_MAGIC_SYSRQ
#include <linux/sysrq.h>
#include <linux/reboot.h>
#endif
#include <linux/notifier.h>
#include <asm/setup.h>
#include <asm/io.h>
extern struct atomic_notifier_head panic_notifier_list;
static int alpha_panic_event(struct notifier_block *, unsigned long, void *);
static struct notifier_block alpha_panic_block = {
alpha_panic_event,
NULL,
INT_MAX /* try to do it first */
};
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/hwrpb.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/console.h>
#include "proto.h"
#include "pci_impl.h"
struct hwrpb_struct *hwrpb;
unsigned long srm_hae;
int alpha_l1i_cacheshape;
int alpha_l1d_cacheshape;
int alpha_l2_cacheshape;
int alpha_l3_cacheshape;
#ifdef CONFIG_VERBOSE_MCHECK
/* 0=minimum, 1=verbose, 2=all */
/* These can be overridden via the command line, ie "verbose_mcheck=2") */
unsigned long alpha_verbose_mcheck = CONFIG_VERBOSE_MCHECK_ON;
#endif
/* Which processor we booted from. */
int boot_cpuid;
/*
* Using SRM callbacks for initial console output. This works from
* setup_arch() time through the end of time_init(), as those places
* are under our (Alpha) control.
* "srmcons" specified in the boot command arguments allows us to
* see kernel messages during the period of time before the true
* console device is "registered" during console_init().
* As of this version (2.5.59), console_init() will call
* disable_early_printk() as the last action before initializing
* the console drivers. That's the last possible time srmcons can be
* unregistered without interfering with console behavior.
*
* By default, OFF; set it with a bootcommand arg of "srmcons" or
* "console=srm". The meaning of these two args is:
* "srmcons" - early callback prints
* "console=srm" - full callback based console, including early prints
*/
int srmcons_output = 0;
/* Enforce a memory size limit; useful for testing. By default, none. */
unsigned long mem_size_limit = 0;
/* Set AGP GART window size (0 means disabled). */
unsigned long alpha_agpgart_size = DEFAULT_AGP_APER_SIZE;
#ifdef CONFIG_ALPHA_GENERIC
struct alpha_machine_vector alpha_mv;
int alpha_using_srm;
#endif
#define N(a) (sizeof(a)/sizeof(a[0]))
static struct alpha_machine_vector *get_sysvec(unsigned long, unsigned long,
unsigned long);
static struct alpha_machine_vector *get_sysvec_byname(const char *);
static void get_sysnames(unsigned long, unsigned long, unsigned long,
char **, char **);
static void determine_cpu_caches (unsigned int);
static char command_line[COMMAND_LINE_SIZE];
/*
* The format of "screen_info" is strange, and due to early
* i386-setup code. This is just enough to make the console
* code think we're on a VGA color display.
*/
struct screen_info screen_info = {
.orig_x = 0,
.orig_y = 25,
.orig_video_cols = 80,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
/*
* The direct map I/O window, if any. This should be the same
* for all busses, since it's used by virt_to_bus.
*/
unsigned long __direct_map_base;
unsigned long __direct_map_size;
/*
* Declare all of the machine vectors.
*/
/* GCC 2.7.2 (on alpha at least) is lame. It does not support either
__attribute__((weak)) or #pragma weak. Bypass it and talk directly
to the assembler. */
#define WEAK(X) \
extern struct alpha_machine_vector X; \
asm(".weak "#X)
WEAK(alcor_mv);
WEAK(alphabook1_mv);
WEAK(avanti_mv);
WEAK(cabriolet_mv);
WEAK(clipper_mv);
WEAK(dp264_mv);
WEAK(eb164_mv);
WEAK(eb64p_mv);
WEAK(eb66_mv);
WEAK(eb66p_mv);
WEAK(eiger_mv);
WEAK(jensen_mv);
WEAK(lx164_mv);
WEAK(lynx_mv);
WEAK(marvel_ev7_mv);
WEAK(miata_mv);
WEAK(mikasa_mv);
WEAK(mikasa_primo_mv);
WEAK(monet_mv);
WEAK(nautilus_mv);
WEAK(noname_mv);
WEAK(noritake_mv);
WEAK(noritake_primo_mv);
WEAK(p2k_mv);
WEAK(pc164_mv);
WEAK(privateer_mv);
WEAK(rawhide_mv);
WEAK(ruffian_mv);
WEAK(rx164_mv);
WEAK(sable_mv);
WEAK(sable_gamma_mv);
WEAK(shark_mv);
WEAK(sx164_mv);
WEAK(takara_mv);
WEAK(titan_mv);
WEAK(webbrick_mv);
WEAK(wildfire_mv);
WEAK(xl_mv);
WEAK(xlt_mv);
#undef WEAK
/*
* I/O resources inherited from PeeCees. Except for perhaps the
* turbochannel alphas, everyone has these on some sort of SuperIO chip.
*
* ??? If this becomes less standard, move the struct out into the
* machine vector.
