linux/net/ipv6/ip6_fib.c
Hannes Frederic Sowa 0a67d3efa4 ipv6: compare sernum when walking fib for /proc/net/ipv6_route as safety net
This patch provides an additional safety net against NULL
pointer dereferences while walking the fib trie for the new
/proc/net/ipv6_route walkers. I never needed it myself and am unsure
if it is needed at all, but the same checks where introduced in
2bec5a369e ("ipv6: fib: fix crash when
changing large fib while dumping it") to fix NULL pointer bugs.

This patch is separated from the first patch to make it easier to revert
if we are sure we can drop this logic.

Cc: Ben Greear <greearb@candelatech.com>
Cc: Patrick McHardy <kaber@trash.net>
Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-27 17:32:17 -04:00

1952 lines
42 KiB
C

/*
* Linux INET6 implementation
* Forwarding Information Database
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* Changes:
* Yuji SEKIYA @USAGI: Support default route on router node;
* remove ip6_null_entry from the top of
* routing table.
* Ville Nuorvala: Fixed routing subtrees.
*/
#define pr_fmt(fmt) "IPv6: " fmt
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/net.h>
#include <linux/route.h>
#include <linux/netdevice.h>
#include <linux/in6.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include <net/addrconf.h>
#include <net/ip6_fib.h>
#include <net/ip6_route.h>
#define RT6_DEBUG 2
#if RT6_DEBUG >= 3
#define RT6_TRACE(x...) pr_debug(x)
#else
#define RT6_TRACE(x...) do { ; } while (0)
#endif
static struct kmem_cache * fib6_node_kmem __read_mostly;
enum fib_walk_state_t
{
#ifdef CONFIG_IPV6_SUBTREES
FWS_S,
#endif
FWS_L,
FWS_R,
FWS_C,
FWS_U
};
struct fib6_cleaner_t
{
struct fib6_walker_t w;
struct net *net;
int (*func)(struct rt6_info *, void *arg);
void *arg;
};
static DEFINE_RWLOCK(fib6_walker_lock);
#ifdef CONFIG_IPV6_SUBTREES
#define FWS_INIT FWS_S
#else
#define FWS_INIT FWS_L
#endif
static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
struct rt6_info *rt);
static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
static int fib6_walk(struct fib6_walker_t *w);
static int fib6_walk_continue(struct fib6_walker_t *w);
/*
* A routing update causes an increase of the serial number on the
* affected subtree. This allows for cached routes to be asynchronously
* tested when modifications are made to the destination cache as a
* result of redirects, path MTU changes, etc.
*/
static __u32 rt_sernum;
static void fib6_gc_timer_cb(unsigned long arg);
static LIST_HEAD(fib6_walkers);
#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
static inline void fib6_walker_link(struct fib6_walker_t *w)
{
write_lock_bh(&fib6_walker_lock);
list_add(&w->lh, &fib6_walkers);
write_unlock_bh(&fib6_walker_lock);
}
static inline void fib6_walker_unlink(struct fib6_walker_t *w)
{
write_lock_bh(&fib6_walker_lock);
list_del(&w->lh);
write_unlock_bh(&fib6_walker_lock);
}
static __inline__ u32 fib6_new_sernum(void)
{
u32 n = ++rt_sernum;
if ((__s32)n <= 0)
rt_sernum = n = 1;
return n;
}
/*
* Auxiliary address test functions for the radix tree.
*
* These assume a 32bit processor (although it will work on
* 64bit processors)
*/
/*
* test bit
*/
#if defined(__LITTLE_ENDIAN)
# define BITOP_BE32_SWIZZLE (0x1F & ~7)
#else
# define BITOP_BE32_SWIZZLE 0
#endif
static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
{
const __be32 *addr = token;
/*
* Here,
* 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
* is optimized version of
* htonl(1 << ((~fn_bit)&0x1F))
* See include/asm-generic/bitops/le.h.
*/
return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
addr[fn_bit >> 5];
}
static __inline__ struct fib6_node * node_alloc(void)
{
struct fib6_node *fn;
fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
return fn;
}
static __inline__ void node_free(struct fib6_node * fn)
{
kmem_cache_free(fib6_node_kmem, fn);
}
static __inline__ void rt6_release(struct rt6_info *rt)
{
if (atomic_dec_and_test(&rt->rt6i_ref))
dst_free(&rt->dst);
}
static void fib6_link_table(struct net *net, struct fib6_table *tb)
{
unsigned int h;
/*
* Initialize table lock at a single place to give lockdep a key,
* tables aren't visible prior to being linked to the list.
*/
rwlock_init(&tb->tb6_lock);
h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
/*
* No protection necessary, this is the only list mutatation
* operation, tables never disappear once they exist.
