f2517eb76f
Hold on to the pages allocated and mapped for transaction buffers until the system is under memory pressure. When that happens, use linux shrinker to free pages. Without using shrinker, patch "android: binder: Move buffer out of area shared with user space" will cause a significant slow down for small transactions that fit into the first page because free list buffer header used to be inlined with buffer data. In addition to prevent the performance regression for small transactions, this patch improves the performance for transactions that take up more than one page. Modify alloc selftest to work with the shrinker change. Test: Run memory intensive applications (Chrome and Camera) to trigger shrinker callbacks. Binder frees memory as expected. Test: Run binderThroughputTest with high memory pressure option enabled. Signed-off-by: Sherry Yang <sherryy@android.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
311 lines
8.3 KiB
C
311 lines
8.3 KiB
C
/* binder_alloc_selftest.c
|
|
*
|
|
* Android IPC Subsystem
|
|
*
|
|
* Copyright (C) 2017 Google, Inc.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm_types.h>
|
|
#include <linux/err.h>
|
|
#include "binder_alloc.h"
|
|
|
|
#define BUFFER_NUM 5
|
|
#define BUFFER_MIN_SIZE (PAGE_SIZE / 8)
|
|
|
|
static bool binder_selftest_run = true;
|
|
static int binder_selftest_failures;
|
|
static DEFINE_MUTEX(binder_selftest_lock);
|
|
|
|
/**
|
|
* enum buf_end_align_type - Page alignment of a buffer
|
|
* end with regard to the end of the previous buffer.
|
|
*
|
|
* In the pictures below, buf2 refers to the buffer we
|
|
* are aligning. buf1 refers to previous buffer by addr.
|
|
* Symbol [ means the start of a buffer, ] means the end
|
|
* of a buffer, and | means page boundaries.
|
|
*/
|
|
enum buf_end_align_type {
|
|
/**
|
|
* @SAME_PAGE_UNALIGNED: The end of this buffer is on
|
|
* the same page as the end of the previous buffer and
|
|
* is not page aligned. Examples:
|
|
* buf1 ][ buf2 ][ ...
|
|
* buf1 ]|[ buf2 ][ ...
|
|
*/
|
|
SAME_PAGE_UNALIGNED = 0,
|
|
/**
|
|
* @SAME_PAGE_ALIGNED: When the end of the previous buffer
|
|
* is not page aligned, the end of this buffer is on the
|
|
* same page as the end of the previous buffer and is page
|
|
* aligned. When the previous buffer is page aligned, the
|
|
* end of this buffer is aligned to the next page boundary.
|
|
* Examples:
|
|
* buf1 ][ buf2 ]| ...
|
|
* buf1 ]|[ buf2 ]| ...
|
|
*/
|
|
SAME_PAGE_ALIGNED,
|
|
/**
|
|
* @NEXT_PAGE_UNALIGNED: The end of this buffer is on
|
|
* the page next to the end of the previous buffer and
|
|
* is not page aligned. Examples:
|
|
* buf1 ][ buf2 | buf2 ][ ...
|
|
* buf1 ]|[ buf2 | buf2 ][ ...
|
|
*/
|
|
NEXT_PAGE_UNALIGNED,
|
|
/**
|
|
* @NEXT_PAGE_ALIGNED: The end of this buffer is on
|
|
* the page next to the end of the previous buffer and
|
|
* is page aligned. Examples:
|
|
* buf1 ][ buf2 | buf2 ]| ...
|
|
* buf1 ]|[ buf2 | buf2 ]| ...
|
|
*/
|
|
NEXT_PAGE_ALIGNED,
|
|
/**
|
|
* @NEXT_NEXT_UNALIGNED: The end of this buffer is on
|
|
* the page that follows the page after the end of the
|
|
* previous buffer and is not page aligned. Examples:
|
|
* buf1 ][ buf2 | buf2 | buf2 ][ ...
|
|
* buf1 ]|[ buf2 | buf2 | buf2 ][ ...
|
|
*/
|
|
NEXT_NEXT_UNALIGNED,
|
|
LOOP_END,
|
|
};
|
|
|
|
static void pr_err_size_seq(size_t *sizes, int *seq)
|
|
{
|
|
int i;
|
|
|
|
pr_err("alloc sizes: ");
|
|
for (i = 0; i < BUFFER_NUM; i++)
|
|
pr_cont("[%zu]", sizes[i]);
|
|
pr_cont("\n");
|
|
pr_err("free seq: ");
|
|
for (i = 0; i < BUFFER_NUM; i++)
|
|
pr_cont("[%d]", seq[i]);
|
|
pr_cont("\n");
|
|
}
|
|
|
|
static bool check_buffer_pages_allocated(struct binder_alloc *alloc,
|
|
struct binder_buffer *buffer,
|
|
size_t size)
|
|
{
|
|
void *page_addr, *end;
|
|
int page_index;
|
|
|
|
end = (void *)PAGE_ALIGN((uintptr_t)buffer->data + size);
|
|
page_addr = buffer->data;
|
|
for (; page_addr < end; page_addr += PAGE_SIZE) {
|
|
page_index = (page_addr - alloc->buffer) / PAGE_SIZE;
|
|
if (!alloc->pages[page_index].page_ptr ||
|
|
!list_empty(&alloc->pages[page_index].lru)) {
|
|
pr_err("expect alloc but is %s at page index %d\n",
|
|
alloc->pages[page_index].page_ptr ?