*/
static void __init
reserve_std_resources(void)
{
static struct resource standard_io_resources[] = {
{ .name = "rtc", .start = -1, .end = -1 },
{ .name = "dma1", .start = 0x00, .end = 0x1f },
{ .name = "pic1", .start = 0x20, .end = 0x3f },
{ .name = "timer", .start = 0x40, .end = 0x5f },
{ .name = "keyboard", .start = 0x60, .end = 0x6f },
{ .name = "dma page reg", .start = 0x80, .end = 0x8f },
{ .name = "pic2", .start = 0xa0, .end = 0xbf },
{ .name = "dma2", .start = 0xc0, .end = 0xdf },
};
struct resource *io = &ioport_resource;
size_t i;
if (hose_head) {
struct pci_controller *hose;
for (hose = hose_head; hose; hose = hose->next)
if (hose->index == 0) {
io = hose->io_space;
break;
}
}
/* Fix up for the Jensen's queer RTC placement. */
standard_io_resources[0].start = RTC_PORT(0);
standard_io_resources[0].end = RTC_PORT(0) + 0x10;
for (i = 0; i < N(standard_io_resources); ++i)
request_resource(io, standard_io_resources+i);
}
#define PFN_MAX PFN_DOWN(0x80000000)
#define for_each_mem_cluster(memdesc, cluster, i) \
for ((cluster) = (memdesc)->cluster, (i) = 0; \
(i) < (memdesc)->numclusters; (i)++, (cluster)++)
static unsigned long __init
get_mem_size_limit(char *s)
{
unsigned long end = 0;
char *from = s;
end = simple_strtoul(from, &from, 0);
if ( *from == 'K' || *from == 'k' ) {
end = end << 10;
from++;
} else if ( *from == 'M' || *from == 'm' ) {
end = end << 20;
from++;
} else if ( *from == 'G' || *from == 'g' ) {
end = end << 30;
from++;
}
return end >> PAGE_SHIFT; /* Return the PFN of the limit. */
}
#ifdef CONFIG_BLK_DEV_INITRD
void * __init
move_initrd(unsigned long mem_limit)
{
void *start;
unsigned long size;
size = initrd_end - initrd_start;
start = __alloc_bootmem(PAGE_ALIGN(size), PAGE_SIZE, 0);
if (!start || __pa(start) + size > mem_limit) {
initrd_start = initrd_end = 0;
return NULL;
}
memmove(start, (void *)initrd_start, size);
initrd_start = (unsigned long)start;
initrd_end = initrd_start + size;
printk("initrd moved to %p\n", start);
return start;
}
#endif
#ifndef CONFIG_DISCONTIGMEM
static void __init
setup_memory(void *kernel_end)
{
struct memclust_struct * cluster;
struct memdesc_struct * memdesc;
unsigned long start_kernel_pfn, end_kernel_pfn;
unsigned long bootmap_size, bootmap_pages, bootmap_start;
unsigned long start, end;
unsigned long i;
/* Find free clusters, and init and free the bootmem accordingly. */
memdesc = (struct memdesc_struct *)
(hwrpb->mddt_offset + (unsigned long) hwrpb);
for_each_mem_cluster(memdesc, cluster, i) {
printk("memcluster %lu, usage %01lx, start %8lu, end %8lu\n",
i, cluster->usage, cluster->start_pfn,
cluster->start_pfn + cluster->numpages);
/* Bit 0 is console/PALcode reserved. Bit 1 is
non-volatile memory -- we might want to mark
this for later. */
if (cluster->usage & 3)
continue;
end = cluster->start_pfn + cluster->numpages;
if (end > max_low_pfn)
max_low_pfn = end;
}
/*
* Except for the NUMA systems (wildfire, marvel) all of the
* Alpha systems we run on support 32GB of memory or less.
* Since the NUMA systems introduce large holes in memory addressing,
* we can get into a situation where there is not enough contiguous
* memory for the memory map.
*
* Limit memory to the first 32GB to limit the NUMA systems to
* memory on their first node (wildfire) or 2 (marvel) to avoid
* not being able to produce the memory map. In order to access
* all of the memory on the NUMA systems, build with discontiguous
* memory support.
*
* If the user specified a memory limit, let that memory limit stand.
*/
if (!mem_size_limit)
mem_size_limit = (32ul * 1024 * 1024 * 1024) >> PAGE_SHIFT;
if (mem_size_limit && max_low_pfn >= mem_size_limit)
{
printk("setup: forcing memory size to %ldK (from %ldK).\n",
mem_size_limit << (PAGE_SHIFT - 10),
max_low_pfn << (PAGE_SHIFT - 10));
max_low_pfn = mem_size_limit;
}
/* Find the bounds of kernel memory. */
start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
bootmap_start = -1;
try_again:
if (max_low_pfn <= end_kernel_pfn)
panic("not enough memory to boot");
/* We need to know how many physically contiguous pages
we'll need for the bootmap. */
bootmap_pages = bootmem_bootmap_pages(max_low_pfn);
/* Now find a good region where to allocate the bootmap. */
for_each_mem_cluster(memdesc, cluster, i) {
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = start + cluster->numpages;
if (start >= max_low_pfn)
continue;
if (end > max_low_pfn)
end = max_low_pfn;
if (start < start_kernel_pfn) {
if (end > end_kernel_pfn
&& end - end_kernel_pfn >= bootmap_pages) {
bootmap_start = end_kernel_pfn;
break;
} else if (end > start_kernel_pfn)
end = start_kernel_pfn;
} else if (start < end_kernel_pfn)
start = end_kernel_pfn;
if (end - start >= bootmap_pages) {
bootmap_start = start;
break;
}
}
if (bootmap_start == ~0UL) {
max_low_pfn >>= 1;
goto try_again;
}
/* Allocate the bootmap and mark the whole MM as reserved. */
bootmap_size = init_bootmem(bootmap_start, max_low_pfn);
/* Mark the free regions. */
for_each_mem_cluster(memdesc, cluster, i) {
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = cluster->start_pfn + cluster->numpages;
if (start >= max_low_pfn)