*/
hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
}
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
{
struct fib6_table *table;
table = kzalloc(sizeof(*table), GFP_ATOMIC);
if (table) {
table->tb6_id = id;
table->tb6_root.leaf = net->ipv6.ip6_null_entry;
table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
inet_peer_base_init(&table->tb6_peers);
}
return table;
}
struct fib6_table *fib6_new_table(struct net *net, u32 id)
{
struct fib6_table *tb;
if (id == 0)
id = RT6_TABLE_MAIN;
tb = fib6_get_table(net, id);
if (tb)
return tb;
tb = fib6_alloc_table(net, id);
if (tb)
fib6_link_table(net, tb);
return tb;
}
struct fib6_table *fib6_get_table(struct net *net, u32 id)
{
struct fib6_table *tb;
struct hlist_head *head;
unsigned int h;
if (id == 0)
id = RT6_TABLE_MAIN;
h = id & (FIB6_TABLE_HASHSZ - 1);
rcu_read_lock();
head = &net->ipv6.fib_table_hash[h];
hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
if (tb->tb6_id == id) {
rcu_read_unlock();
return tb;
}
}
rcu_read_unlock();
return NULL;
}
static void __net_init fib6_tables_init(struct net *net)
{
fib6_link_table(net, net->ipv6.fib6_main_tbl);
fib6_link_table(net, net->ipv6.fib6_local_tbl);
}
#else
struct fib6_table *fib6_new_table(struct net *net, u32 id)
{
return fib6_get_table(net, id);
}
struct fib6_table *fib6_get_table(struct net *net, u32 id)
{
return net->ipv6.fib6_main_tbl;
}
struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
int flags, pol_lookup_t lookup)
{
return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
}
static void __net_init fib6_tables_init(struct net *net)
{
fib6_link_table(net, net->ipv6.fib6_main_tbl);
}
#endif
static int fib6_dump_node(struct fib6_walker_t *w)
{
int res;
struct rt6_info *rt;
for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
res = rt6_dump_route(rt, w->args);
if (res < 0) {
/* Frame is full, suspend walking */
w->leaf = rt;
return 1;
}
WARN_ON(res == 0);
}
w->leaf = NULL;
return 0;
}
static void fib6_dump_end(struct netlink_callback *cb)
{
struct fib6_walker_t *w = (void*)cb->args[2];
if (w) {
if (cb->args[4]) {
cb->args[4] = 0;
fib6_walker_unlink(w);
}
cb->args[2] = 0;
kfree(w);
}
cb->done = (void*)cb->args[3];
cb->args[1] = 3;
}
static int fib6_dump_done(struct netlink_callback *cb)
{
fib6_dump_end(cb);
return cb->done ? cb->done(cb) : 0;
}
static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
struct netlink_callback *cb)
{
struct fib6_walker_t *w;
int res;
w = (void *)cb->args[2];
w->root = &table->tb6_root;
if (cb->args[4] == 0) {
w->count = 0;
w->skip = 0;
read_lock_bh(&table->tb6_lock);
res = fib6_walk(w);
read_unlock_bh(&table->tb6_lock);
if (res > 0) {
cb->args[4] = 1;
cb->args[5] = w->root->fn_sernum;
}
} else {
if (cb->args[5] != w->root->fn_sernum) {
/* Begin at the root if the tree changed */
cb->args[5] = w->root->fn_sernum;
w->state = FWS_INIT;
w->node = w->root;
w->skip = w->count;
} else
w->skip = 0;
read_lock_bh(&table->tb6_lock);
res = fib6_walk_continue(w);
read_unlock_bh(&table->tb6_lock);
if (res <= 0) {
fib6_walker_unlink(w);
cb->args[4] = 0;
}
}
return res;
}
static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
unsigned int h, s_h;
unsigned int e = 0, s_e;
struct rt6_rtnl_dump_arg arg;
struct fib6_walker_t *w;
struct fib6_table *tb;
struct hlist_head *head;
int res = 0;
s_h = cb->args[0];
s_e = cb->args[1];
w = (void *)cb->args[2];
if (!w) {
/* New dump:
*
* 1. hook callback destructor.
*/
cb->args[3] = (long)cb->done;
cb->done = fib6_dump_done;
/*
* 2. allocate and initialize walker.
*/
w = kzalloc(sizeof(*w), GFP_ATOMIC);
if (!w)
return -ENOMEM;
w->func = fib6_dump_node;
cb->args[2] = (long)w;
}
arg.skb = skb;
arg.cb = cb;
arg.net = net;
w->args = &arg;
rcu_read_lock();
for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
e = 0;
head = &net->ipv6.fib_table_hash[h];
hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
if (e < s_e)
goto next;
res = fib6_dump_table(tb, skb, cb);
if (res != 0)
goto out;
next:
e++;
}
}
out:
rcu_read_unlock();
cb->args[1] = e;
cb->args[0] = h;
res = res < 0 ? res : skb->len;
if (res <= 0)
fib6_dump_end(cb);
return res;
}
/*
* Routing Table
*
* return the appropriate node for a routing tree "add" operation
* by either creating and inserting or by returning an existing
* node.
*/
static struct fib6_node *fib6_add_1(struct fib6_node *root,
struct in6_addr *addr, int plen,
int offset, int allow_create,
int replace_required)
{
struct fib6_node *fn, *in, *ln;
struct fib6_node *pn = NULL;
struct rt6key *key;
int bit;
__be32 dir = 0;
__u32 sernum = fib6_new_sernum();
RT6_TRACE("fib6_add_1\n");
/* insert node in tree */
fn = root;
do {
key = (struct rt6key *)((u8 *)fn->leaf + offset);
/*
* Prefix match
*/
if (plen < fn->fn_bit ||
!ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
if (!allow_create) {
if (replace_required) {
pr_warn("Can't replace route, no match found\n");
return ERR_PTR(-ENOENT);
}
pr_warn("NLM_F_CREATE should be set when creating new route\n");
}
goto insert_above;
}
/*
* Exact match ?
*/
if (plen == fn->fn_bit) {
/* clean up an intermediate node */
if (!(fn->fn_flags & RTN_RTINFO)) {
rt6_release(fn->leaf);
fn->leaf = NULL;
}
fn->fn_sernum = sernum;
return fn;
}
/*
* We have more bits to go
*/
/* Try to walk down on tree. */
fn->fn_sernum = sernum;
dir = addr_bit_set(addr, fn->fn_bit);
pn = fn;
fn = dir ? fn->right: fn->left;
} while (fn);
if (!allow_create) {
/* We should not create new node because
* NLM_F_REPLACE was specified without NLM_F_CREATE
* I assume it is safe to require NLM_F_CREATE when
* REPLACE flag is used! Later we may want to remove the
* check for replace_required, because according
* to netlink specification, NLM_F_CREATE
* MUST be specified if new route is created.