continue;
if (end > max_low_pfn)
end = max_low_pfn;
if (start < start_kernel_pfn) {
if (end > end_kernel_pfn) {
free_bootmem(PFN_PHYS(start),
(PFN_PHYS(start_kernel_pfn)
- PFN_PHYS(start)));
printk("freeing pages %ld:%ld\n",
start, start_kernel_pfn);
start = end_kernel_pfn;
} else if (end > start_kernel_pfn)
end = start_kernel_pfn;
} else if (start < end_kernel_pfn)
start = end_kernel_pfn;
if (start >= end)
continue;
free_bootmem(PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
printk("freeing pages %ld:%ld\n", start, end);
}
/* Reserve the bootmap memory. */
reserve_bootmem(PFN_PHYS(bootmap_start), bootmap_size);
printk("reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
#ifdef CONFIG_BLK_DEV_INITRD
initrd_start = INITRD_START;
if (initrd_start) {
initrd_end = initrd_start+INITRD_SIZE;
printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
(void *) initrd_start, INITRD_SIZE);
if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
if (!move_initrd(PFN_PHYS(max_low_pfn)))
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%p)\ndisabling initrd\n",
initrd_end,
phys_to_virt(PFN_PHYS(max_low_pfn)));
} else {
reserve_bootmem(virt_to_phys((void *)initrd_start),
INITRD_SIZE);
}
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
#else
extern void setup_memory(void *);
#endif /* !CONFIG_DISCONTIGMEM */
int __init
page_is_ram(unsigned long pfn)
{
struct memclust_struct * cluster;
struct memdesc_struct * memdesc;
unsigned long i;
memdesc = (struct memdesc_struct *)
(hwrpb->mddt_offset + (unsigned long) hwrpb);
for_each_mem_cluster(memdesc, cluster, i)
{
if (pfn >= cluster->start_pfn &&
pfn < cluster->start_pfn + cluster->numpages) {
return (cluster->usage & 3) ? 0 : 1;
}
}
return 0;
}
static int __init
register_cpus(void)
{
int i;
for_each_possible_cpu(i) {
struct cpu *p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
register_cpu(p, i, NULL);
}
return 0;
}
arch_initcall(register_cpus);
void __init
setup_arch(char **cmdline_p)
{
extern char _end[];
struct alpha_machine_vector *vec = NULL;
struct percpu_struct *cpu;
char *type_name, *var_name, *p;
void *kernel_end = _end; /* end of kernel */
char *args = command_line;
hwrpb = (struct hwrpb_struct*) __va(INIT_HWRPB->phys_addr);
boot_cpuid = hard_smp_processor_id();
/*
* Pre-process the system type to make sure it will be valid.
*
* This may restore real CABRIO and EB66+ family names, ie
* EB64+ and EB66.
*
* Oh, and "white box" AS800 (aka DIGITAL Server 3000 series)
* and AS1200 (DIGITAL Server 5000 series) have the type as
* the negative of the real one.
*/
if ((long)hwrpb->sys_type < 0) {
hwrpb->sys_type = -((long)hwrpb->sys_type);
hwrpb_update_checksum(hwrpb);
}
/* Register a call for panic conditions. */
atomic_notifier_chain_register(&panic_notifier_list,
&alpha_panic_block);
#ifdef CONFIG_ALPHA_GENERIC
/* Assume that we've booted from SRM if we haven't booted from MILO.
Detect the later by looking for "MILO" in the system serial nr. */
alpha_using_srm = strncmp((const char *)hwrpb->ssn, "MILO", 4) != 0;
#endif
/* If we are using SRM, we want to allow callbacks
as early as possible, so do this NOW, and then
they should work immediately thereafter.
*/
kernel_end = callback_init(kernel_end);
/*
* Locate the command line.
*/
/* Hack for Jensen... since we're restricted to 8 or 16 chars for
boot flags depending on the boot mode, we need some shorthand.
This should do for installation. */
if (strcmp(COMMAND_LINE, "INSTALL") == 0) {
strlcpy(command_line, "root=/dev/fd0 load_ramdisk=1", sizeof command_line);
} else {
strlcpy(command_line, COMMAND_LINE, sizeof command_line);
}
strcpy(saved_command_line, command_line);
*cmdline_p = command_line;
/*
* Process command-line arguments.
*/
while ((p = strsep(&args, " \t")) != NULL) {
if (!*p) continue;
if (strncmp(p, "alpha_mv=", 9) == 0) {
vec = get_sysvec_byname(p+9);
continue;
}
if (strncmp(p, "cycle=", 6) == 0) {
est_cycle_freq = simple_strtol(p+6, NULL, 0);
continue;
}
if (strncmp(p, "mem=", 4) == 0) {
mem_size_limit = get_mem_size_limit(p+4);
continue;
}
if (strncmp(p, "srmcons", 7) == 0) {
srmcons_output |= 1;
continue;
}
if (strncmp(p, "console=srm", 11) == 0) {
srmcons_output |= 2;
continue;
}
if (strncmp(p, "gartsize=", 9) == 0) {
alpha_agpgart_size =
get_mem_size_limit(p+9) << PAGE_SHIFT;
continue;
}
#ifdef CONFIG_VERBOSE_MCHECK
if (strncmp(p, "verbose_mcheck=", 15) == 0) {
alpha_verbose_mcheck = simple_strtol(p+15, NULL, 0);
continue;
}
#endif
}
/* Replace the command line, now that we've killed it with strsep. */
strcpy(command_line, saved_command_line);
/* If we want SRM console printk echoing early, do it now. */
if (alpha_using_srm && srmcons_output) {
register_srm_console();
/*
* If "console=srm" was specified, clear the srmcons_output
* flag now so that time.c won't unregister_srm_console
*/
if (srmcons_output & 2)
srmcons_output = 0;
}
#ifdef CONFIG_MAGIC_SYSRQ
/* If we're using SRM, make sysrq-b halt back to the prom,
not auto-reboot. */
if (alpha_using_srm) {
struct sysrq_key_op *op = __sysrq_get_key_op('b');
op->handler = (void *) machine_halt;
}
#endif
/*
* Identify and reconfigure for the current system.
*/
cpu = (struct percpu_struct*)((char*)hwrpb + hwrpb->processor_offset);
get_sysnames(hwrpb->sys_type, hwrpb->sys_variation,
cpu->type, &type_name, &var_name);
if (*var_name == '0')
var_name = "";
if (!vec) {
vec = get_sysvec(hwrpb->sys_type, hwrpb->sys_variation,
cpu->type);
}
if (!vec) {
panic("Unsupported system type: %s%s%s (%ld %ld)\n",
type_name, (*var_name ? " variation " : ""), var_name,
hwrpb->sys_type, hwrpb->sys_variation);
}
if (vec != &alpha_mv) {
alpha_mv = *vec;
}
printk("Booting "
#ifdef CONFIG_ALPHA_GENERIC
"GENERIC "
#endif
"on %s%s%s using machine vector %s from %s\n",
type_name, (*var_name ? " variation " : ""),
var_name, alpha_mv.vector_name,
(alpha_using_srm ? "SRM" : "MILO"));
printk("Major Options: "
#ifdef CONFIG_SMP
"SMP "
#endif
#ifdef CONFIG_ALPHA_EV56
"EV56 "
#endif
#ifdef CONFIG_ALPHA_EV67
"EV67 "
#endif
#ifdef CONFIG_ALPHA_LEGACY_START_ADDRESS
"LEGACY_START "
#endif
#ifdef CONFIG_VERBOSE_MCHECK
"VERBOSE_MCHECK "
#endif
#ifdef CONFIG_DISCONTIGMEM
"DISCONTIGMEM "
#ifdef CONFIG_NUMA
"NUMA "
#endif
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
"DEBUG_SPINLOCK "
#endif
#ifdef CONFIG_MAGIC_SYSRQ
"MAGIC_SYSRQ "
#endif
"\n");
printk("Command line: %s\n", command_line);
/*
* Sync up the HAE.
* Save the SRM's current value for restoration.
*/
srm_hae = *alpha_mv.hae_register;
__set_hae(alpha_mv.hae_cache);
/* Reset enable correctable error reports. */
wrmces(0x7);
/* Find our memory. */
setup_memory(kernel_end);
/* First guess at cpu cache sizes. Do this before init_arch. */
determine_cpu_caches(cpu->type);
/* Initialize the machine. Usually has to do with setting up
DMA windows and the like. */
if (alpha_mv.init_arch)
alpha_mv.init_arch();
/* Reserve standard resources. */
reserve_std_resources();
/*
* Give us a default console. TGA users will see nothing until
* chr_dev_init is called, rather late in the boot sequence.
*/
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
/* Default root filesystem to sda2. */
ROOT_DEV = Root_SDA2;
#ifdef CONFIG_EISA
/* FIXME: only set this when we actually have EISA in this box? */
EISA_bus = 1;
#endif
/*
* Check ASN in HWRPB for validity, report if bad.
* FIXME: how was this failing? Should we trust it instead,
* and copy the value into alpha_mv.max_asn?
*/
if (hwrpb->max_asn != MAX_ASN) {
printk("Max ASN from HWRPB is bad (0x%lx)\n", hwrpb->max_asn);
}
/*
* Identify the flock of penguins.
*/
#ifdef CONFIG_SMP
setup_smp();
#endif
paging_init();
}
void __init
disable_early_printk(void)
{
if (alpha_using_srm && srmcons_output) {
unregister_srm_console();
srmcons_output = 0;
}
}
static char sys_unknown[] = "Unknown";
static char systype_names[][16] = {
"0",
"ADU", "Cobra", "Ruby", "Flamingo", "Mannequin", "Jensen",
"Pelican", "Morgan", "Sable", "Medulla", "Noname",
"Turbolaser", "Avanti", "Mustang", "Alcor", "Tradewind",
"Mikasa", "EB64", "EB66", "EB64+", "AlphaBook1",
"Rawhide", "K2", "Lynx", "XL", "EB164", "Noritake",
"Cortex", "29", "Miata", "XXM", "Takara", "Yukon",
"Tsunami", "Wildfire", "CUSCO", "Eiger", "Titan", "Marvel"
};
static char unofficial_names[][8] = {"100", "Ruffian"};
static char api_names[][16] = {"200", "Nautilus"};
static char eb164_names[][8] = {"EB164", "PC164", "LX164", "SX164", "RX164"};
static int eb164_indices[] = {0,0,0,1,1,1,1,1,2,2,2,2,3,3,3,3,4};
static char alcor_names[][16] = {"Alcor", "Maverick", "Bret"};
static int alcor_indices[] = {0,0,0,1,1,1,0,0,0,0,0,0,2,2,2,2,2,2};
static char eb64p_names[][16] = {"EB64+", "Cabriolet", "AlphaPCI64"};
static int eb64p_indices[] = {0,0,1,2};
static char eb66_names[][8] = {"EB66", "EB66+"};
static int eb66_indices[] = {0,0,1};
static char marvel_names[][16] = {
"Marvel/EV7"
};
static int marvel_indices[] = { 0 };
static char rawhide_names[][16] = {
"Dodge", "Wrangler", "Durango", "Tincup", "DaVinci"
};
static int rawhide_indices[] = {0,0,0,1,1,2,2,3,3,4,4};
static char titan_names[][16] = {
"DEFAULT", "Privateer", "Falcon", "Granite"
};
static int titan_indices[] = {0,1,2,2,3};
static char tsunami_names[][16] = {
"0", "DP264", "Warhol", "Windjammer", "Monet", "Clipper",