* That would keep IPv6 consistent with IPv4
*/
if (replace_required) {
pr_warn("Can't replace route, no match found\n");
return ERR_PTR(-ENOENT);
}
pr_warn("NLM_F_CREATE should be set when creating new route\n");
}
/*
* We walked to the bottom of tree.
* Create new leaf node without children.
*/
ln = node_alloc();
if (!ln)
return ERR_PTR(-ENOMEM);
ln->fn_bit = plen;
ln->parent = pn;
ln->fn_sernum = sernum;
if (dir)
pn->right = ln;
else
pn->left = ln;
return ln;
insert_above:
/*
* split since we don't have a common prefix anymore or
* we have a less significant route.
* we've to insert an intermediate node on the list
* this new node will point to the one we need to create
* and the current
*/
pn = fn->parent;
/* find 1st bit in difference between the 2 addrs.
See comment in __ipv6_addr_diff: bit may be an invalid value,
but if it is >= plen, the value is ignored in any case.
*/
bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
/*
* (intermediate)[in]
* / \
* (new leaf node)[ln] (old node)[fn]
*/
if (plen > bit) {
in = node_alloc();
ln = node_alloc();
if (!in || !ln) {
if (in)
node_free(in);
if (ln)
node_free(ln);
return ERR_PTR(-ENOMEM);
}
/*
* new intermediate node.
* RTN_RTINFO will
* be off since that an address that chooses one of
* the branches would not match less specific routes
* in the other branch
*/
in->fn_bit = bit;
in->parent = pn;
in->leaf = fn->leaf;
atomic_inc(&in->leaf->rt6i_ref);
in->fn_sernum = sernum;
/* update parent pointer */
if (dir)
pn->right = in;
else
pn->left = in;
ln->fn_bit = plen;
ln->parent = in;
fn->parent = in;
ln->fn_sernum = sernum;
if (addr_bit_set(addr, bit)) {
in->right = ln;
in->left = fn;
} else {
in->left = ln;
in->right = fn;
}
} else { /* plen <= bit */
/*
* (new leaf node)[ln]
* / \
* (old node)[fn] NULL
*/
ln = node_alloc();
if (!ln)
return ERR_PTR(-ENOMEM);
ln->fn_bit = plen;
ln->parent = pn;
ln->fn_sernum = sernum;
if (dir)
pn->right = ln;
else
pn->left = ln;
if (addr_bit_set(&key->addr, plen))
ln->right = fn;
else
ln->left = fn;
fn->parent = ln;
}
return ln;
}
static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
{
return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
RTF_GATEWAY;
}
/*
* Insert routing information in a node.
*/
static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
struct nl_info *info)
{
struct rt6_info *iter = NULL;
struct rt6_info **ins;
int replace = (info->nlh &&
(info->nlh->nlmsg_flags & NLM_F_REPLACE));
int add = (!info->nlh ||
(info->nlh->nlmsg_flags & NLM_F_CREATE));
int found = 0;
bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
ins = &fn->leaf;
for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
/*
* Search for duplicates
*/
if (iter->rt6i_metric == rt->rt6i_metric) {
/*
* Same priority level
*/
if (info->nlh &&
(info->nlh->nlmsg_flags & NLM_F_EXCL))
return -EEXIST;
if (replace) {
found++;
break;
}
if (iter->dst.dev == rt->dst.dev &&
iter->rt6i_idev == rt->rt6i_idev &&
ipv6_addr_equal(&iter->rt6i_gateway,
&rt->rt6i_gateway)) {
if (rt->rt6i_nsiblings)
rt->rt6i_nsiblings = 0;
if (!(iter->rt6i_flags & RTF_EXPIRES))
return -EEXIST;
if (!(rt->rt6i_flags & RTF_EXPIRES))
rt6_clean_expires(iter);
else
rt6_set_expires(iter, rt->dst.expires);
return -EEXIST;
}
/* If we have the same destination and the same metric,
* but not the same gateway, then the route we try to
* add is sibling to this route, increment our counter
* of siblings, and later we will add our route to the
* list.
* Only static routes (which don't have flag
* RTF_EXPIRES) are used for ECMPv6.
*
* To avoid long list, we only had siblings if the
* route have a gateway.
*/
if (rt_can_ecmp &&
rt6_qualify_for_ecmp(iter))
rt->rt6i_nsiblings++;
}
if (iter->rt6i_metric > rt->rt6i_metric)
break;
ins = &iter->dst.rt6_next;
}
/* Reset round-robin state, if necessary */
if (ins == &fn->leaf)
fn->rr_ptr = NULL;
/* Link this route to others same route. */
if (rt->rt6i_nsiblings) {
unsigned int rt6i_nsiblings;
struct rt6_info *sibling, *temp_sibling;
/* Find the first route that have the same metric */
sibling = fn->leaf;
while (sibling) {
if (sibling->rt6i_metric == rt->rt6i_metric &&
rt6_qualify_for_ecmp(sibling)) {
list_add_tail(&rt->rt6i_siblings,
&sibling->rt6i_siblings);
break;
}
sibling = sibling->dst.rt6_next;
}
/* For each sibling in the list, increment the counter of
* siblings. BUG() if counters does not match, list of siblings
* is broken!