"Goldrush", "Webbrick", "Catamaran", "Brisbane", "Melbourne",
"Flying Clipper", "Shark"
};
static int tsunami_indices[] = {0,1,2,3,4,5,6,7,8,9,10,11,12};
static struct alpha_machine_vector * __init
get_sysvec(unsigned long type, unsigned long variation, unsigned long cpu)
{
static struct alpha_machine_vector *systype_vecs[] __initdata =
{
NULL, /* 0 */
NULL, /* ADU */
NULL, /* Cobra */
NULL, /* Ruby */
NULL, /* Flamingo */
NULL, /* Mannequin */
&jensen_mv,
NULL, /* Pelican */
NULL, /* Morgan */
NULL, /* Sable -- see below. */
NULL, /* Medulla */
&noname_mv,
NULL, /* Turbolaser */
&avanti_mv,
NULL, /* Mustang */
NULL, /* Alcor, Bret, Maverick. HWRPB inaccurate? */
NULL, /* Tradewind */
NULL, /* Mikasa -- see below. */
NULL, /* EB64 */
NULL, /* EB66 -- see variation. */
NULL, /* EB64+ -- see variation. */
&alphabook1_mv,
&rawhide_mv,
NULL, /* K2 */
&lynx_mv, /* Lynx */
&xl_mv,
NULL, /* EB164 -- see variation. */
NULL, /* Noritake -- see below. */
NULL, /* Cortex */
NULL, /* 29 */
&miata_mv,
NULL, /* XXM */
&takara_mv,
NULL, /* Yukon */
NULL, /* Tsunami -- see variation. */
&wildfire_mv, /* Wildfire */
NULL, /* CUSCO */
&eiger_mv, /* Eiger */
NULL, /* Titan */
NULL, /* Marvel */
};
static struct alpha_machine_vector *unofficial_vecs[] __initdata =
{
NULL, /* 100 */
&ruffian_mv,
};
static struct alpha_machine_vector *api_vecs[] __initdata =
{
NULL, /* 200 */
&nautilus_mv,
};
static struct alpha_machine_vector *alcor_vecs[] __initdata =
{
&alcor_mv, &xlt_mv, &xlt_mv
};
static struct alpha_machine_vector *eb164_vecs[] __initdata =
{
&eb164_mv, &pc164_mv, &lx164_mv, &sx164_mv, &rx164_mv
};
static struct alpha_machine_vector *eb64p_vecs[] __initdata =
{
&eb64p_mv,
&cabriolet_mv,
&cabriolet_mv /* AlphaPCI64 */
};
static struct alpha_machine_vector *eb66_vecs[] __initdata =
{
&eb66_mv,
&eb66p_mv
};
static struct alpha_machine_vector *marvel_vecs[] __initdata =
{
&marvel_ev7_mv,
};
static struct alpha_machine_vector *titan_vecs[] __initdata =
{
&titan_mv, /* default */
&privateer_mv, /* privateer */
&titan_mv, /* falcon */
&privateer_mv, /* granite */
};
static struct alpha_machine_vector *tsunami_vecs[] __initdata =
{
NULL,
&dp264_mv, /* dp264 */
&dp264_mv, /* warhol */
&dp264_mv, /* windjammer */
&monet_mv, /* monet */
&clipper_mv, /* clipper */
&dp264_mv, /* goldrush */
&webbrick_mv, /* webbrick */
&dp264_mv, /* catamaran */
NULL, /* brisbane? */
NULL, /* melbourne? */
NULL, /* flying clipper? */
&shark_mv, /* shark */
};
/* ??? Do we need to distinguish between Rawhides? */
struct alpha_machine_vector *vec;
/* Search the system tables first... */
vec = NULL;
if (type < N(systype_vecs)) {
vec = systype_vecs[type];
} else if ((type > ST_API_BIAS) &&
(type - ST_API_BIAS) < N(api_vecs)) {
vec = api_vecs[type - ST_API_BIAS];
} else if ((type > ST_UNOFFICIAL_BIAS) &&
(type - ST_UNOFFICIAL_BIAS) < N(unofficial_vecs)) {
vec = unofficial_vecs[type - ST_UNOFFICIAL_BIAS];
}
/* If we've not found one, try for a variation. */
if (!vec) {
/* Member ID is a bit-field. */
unsigned long member = (variation >> 10) & 0x3f;
cpu &= 0xffffffff; /* make it usable */
switch (type) {
case ST_DEC_ALCOR:
if (member < N(alcor_indices))
vec = alcor_vecs[alcor_indices[member]];
break;
case ST_DEC_EB164:
if (member < N(eb164_indices))
vec = eb164_vecs[eb164_indices[member]];
/* PC164 may show as EB164 variation with EV56 CPU,
but, since no true EB164 had anything but EV5... */
if (vec == &eb164_mv && cpu == EV56_CPU)
vec = &pc164_mv;
break;
case ST_DEC_EB64P:
if (member < N(eb64p_indices))
vec = eb64p_vecs[eb64p_indices[member]];
break;
case ST_DEC_EB66:
if (member < N(eb66_indices))
vec = eb66_vecs[eb66_indices[member]];
break;
case ST_DEC_MARVEL:
if (member < N(marvel_indices))
vec = marvel_vecs[marvel_indices[member]];
break;
case ST_DEC_TITAN:
vec = titan_vecs[0]; /* default */
if (member < N(titan_indices))
vec = titan_vecs[titan_indices[member]];
break;
case ST_DEC_TSUNAMI:
if (member < N(tsunami_indices))
vec = tsunami_vecs[tsunami_indices[member]];
break;
case ST_DEC_1000:
if (cpu == EV5_CPU || cpu == EV56_CPU)
vec = &mikasa_primo_mv;
else
vec = &mikasa_mv;
break;
case ST_DEC_NORITAKE:
if (cpu == EV5_CPU || cpu == EV56_CPU)
vec = &noritake_primo_mv;
else
vec = &noritake_mv;
break;
case ST_DEC_2100_A500:
if (cpu == EV5_CPU || cpu == EV56_CPU)
vec = &sable_gamma_mv;
else
vec = &sable_mv;
break;
}
}
return vec;
}
static struct alpha_machine_vector * __init
get_sysvec_byname(const char *name)
{
static struct alpha_machine_vector *all_vecs[] __initdata =
{
&alcor_mv,
&alphabook1_mv,
&avanti_mv,
&cabriolet_mv,
&clipper_mv,
&dp264_mv,
&eb164_mv,
&eb64p_mv,
&eb66_mv,
&eb66p_mv,
&eiger_mv,
&jensen_mv,
&lx164_mv,
&lynx_mv,
&miata_mv,
&mikasa_mv,
&mikasa_primo_mv,
&monet_mv,
&nautilus_mv,
&noname_mv,
&noritake_mv,
&noritake_primo_mv,
&p2k_mv,
&pc164_mv,
&privateer_mv,
&rawhide_mv,
&ruffian_mv,
&rx164_mv,
&sable_mv,
&sable_gamma_mv,
&shark_mv,
&sx164_mv,
&takara_mv,
&webbrick_mv,
&wildfire_mv,
&xl_mv,
&xlt_mv
};
size_t i;
for (i = 0; i < N(all_vecs); ++i) {
struct alpha_machine_vector *mv = all_vecs[i];
if (strcasecmp(mv->vector_name, name) == 0)
return mv;
}
return NULL;
}
static void
get_sysnames(unsigned long type, unsigned long variation, unsigned long cpu,
char **type_name, char **variation_name)
{
unsigned long member;
/* If not in the tables, make it UNKNOWN,
else set type name to family */
if (type < N(systype_names)) {
*type_name = systype_names[type];
} else if ((type > ST_API_BIAS) &&
(type - ST_API_BIAS) < N(api_names)) {
*type_name = api_names[type - ST_API_BIAS];
} else if ((type > ST_UNOFFICIAL_BIAS) &&
(type - ST_UNOFFICIAL_BIAS) < N(unofficial_names)) {
*type_name = unofficial_names[type - ST_UNOFFICIAL_BIAS];
} else {
*type_name = sys_unknown;
*variation_name = sys_unknown;
return;
}
/* Set variation to "0"; if variation is zero, done. */
*variation_name = systype_names[0];
if (variation == 0) {
return;
}
member = (variation >> 10) & 0x3f; /* member ID is a bit-field */
cpu &= 0xffffffff; /* make it usable */
switch (type) { /* select by family */
default: /* default to variation "0" for now */
break;
case ST_DEC_EB164:
if (member < N(eb164_indices))
*variation_name = eb164_names[eb164_indices[member]];
/* PC164 may show as EB164 variation, but with EV56 CPU,
so, since no true EB164 had anything but EV5... */
if (eb164_indices[member] == 0 && cpu == EV56_CPU)
*variation_name = eb164_names[1]; /* make it PC164 */
break;
case ST_DEC_ALCOR:
if (member < N(alcor_indices))
*variation_name = alcor_names[alcor_indices[member]];
break;
case ST_DEC_EB64P:
if (member < N(eb64p_indices))
*variation_name = eb64p_names[eb64p_indices[member]];
break;
case ST_DEC_EB66:
if (member < N(eb66_indices))
*variation_name = eb66_names[eb66_indices[member]];
break;
case ST_DEC_MARVEL:
if (member < N(marvel_indices))
*variation_name = marvel_names[marvel_indices[member]];
break;
case ST_DEC_RAWHIDE:
if (member < N(rawhide_indices))
*variation_name = rawhide_names[rawhide_indices[member]];
break;
case ST_DEC_TITAN:
*variation_name = titan_names[0]; /* default */
if (member < N(titan_indices))
*variation_name = titan_names[titan_indices[member]];
break;
case ST_DEC_TSUNAMI:
if (member < N(tsunami_indices))
*variation_name = tsunami_names[tsunami_indices[member]];
break;
}
}
/*
* A change was made to the HWRPB via an ECO and the following code
* tracks a part of the ECO. In HWRPB versions less than 5, the ECO
* was not implemented in the console firmware. If it's revision 5 or
* greater we can get the name of the platform as an ASCII string from
* the HWRPB. That's what this function does. It checks the revision
* level and if the string is in the HWRPB it returns the address of
* the string--a pointer to the name of the platform.
*
* Returns:
* - Pointer to a ASCII string if it's in the HWRPB
* - Pointer to a blank string if the data is not in the HWRPB.
*/
static char *
platform_string(void)
{
struct dsr_struct *dsr;
static char unk_system_string[] = "N/A";
/* Go to the console for the string pointer.
* If the rpb_vers is not 5 or greater the rpb
* is old and does not have this data in it.