*/
rt6i_nsiblings = 0;
list_for_each_entry_safe(sibling, temp_sibling,
&rt->rt6i_siblings, rt6i_siblings) {
sibling->rt6i_nsiblings++;
BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
rt6i_nsiblings++;
}
BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
}
/*
* insert node
*/
if (!replace) {
if (!add)
pr_warn("NLM_F_CREATE should be set when creating new route\n");
add:
rt->dst.rt6_next = iter;
*ins = rt;
rt->rt6i_node = fn;
atomic_inc(&rt->rt6i_ref);
inet6_rt_notify(RTM_NEWROUTE, rt, info);
info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
if (!(fn->fn_flags & RTN_RTINFO)) {
info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
fn->fn_flags |= RTN_RTINFO;
}
} else {
if (!found) {
if (add)
goto add;
pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
return -ENOENT;
}
*ins = rt;
rt->rt6i_node = fn;
rt->dst.rt6_next = iter->dst.rt6_next;
atomic_inc(&rt->rt6i_ref);
inet6_rt_notify(RTM_NEWROUTE, rt, info);
rt6_release(iter);
if (!(fn->fn_flags & RTN_RTINFO)) {
info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
fn->fn_flags |= RTN_RTINFO;
}
}
return 0;
}
static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
{
if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
(rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
mod_timer(&net->ipv6.ip6_fib_timer,
jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
}
void fib6_force_start_gc(struct net *net)
{
if (!timer_pending(&net->ipv6.ip6_fib_timer))
mod_timer(&net->ipv6.ip6_fib_timer,
jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
}
/*
* Add routing information to the routing tree.
* <destination addr>/<source addr>
* with source addr info in sub-trees
*/
int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
{
struct fib6_node *fn, *pn = NULL;
int err = -ENOMEM;
int allow_create = 1;
int replace_required = 0;
if (info->nlh) {
if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
allow_create = 0;
if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
replace_required = 1;
}
if (!allow_create && !replace_required)
pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
offsetof(struct rt6_info, rt6i_dst), allow_create,
replace_required);
if (IS_ERR(fn)) {
err = PTR_ERR(fn);
fn = NULL;
goto out;
}
pn = fn;
#ifdef CONFIG_IPV6_SUBTREES
if (rt->rt6i_src.plen) {
struct fib6_node *sn;
if (!fn->subtree) {
struct fib6_node *sfn;
/*
* Create subtree.
*
* fn[main tree]
* |
* sfn[subtree root]
* \
* sn[new leaf node]
*/
/* Create subtree root node */
sfn = node_alloc();
if (!sfn)
goto st_failure;
sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
sfn->fn_flags = RTN_ROOT;
sfn->fn_sernum = fib6_new_sernum();
/* Now add the first leaf node to new subtree */
sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
rt->rt6i_src.plen,
offsetof(struct rt6_info, rt6i_src),
allow_create, replace_required);
if (IS_ERR(sn)) {
/* If it is failed, discard just allocated
root, and then (in st_failure) stale node
in main tree.
*/
node_free(sfn);
err = PTR_ERR(sn);
goto st_failure;
}
/* Now link new subtree to main tree */
sfn->parent = fn;
fn->subtree = sfn;
} else {
sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
rt->rt6i_src.plen,
offsetof(struct rt6_info, rt6i_src),
allow_create, replace_required);
if (IS_ERR(sn)) {
err = PTR_ERR(sn);
goto st_failure;
}
}
if (!fn->leaf) {
fn->leaf = rt;
atomic_inc(&rt->rt6i_ref);
}
fn = sn;
}
#endif
err = fib6_add_rt2node(fn, rt, info);
if (!err) {
fib6_start_gc(info->nl_net, rt);
if (!(rt->rt6i_flags & RTF_CACHE))
fib6_prune_clones(info->nl_net, pn, rt);
}
out:
if (err) {
#ifdef CONFIG_IPV6_SUBTREES
/*
* If fib6_add_1 has cleared the old leaf pointer in the
* super-tree leaf node we have to find a new one for it.
*/
if (pn != fn && pn->leaf == rt) {
pn->leaf = NULL;
atomic_dec(&rt->rt6i_ref);
}
if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
pn->leaf = fib6_find_prefix(info->nl_net, pn);
#if RT6_DEBUG >= 2
if (!pn->leaf) {
WARN_ON(pn->leaf == NULL);
pn->leaf = info->nl_net->ipv6.ip6_null_entry;
}
#endif
atomic_inc(&pn->leaf->rt6i_ref);
}
#endif
dst_free(&rt->dst);
}
return err;
#ifdef CONFIG_IPV6_SUBTREES
/* Subtree creation failed, probably main tree node
is orphan. If it is, shoot it.