*/
if (hwrpb->revision < 5)
return (unk_system_string);
else {
/* The Dynamic System Recognition struct
* has the system platform name starting
* after the character count of the string.
*/
dsr = ((struct dsr_struct *)
((char *)hwrpb + hwrpb->dsr_offset));
return ((char *)dsr + (dsr->sysname_off +
sizeof(long)));
}
}
static int
get_nr_processors(struct percpu_struct *cpubase, unsigned long num)
{
struct percpu_struct *cpu;
unsigned long i;
int count = 0;
for (i = 0; i < num; i++) {
cpu = (struct percpu_struct *)
((char *)cpubase + i*hwrpb->processor_size);
if ((cpu->flags & 0x1cc) == 0x1cc)
count++;
}
return count;
}
static void
show_cache_size (struct seq_file *f, const char *which, int shape)
{
if (shape == -1)
seq_printf (f, "%s\t\t: n/a\n", which);
else if (shape == 0)
seq_printf (f, "%s\t\t: unknown\n", which);
else
seq_printf (f, "%s\t\t: %dK, %d-way, %db line\n",
which, shape >> 10, shape & 15,
1 << ((shape >> 4) & 15));
}
static int
show_cpuinfo(struct seq_file *f, void *slot)
{
extern struct unaligned_stat {
unsigned long count, va, pc;
} unaligned[2];
static char cpu_names[][8] = {
"EV3", "EV4", "Simulate", "LCA4", "EV5", "EV45", "EV56",
"EV6", "PCA56", "PCA57", "EV67", "EV68CB", "EV68AL",
"EV68CX", "EV7", "EV79", "EV69"
};
struct percpu_struct *cpu = slot;
unsigned int cpu_index;
char *cpu_name;
char *systype_name;
char *sysvariation_name;
int nr_processors;
cpu_index = (unsigned) (cpu->type - 1);
cpu_name = "Unknown";
if (cpu_index < N(cpu_names))
cpu_name = cpu_names[cpu_index];
get_sysnames(hwrpb->sys_type, hwrpb->sys_variation,
cpu->type, &systype_name, &sysvariation_name);
nr_processors = get_nr_processors(cpu, hwrpb->nr_processors);
seq_printf(f, "cpu\t\t\t: Alpha\n"
"cpu model\t\t: %s\n"
"cpu variation\t\t: %ld\n"
"cpu revision\t\t: %ld\n"
"cpu serial number\t: %s\n"
"system type\t\t: %s\n"
"system variation\t: %s\n"
"system revision\t\t: %ld\n"
"system serial number\t: %s\n"
"cycle frequency [Hz]\t: %lu %s\n"
"timer frequency [Hz]\t: %lu.%02lu\n"
"page size [bytes]\t: %ld\n"
"phys. address bits\t: %ld\n"
"max. addr. space #\t: %ld\n"
"BogoMIPS\t\t: %lu.%02lu\n"
"kernel unaligned acc\t: %ld (pc=%lx,va=%lx)\n"
"user unaligned acc\t: %ld (pc=%lx,va=%lx)\n"
"platform string\t\t: %s\n"
"cpus detected\t\t: %d\n",
cpu_name, cpu->variation, cpu->revision,
(char*)cpu->serial_no,
systype_name, sysvariation_name, hwrpb->sys_revision,
(char*)hwrpb->ssn,
est_cycle_freq ? : hwrpb->cycle_freq,
est_cycle_freq ? "est." : "",
hwrpb->intr_freq / 4096,
(100 * hwrpb->intr_freq / 4096) % 100,
hwrpb->pagesize,
hwrpb->pa_bits,
hwrpb->max_asn,
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100,
unaligned[0].count, unaligned[0].pc, unaligned[0].va,
unaligned[1].count, unaligned[1].pc, unaligned[1].va,
platform_string(), nr_processors);
#ifdef CONFIG_SMP
seq_printf(f, "cpus active\t\t: %d\n"
"cpu active mask\t\t: %016lx\n",
num_online_cpus(), cpus_addr(cpu_possible_map)[0]);
#endif
show_cache_size (f, "L1 Icache", alpha_l1i_cacheshape);
show_cache_size (f, "L1 Dcache", alpha_l1d_cacheshape);
show_cache_size (f, "L2 cache", alpha_l2_cacheshape);
show_cache_size (f, "L3 cache", alpha_l3_cacheshape);
return 0;
}
static int __init
read_mem_block(int *addr, int stride, int size)
{
long nloads = size / stride, cnt, tmp;
__asm__ __volatile__(
" rpcc %0\n"
"1: ldl %3,0(%2)\n"
" subq %1,1,%1\n"
/* Next two XORs introduce an explicit data dependency between
consecutive loads in the loop, which will give us true load
latency. */
" xor %3,%2,%2\n"
" xor %3,%2,%2\n"
" addq %2,%4,%2\n"
" bne %1,1b\n"
" rpcc %3\n"
" subl %3,%0,%0\n"
: "=&r" (cnt), "=&r" (nloads), "=&r" (addr), "=&r" (tmp)
: "r" (stride), "1" (nloads), "2" (addr));
return cnt / (size / stride);
}
#define CSHAPE(totalsize, linesize, assoc) \
((totalsize & ~0xff) | (linesize << 4) | assoc)
/* ??? EV5 supports up to 64M, but did the systems with more than
16M of BCACHE ever exist? */
#define MAX_BCACHE_SIZE 16*1024*1024
/* Note that the offchip caches are direct mapped on all Alphas. */
static int __init
external_cache_probe(int minsize, int width)
{
int cycles, prev_cycles = 1000000;
int stride = 1 << width;
long size = minsize, maxsize = MAX_BCACHE_SIZE * 2;
if (maxsize > (max_low_pfn + 1) << PAGE_SHIFT)
maxsize = 1 << (floor_log2(max_low_pfn + 1) + PAGE_SHIFT);
/* Get the first block cached. */
read_mem_block(__va(0), stride, size);
while (size < maxsize) {
/* Get an average load latency in cycles. */
cycles = read_mem_block(__va(0), stride, size);
if (cycles > prev_cycles * 2) {
/* Fine, we exceed the cache. */
printk("%ldK Bcache detected; load hit latency %d "
"cycles, load miss latency %d cycles\n",
size >> 11, prev_cycles, cycles);
return CSHAPE(size >> 1, width, 1);
}
/* Try to get the next block cached. */
read_mem_block(__va(size), stride, size);
prev_cycles = cycles;
size <<= 1;
}
return -1; /* No BCACHE found. */
}
static void __init
determine_cpu_caches (unsigned int cpu_type)
{
int L1I, L1D, L2, L3;
switch (cpu_type) {
case EV4_CPU:
case EV45_CPU:
{
if (cpu_type == EV4_CPU)
L1I = CSHAPE(8*1024, 5, 1);
else
L1I = CSHAPE(16*1024, 5, 1);
L1D = L1I;
L3 = -1;
/* BIU_CTL is a write-only Abox register. PALcode has a
shadow copy, and may be available from some versions
of the CSERVE PALcall. If we can get it, then
unsigned long biu_ctl, size;
size = 128*1024 * (1 << ((biu_ctl >> 28) & 7));
L2 = CSHAPE (size, 5, 1);
Unfortunately, we can't rely on that.
*/
L2 = external_cache_probe(128*1024, 5);
break;
}
case LCA4_CPU:
{
unsigned long car, size;
L1I = L1D = CSHAPE(8*1024, 5, 1);
L3 = -1;
car = *(vuip) phys_to_virt (0x120000078UL);
size = 64*1024 * (1 << ((car >> 5) & 7));
/* No typo -- 8 byte cacheline size. Whodathunk. */
L2 = (car & 1 ? CSHAPE (size, 3, 1) : -1);
break;
}
case EV5_CPU:
case EV56_CPU:
{
unsigned long sc_ctl, width;
L1I = L1D = CSHAPE(8*1024, 5, 1);
/* Check the line size of the Scache. */
sc_ctl = *(vulp) phys_to_virt (0xfffff000a8UL);
width = sc_ctl & 0x1000 ? 6 : 5;
L2 = CSHAPE (96*1024, width, 3);
/* BC_CONTROL and BC_CONFIG are write-only IPRs. PALcode
has a shadow copy, and may be available from some versions
of the CSERVE PALcall. If we can get it, then
unsigned long bc_control, bc_config, size;
size = 1024*1024 * (1 << ((bc_config & 7) - 1));
L3 = (bc_control & 1 ? CSHAPE (size, width, 1) : -1);
Unfortunately, we can't rely on that.
*/
L3 = external_cache_probe(1024*1024, width);
break;
}
case PCA56_CPU:
case PCA57_CPU:
{
unsigned long cbox_config, size;
if (cpu_type == PCA56_CPU) {
L1I = CSHAPE(16*1024, 6, 1);
L1D = CSHAPE(8*1024, 5, 1);
} else {
L1I = CSHAPE(32*1024, 6, 2);
L1D = CSHAPE(16*1024, 5, 1);
}
L3 = -1;
cbox_config = *(vulp) phys_to_virt (0xfffff00008UL);
size = 512*1024 * (1 << ((cbox_config >> 12) & 3));
#if 0
L2 = ((cbox_config >> 31) & 1 ? CSHAPE (size, 6, 1) : -1);
#else
L2 = external_cache_probe(512*1024, 6);
#endif
break;
}
case EV6_CPU:
case EV67_CPU:
case EV68CB_CPU:
case EV68AL_CPU:
case EV68CX_CPU:
case EV69_CPU:
L1I = L1D = CSHAPE(64*1024, 6, 2);
L2 = external_cache_probe(1024*1024, 6);
L3 = -1;
break;
case EV7_CPU:
case EV79_CPU:
L1I = L1D = CSHAPE(64*1024, 6, 2);
L2 = CSHAPE(7*1024*1024/4, 6, 7);
L3 = -1;
break;
default:
/* Nothing known about this cpu type. */
L1I = L1D = L2 = L3 = 0;
break;
}
alpha_l1i_cacheshape = L1I;
alpha_l1d_cacheshape = L1D;
alpha_l2_cacheshape = L2;
alpha_l3_cacheshape = L3;
}
/*
* We show only CPU #0 info.
*/
static void *
c_start(struct seq_file *f, loff_t *pos)
{
return *pos ? NULL : (char *)hwrpb + hwrpb->processor_offset;
}
static void *
c_next(struct seq_file *f, void *v, loff_t *pos)
{
return NULL;
}
static void
c_stop(struct seq_file *f, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
static int
alpha_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
{
#if 1
/* FIXME FIXME FIXME */
/* If we are using SRM and serial console, just hard halt here. */
if (alpha_using_srm && srmcons_output)
__halt();
#endif
return NOTIFY_DONE;
}
static __init int add_pcspkr(void)
{
struct platform_device *pd;
int ret;
pd = platform_device_alloc("pcspkr", -1);
if (!pd)
return -ENOMEM;
ret = platform_device_add(pd);
if (ret)
platform_device_put(pd);
return ret;
}
device_initcall(add_pcspkr);