*/
st_failure:
if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
fib6_repair_tree(info->nl_net, fn);
dst_free(&rt->dst);
return err;
#endif
}
/*
* Routing tree lookup
*
*/
struct lookup_args {
int offset; /* key offset on rt6_info */
const struct in6_addr *addr; /* search key */
};
static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
struct lookup_args *args)
{
struct fib6_node *fn;
__be32 dir;
if (unlikely(args->offset == 0))
return NULL;
/*
* Descend on a tree
*/
fn = root;
for (;;) {
struct fib6_node *next;
dir = addr_bit_set(args->addr, fn->fn_bit);
next = dir ? fn->right : fn->left;
if (next) {
fn = next;
continue;
}
break;
}
while (fn) {
if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
struct rt6key *key;
key = (struct rt6key *) ((u8 *) fn->leaf +
args->offset);
if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
#ifdef CONFIG_IPV6_SUBTREES
if (fn->subtree) {
struct fib6_node *sfn;
sfn = fib6_lookup_1(fn->subtree,
args + 1);
if (!sfn)
goto backtrack;
fn = sfn;
}
#endif
if (fn->fn_flags & RTN_RTINFO)
return fn;
}
}
#ifdef CONFIG_IPV6_SUBTREES
backtrack:
#endif
if (fn->fn_flags & RTN_ROOT)
break;
fn = fn->parent;
}
return NULL;
}
struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
const struct in6_addr *saddr)
{
struct fib6_node *fn;
struct lookup_args args[] = {
{
.offset = offsetof(struct rt6_info, rt6i_dst),
.addr = daddr,
},
#ifdef CONFIG_IPV6_SUBTREES
{
.offset = offsetof(struct rt6_info, rt6i_src),
.addr = saddr,
},
#endif
{
.offset = 0, /* sentinel */
}
};
fn = fib6_lookup_1(root, daddr ? args : args + 1);
if (!fn || fn->fn_flags & RTN_TL_ROOT)
fn = root;
return fn;
}
/*
* Get node with specified destination prefix (and source prefix,
* if subtrees are used)
*/
static struct fib6_node * fib6_locate_1(struct fib6_node *root,
const struct in6_addr *addr,
int plen, int offset)
{
struct fib6_node *fn;
for (fn = root; fn ; ) {
struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
/*
* Prefix match
*/
if (plen < fn->fn_bit ||
!ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
return NULL;
if (plen == fn->fn_bit)
return fn;
/*
* We have more bits to go
*/
if (addr_bit_set(addr, fn->fn_bit))
fn = fn->right;
else
fn = fn->left;
}
return NULL;
}
struct fib6_node * fib6_locate(struct fib6_node *root,
const struct in6_addr *daddr, int dst_len,
const struct in6_addr *saddr, int src_len)
{
struct fib6_node *fn;
fn = fib6_locate_1(root, daddr, dst_len,
offsetof(struct rt6_info, rt6i_dst));
#ifdef CONFIG_IPV6_SUBTREES
if (src_len) {
WARN_ON(saddr == NULL);
if (fn && fn->subtree)
fn = fib6_locate_1(fn->subtree, saddr, src_len,
offsetof(struct rt6_info, rt6i_src));
}
#endif
if (fn && fn->fn_flags & RTN_RTINFO)
return fn;
return NULL;
}
/*
* Deletion
*
*/
static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
{
if (fn->fn_flags & RTN_ROOT)
return net->ipv6.ip6_null_entry;
while (fn) {
if (fn->left)
return fn->left->leaf;
if (fn->right)
return fn->right->leaf;
fn = FIB6_SUBTREE(fn);
}
return NULL;
}
/*
* Called to trim the tree of intermediate nodes when possible. "fn"
* is the node we want to try and remove.
*/
static struct fib6_node *fib6_repair_tree(struct net *net,
struct fib6_node *fn)
{
int children;
int nstate;
struct fib6_node *child, *pn;
struct fib6_walker_t *w;
int iter = 0;
for (;;) {
RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
iter++;
WARN_ON(fn->fn_flags & RTN_RTINFO);
WARN_ON(fn->fn_flags & RTN_TL_ROOT);
WARN_ON(fn->leaf != NULL);
children = 0;
child = NULL;
if (fn->right) child = fn->right, children |= 1;
if (fn->left) child = fn->left, children |= 2;
if (children == 3 || FIB6_SUBTREE(fn)
#ifdef CONFIG_IPV6_SUBTREES
/* Subtree root (i.e. fn) may have one child */
|| (children && fn->fn_flags & RTN_ROOT)
#endif
) {
fn->leaf = fib6_find_prefix(net, fn);
#if RT6_DEBUG >= 2
if (!fn->leaf) {
WARN_ON(!fn->leaf);
fn->leaf = net->ipv6.ip6_null_entry;
}
#endif
atomic_inc(&fn->leaf->rt6i_ref);
return fn->parent;
}
pn = fn->parent;
#ifdef CONFIG_IPV6_SUBTREES
if (FIB6_SUBTREE(pn) == fn) {
WARN_ON(!(fn->fn_flags & RTN_ROOT));
FIB6_SUBTREE(pn) = NULL;
nstate = FWS_L;
} else {
WARN_ON(fn->fn_flags & RTN_ROOT);
#endif
if (pn->right == fn) pn->right = child;
else if (pn->left == fn) pn->left = child;
#if RT6_DEBUG >= 2
else
WARN_ON(1);
#endif
if (child)
child->parent = pn;
nstate = FWS_R;
#ifdef CONFIG_IPV6_SUBTREES
}
#endif
read_lock(&fib6_walker_lock);
FOR_WALKERS(w) {
if (!child) {
if (w->root == fn) {
w->root = w->node = NULL;
RT6_TRACE("W %p adjusted by delroot 1\n", w);
} else if (w->node == fn) {
RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
w->node = pn;
w->state = nstate;
}
} else {
if (w->root == fn) {
w->root = child;
RT6_TRACE("W %p adjusted by delroot 2\n", w);
}
if (w->node == fn) {
w->node = child;
if (children&2) {
RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
} else {
RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
}
}
}
}
read_unlock(&fib6_walker_lock);
node_free(fn);
if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
return pn;
rt6_release(pn->leaf);
pn->leaf = NULL;
fn = pn;
}
}
static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
struct nl_info *info)
{
struct fib6_walker_t *w;
struct rt6_info *rt = *rtp;
struct net *net = info->nl_net;
RT6_TRACE("fib6_del_route\n");
/* Unlink it */
*rtp = rt->dst.rt6_next;
rt->rt6i_node = NULL;
net->ipv6.rt6_stats->fib_rt_entries--;
net->ipv6.rt6_stats->fib_discarded_routes++;
/* Reset round-robin state, if necessary */
if (fn->rr_ptr == rt)
fn->rr_ptr = NULL;
/* Remove this entry from other siblings */
if (rt->rt6i_nsiblings) {
struct rt6_info *sibling, *next_sibling;
list_for_each_entry_safe(sibling, next_sibling,
&rt->rt6i_siblings, rt6i_siblings)
sibling->rt6i_nsiblings--;
rt->rt6i_nsiblings = 0;
list_del_init(&rt->rt6i_siblings);
}
/* Adjust walkers */
read_lock(&fib6_walker_lock);
FOR_WALKERS(w) {
if (w->state == FWS_C && w->leaf == rt) {
RT6_TRACE("walker %p adjusted by delroute\n", w);
w->leaf = rt->dst.rt6_next;
if (!w->leaf)
w->state = FWS_U;
}
}
read_unlock(&fib6_walker_lock);
rt->dst.rt6_next = NULL;
/* If it was last route, expunge its radix tree node */
if (!fn->leaf) {
fn->fn_flags &= ~RTN_RTINFO;
net->ipv6.rt6_stats->fib_route_nodes--;
fn = fib6_repair_tree(net, fn);
}
if (atomic_read(&rt->rt6i_ref) != 1) {
/* This route is used as dummy address holder in some split
* nodes. It is not leaked, but it still holds other resources,
* which must be released in time. So, scan ascendant nodes
* and replace dummy references to this route with references
* to still alive ones.
*/
while (fn) {
if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
fn->leaf = fib6_find_prefix(net, fn);
atomic_inc(&fn->leaf->rt6i_ref);
rt6_release(rt);
}
fn = fn->parent;
}
/* No more references are possible at this point. */
BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
}
inet6_rt_notify(RTM_DELROUTE, rt, info);
rt6_release(rt);
}
int fib6_del(struct rt6_info *rt, struct nl_info *info)
{
struct net *net = info->nl_net;
struct fib6_node *fn = rt->rt6i_node;
struct rt6_info **rtp;
#if RT6_DEBUG >= 2
if (rt->dst.obsolete>0) {
WARN_ON(fn != NULL);
return -ENOENT;
}
#endif
if (!fn || rt == net->ipv6.ip6_null_entry)
return -ENOENT;
WARN_ON(!(fn->fn_flags & RTN_RTINFO));
if (!(rt->rt6i_flags & RTF_CACHE)) {
struct fib6_node *pn = fn;
#ifdef CONFIG_IPV6_SUBTREES
/* clones of this route might be in another subtree */
if (rt->rt6i_src.plen) {
while (!(pn->fn_flags & RTN_ROOT))
pn = pn->parent;
pn = pn->parent;
}
#endif
fib6_prune_clones(info->nl_net, pn, rt);
}
/*
* Walk the leaf entries looking for ourself
*/
for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
if (*rtp == rt) {
fib6_del_route(fn, rtp, info);
return 0;
}
}
return -ENOENT;
}
/*
* Tree traversal function.
*
* Certainly, it is not interrupt safe.
* However, it is internally reenterable wrt itself and fib6_add/fib6_del.
* It means, that we can modify tree during walking
* and use this function for garbage collection, clone pruning,
* cleaning tree when a device goes down etc. etc.
*
* It guarantees that every node will be traversed,
* and that it will be traversed only once.
*
* Callback function w->func may return:
* 0 -> continue walking.
* positive value -> walking is suspended (used by tree dumps,
* and probably by gc, if it will be split to several slices)
* negative value -> terminate walking.
*
* The function itself returns:
* 0 -> walk is complete.
* >0 -> walk is incomplete (i.e. suspended)
* <0 -> walk is terminated by an error.
*/
static int fib6_walk_continue(struct fib6_walker_t *w)
{
struct fib6_node *fn, *pn;
for (;;) {
fn = w->node;
if (!fn)
return 0;
if (w->prune && fn != w->root &&
fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
w->state = FWS_C;
w->leaf = fn->leaf;
}
switch (w->state) {
#ifdef CONFIG_IPV6_SUBTREES
case FWS_S:
if (FIB6_SUBTREE(fn)) {
w->node = FIB6_SUBTREE(fn);
continue;
}
w->state = FWS_L;
#endif
case FWS_L:
if (fn->left) {
w->node = fn->left;
w->state = FWS_INIT;
continue;
}
w->state = FWS_R;
case FWS_R:
if (fn->right) {
w->node = fn->right;
w->state = FWS_INIT;
continue;
}
w->state = FWS_C;
w->leaf = fn->leaf;
case FWS_C:
if (w->leaf && fn->fn_flags & RTN_RTINFO) {
int err;
if (w->skip) {
w->skip--;
continue;
}
err = w->func(w);
if (err)
return err;
w->count++;
continue;
}
w->state = FWS_U;
case FWS_U:
if (fn == w->root)
return 0;
pn = fn->parent;
w->node = pn;
#ifdef CONFIG_IPV6_SUBTREES
if (FIB6_SUBTREE(pn) == fn) {
WARN_ON(!(fn->fn_flags & RTN_ROOT));
w->state = FWS_L;
continue;
}
#endif
if (pn->left == fn) {
w->state = FWS_R;
continue;
}
if (pn->right == fn) {
w->state = FWS_C;
w->leaf = w->node->leaf;
continue;
}
#if RT6_DEBUG >= 2
WARN_ON(1);
#endif
}
}
}
static int fib6_walk(struct fib6_walker_t *w)
{
int res;
w->state = FWS_INIT;
w->node = w->root;
fib6_walker_link(w);
res = fib6_walk_continue(w);
if (res <= 0)
fib6_walker_unlink(w);
return res;
}
static int fib6_clean_node(struct fib6_walker_t *w)
{
int res;
struct rt6_info *rt;
struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
struct nl_info info = {
.nl_net = c->net,
};
for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
res = c->func(rt, c->arg);
if (res < 0) {
w->leaf = rt;
res = fib6_del(rt, &info);
if (res) {
#if RT6_DEBUG >= 2
pr_debug("%s: del failed: rt=%p@%p err=%d\n",
__func__, rt, rt->rt6i_node, res);
#endif
continue;
}
return 0;
}
WARN_ON(res != 0);
}
w->leaf = rt;
return 0;
}
/*
* Convenient frontend to tree walker.
*
* func is called on each route.
* It may return -1 -> delete this route.
* 0 -> continue walking
*
* prune==1 -> only immediate children of node (certainly,
* ignoring pure split nodes) will be scanned.
*/
static void fib6_clean_tree(struct net *net, struct fib6_node *root,
int (*func)(struct rt6_info *, void *arg),
int prune, void *arg)
{
struct fib6_cleaner_t c;
c.w.root = root;
c.w.func = fib6_clean_node;
c.w.prune = prune;
c.w.count = 0;
c.w.skip = 0;
c.func = func;
c.arg = arg;
c.net = net;
fib6_walk(&c.w);
}
void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
int prune, void *arg)
{
struct fib6_table *table;
struct hlist_head *head;
unsigned int h;
rcu_read_lock();
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
head = &net->ipv6.fib_table_hash[h];
hlist_for_each_entry_rcu(table, head, tb6_hlist) {
write_lock_bh(&table->tb6_lock);
fib6_clean_tree(net, &table->tb6_root,
func, prune, arg);
write_unlock_bh(&table->tb6_lock);
}
}
rcu_read_unlock();
}
static int fib6_prune_clone(struct rt6_info *rt, void *arg)
{
if (rt->rt6i_flags & RTF_CACHE) {
RT6_TRACE("pruning clone %p\n", rt);
return -1;
}
return 0;
}
static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
struct rt6_info *rt)
{
fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
}
/*
* Garbage collection
*/
static struct fib6_gc_args
{
int timeout;
int more;
} gc_args;
static int fib6_age(struct rt6_info *rt, void *arg)
{
unsigned long now = jiffies;
/*
* check addrconf expiration here.
* Routes are expired even if they are in use.
*
* Also age clones. Note, that clones are aged out
* only if they are not in use now.
*/
if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
if (time_after(now, rt->dst.expires)) {
RT6_TRACE("expiring %p\n", rt);
return -1;
}
gc_args.more++;
} else if (rt->rt6i_flags & RTF_CACHE) {
if (atomic_read(&rt->dst.__refcnt) == 0 &&
time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
RT6_TRACE("aging clone %p\n", rt);
return -1;
} else if (rt->rt6i_flags & RTF_GATEWAY) {
struct neighbour *neigh;
__u8 neigh_flags = 0;
neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
if (neigh) {
neigh_flags = neigh->flags;
neigh_release(neigh);
}
if (!(neigh_flags & NTF_ROUTER)) {
RT6_TRACE("purging route %p via non-router but gateway\n",
rt);
return -1;
}
}
gc_args.more++;
}
return 0;
}
static DEFINE_SPINLOCK(fib6_gc_lock);
void fib6_run_gc(unsigned long expires, struct net *net, bool force)
{
unsigned long now;
if (force) {
spin_lock_bh(&fib6_gc_lock);
} else if (!spin_trylock_bh(&fib6_gc_lock)) {
mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
return;
}
gc_args.timeout = expires ? (int)expires :
net->ipv6.sysctl.ip6_rt_gc_interval;
gc_args.more = icmp6_dst_gc();
fib6_clean_all(net, fib6_age, 0, NULL);
now = jiffies;
net->ipv6.ip6_rt_last_gc = now;
if (gc_args.more)
mod_timer(&net->ipv6.ip6_fib_timer,
round_jiffies(now
+ net->ipv6.sysctl.ip6_rt_gc_interval));
else
del_timer(&net->ipv6.ip6_fib_timer);
spin_unlock_bh(&fib6_gc_lock);
}
static void fib6_gc_timer_cb(unsigned long arg)
{
fib6_run_gc(0, (struct net *)arg, true);
}
static int __net_init fib6_net_init(struct net *net)
{
size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
if (!net->ipv6.rt6_stats)
goto out_timer;
/* Avoid false sharing : Use at least a full cache line */
size = max_t(size_t, size, L1_CACHE_BYTES);
net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
if (!net->ipv6.fib_table_hash)
goto out_rt6_stats;
net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
GFP_KERNEL);
if (!net->ipv6.fib6_main_tbl)
goto out_fib_table_hash;
net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
GFP_KERNEL);
if (!net->ipv6.fib6_local_tbl)
goto out_fib6_main_tbl;
net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
#endif
fib6_tables_init(net);
return 0;
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
out_fib6_main_tbl:
kfree(net->ipv6.fib6_main_tbl);
#endif
out_fib_table_hash:
kfree(net->ipv6.fib_table_hash);
out_rt6_stats:
kfree(net->ipv6.rt6_stats);
out_timer:
return -ENOMEM;
}
static void fib6_net_exit(struct net *net)
{
rt6_ifdown(net, NULL);
del_timer_sync(&net->ipv6.ip6_fib_timer);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
kfree(net->ipv6.fib6_local_tbl);
#endif
inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
kfree(net->ipv6.fib6_main_tbl);
kfree(net->ipv6.fib_table_hash);
kfree(net->ipv6.rt6_stats);
}
static struct pernet_operations fib6_net_ops = {
.init = fib6_net_init,
.exit = fib6_net_exit,
};
int __init fib6_init(void)
{
int ret = -ENOMEM;
fib6_node_kmem = kmem_cache_create("fib6_nodes",
sizeof(struct fib6_node),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!fib6_node_kmem)
goto out;
ret = register_pernet_subsys(&fib6_net_ops);
if (ret)
goto out_kmem_cache_create;
ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
NULL);
if (ret)
goto out_unregister_subsys;
out:
return ret;
out_unregister_subsys:
unregister_pernet_subsys(&fib6_net_ops);
out_kmem_cache_create:
kmem_cache_destroy(fib6_node_kmem);
goto out;
}
void fib6_gc_cleanup(void)
{
unregister_pernet_subsys(&fib6_net_ops);
kmem_cache_destroy(fib6_node_kmem);
}
#ifdef CONFIG_PROC_FS
struct ipv6_route_iter {
struct seq_net_private p;
struct fib6_walker_t w;
loff_t skip;
struct fib6_table *tbl;
__u32 sernum;
};
static int ipv6_route_seq_show(struct seq_file *seq, void *v)
{
struct rt6_info *rt = v;
struct ipv6_route_iter *iter = seq->private;
seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
#ifdef CONFIG_IPV6_SUBTREES
seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
#else
seq_puts(seq, "00000000000000000000000000000000 00 ");
#endif
if (rt->rt6i_flags & RTF_GATEWAY)
seq_printf(seq, "%pi6", &rt->rt6i_gateway);
else
seq_puts(seq, "00000000000000000000000000000000");
seq_printf(seq, " %08x %08x %08x %08x %8s\n",
rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
rt->dst.__use, rt->rt6i_flags,
rt->dst.dev ? rt->dst.dev->name : "");
iter->w.leaf = NULL;
return 0;
}
static int ipv6_route_yield(struct fib6_walker_t *w)
{
struct ipv6_route_iter *iter = w->args;
if (!iter->skip)
return 1;
do {
iter->w.leaf = iter->w.leaf->dst.rt6_next;
iter->skip--;
if (!iter->skip && iter->w.leaf)
return 1;
} while (iter->w.leaf);
return 0;
}
static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
{
memset(&iter->w, 0, sizeof(iter->w));
iter->w.func = ipv6_route_yield;
iter->w.root = &iter->tbl->tb6_root;
iter->w.state = FWS_INIT;
iter->w.node = iter->w.root;
iter->w.args = iter;
iter->sernum = iter->w.root->fn_sernum;
INIT_LIST_HEAD(&iter->w.lh);
fib6_walker_link(&iter->w);
}
static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
struct net *net)
{
unsigned int h;
struct hlist_node *node;
if (tbl) {
h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
} else {
h = 0;
node = NULL;
}
while (!node && h < FIB6_TABLE_HASHSZ) {
node = rcu_dereference_bh(
hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
}
return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
}
static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
{
if (iter->sernum != iter->w.root->fn_sernum) {
iter->sernum = iter->w.root->fn_sernum;
iter->w.state = FWS_INIT;
iter->w.node = iter->w.root;
WARN_ON(iter->w.skip);
iter->w.skip = iter->w.count;
}
}
static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
int r;
struct rt6_info *n;
struct net *net = seq_file_net(seq);
struct ipv6_route_iter *iter = seq->private;
if (!v)
goto iter_table;
n = ((struct rt6_info *)v)->dst.rt6_next;
if (n) {
++*pos;
return n;
}
iter_table:
ipv6_route_check_sernum(iter);
read_lock(&iter->tbl->tb6_lock);
r = fib6_walk_continue(&iter->w);
read_unlock(&iter->tbl->tb6_lock);
if (r > 0) {
if (v)
++*pos;
return iter->w.leaf;
} else if (r < 0) {
fib6_walker_unlink(&iter->w);
return NULL;
}
fib6_walker_unlink(&iter->w);
iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
if (!iter->tbl)
return NULL;
ipv6_route_seq_setup_walk(iter);
goto iter_table;
}
static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU_BH)
{
struct net *net = seq_file_net(seq);
struct ipv6_route_iter *iter = seq->private;
rcu_read_lock_bh();
iter->tbl = ipv6_route_seq_next_table(NULL, net);
iter->skip = *pos;
if (iter->tbl) {
ipv6_route_seq_setup_walk(iter);
return ipv6_route_seq_next(seq, NULL, pos);
} else {
return NULL;
}
}
static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
{
struct fib6_walker_t *w = &iter->w;
return w->node && !(w->state == FWS_U && w->node == w->root);
}
static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
__releases(RCU_BH)
{
struct ipv6_route_iter *iter = seq->private;
if (ipv6_route_iter_active(iter))
fib6_walker_unlink(&iter->w);
rcu_read_unlock_bh();
}
static const struct seq_operations ipv6_route_seq_ops = {
.start = ipv6_route_seq_start,
.next = ipv6_route_seq_next,
.stop = ipv6_route_seq_stop,
.show = ipv6_route_seq_show
};
int ipv6_route_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &ipv6_route_seq_ops,
sizeof(struct ipv6_route_iter));
}
#endif /* CONFIG_PROC_FS */