|
|
"lru" : "free", page_index);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void binder_selftest_alloc_buf(struct binder_alloc *alloc,
|
|
struct binder_buffer *buffers[],
|
|
size_t *sizes, int *seq)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUFFER_NUM; i++) {
|
|
buffers[i] = binder_alloc_new_buf(alloc, sizes[i], 0, 0, 0);
|
|
if (IS_ERR(buffers[i]) ||
|
|
!check_buffer_pages_allocated(alloc, buffers[i],
|
|
sizes[i])) {
|
|
pr_err_size_seq(sizes, seq);
|
|
binder_selftest_failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_free_buf(struct binder_alloc *alloc,
|
|
struct binder_buffer *buffers[],
|
|
size_t *sizes, int *seq, size_t end)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BUFFER_NUM; i++)
|
|
binder_alloc_free_buf(alloc, buffers[seq[i]]);
|
|
|
|
for (i = 0; i < end / PAGE_SIZE; i++) {
|
|
/**
|
|
* Error message on a free page can be false positive
|
|
* if binder shrinker ran during binder_alloc_free_buf
|
|
* calls above.
|
|
*/
|
|
if (list_empty(&alloc->pages[i].lru)) {
|
|
pr_err_size_seq(sizes, seq);
|
|
pr_err("expect lru but is %s at page index %d\n",
|
|
alloc->pages[i].page_ptr ? "alloc" : "free", i);
|
|
binder_selftest_failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_free_page(struct binder_alloc *alloc)
|
|
{
|
|
int i;
|
|
unsigned long count;
|
|
|
|
while ((count = list_lru_count(&binder_alloc_lru))) {
|
|
list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
|
|
NULL, count);
|
|
}
|
|
|
|
for (i = 0; i < (alloc->buffer_size / PAGE_SIZE); i++) {
|
|
if (alloc->pages[i].page_ptr) {
|
|
pr_err("expect free but is %s at page index %d\n",
|
|
list_empty(&alloc->pages[i].lru) ?
|
|
"alloc" : "lru", i);
|
|
binder_selftest_failures++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_alloc_free(struct binder_alloc *alloc,
|
|
size_t *sizes, int *seq, size_t end)
|
|
{
|
|
struct binder_buffer *buffers[BUFFER_NUM];
|
|
|
|
binder_selftest_alloc_buf(alloc, buffers, sizes, seq);
|
|
binder_selftest_free_buf(alloc, buffers, sizes, seq, end);
|
|
|
|
/* Allocate from lru. */
|
|
binder_selftest_alloc_buf(alloc, buffers, sizes, seq);
|
|
if (list_lru_count(&binder_alloc_lru))
|
|
pr_err("lru list should be empty but is not\n");
|
|
|
|
binder_selftest_free_buf(alloc, buffers, sizes, seq, end);
|
|
binder_selftest_free_page(alloc);
|
|
}
|
|
|
|
static bool is_dup(int *seq, int index, int val)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < index; i++) {
|
|
if (seq[i] == val)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Generate BUFFER_NUM factorial free orders. */
|
|
static void binder_selftest_free_seq(struct binder_alloc *alloc,
|
|
size_t *sizes, int *seq,
|
|
int index, size_t end)
|
|
{
|
|
int i;
|
|
|
|
if (index == BUFFER_NUM) {
|
|
binder_selftest_alloc_free(alloc, sizes, seq, end);
|
|
return;
|
|
}
|
|
for (i = 0; i < BUFFER_NUM; i++) {
|
|
if (is_dup(seq, index, i))
|
|
continue;
|
|
seq[index] = i;
|
|
binder_selftest_free_seq(alloc, sizes, seq, index + 1, end);
|
|
}
|
|
}
|
|
|
|
static void binder_selftest_alloc_size(struct binder_alloc *alloc,
|
|
size_t *end_offset)
|
|
{
|
|
int i;
|
|
int seq[BUFFER_NUM] = {0};
|
|
size_t front_sizes[BUFFER_NUM];
|
|
size_t back_sizes[BUFFER_NUM];
|
|
size_t last_offset, offset = 0;
|
|
|
|
for (i = 0; i < BUFFER_NUM; i++) {
|
|
last_offset = offset;
|
|
offset = end_offset[i];
|
|
front_sizes[i] = offset - last_offset;
|
|
back_sizes[BUFFER_NUM - i - 1] = front_sizes[i];
|
|
}
|
|
/*
|
|
* Buffers share the first or last few pages.
|
|
* Only BUFFER_NUM - 1 buffer sizes are adjustable since
|
|
* we need one giant buffer before getting to the last page.
|
|
*/
|
|
back_sizes[0] += alloc->buffer_size - end_offset[BUFFER_NUM - 1];
|
|
binder_selftest_free_seq(alloc, front_sizes, seq, 0,
|
|
end_offset[BUFFER_NUM - 1]);
|
|
binder_selftest_free_seq(alloc, back_sizes, seq, 0, alloc->buffer_size);
|
|
}
|
|
|
|
static void binder_selftest_alloc_offset(struct binder_alloc *alloc,
|
|
size_t *end_offset, int index)
|
|
{
|
|
int align;
|
|
size_t end, prev;
|
|
|
|
if (index == BUFFER_NUM) {
|
|
binder_selftest_alloc_size(alloc, end_offset);
|
|
return;
|
|
}
|
|
prev = index == 0 ? 0 : end_offset[index - 1];
|
|
end = prev;
|
|
|
|
BUILD_BUG_ON(BUFFER_MIN_SIZE * BUFFER_NUM >= PAGE_SIZE);
|
|
|
|
for (align = SAME_PAGE_UNALIGNED; align < LOOP_END; align++) {
|
|
if (align % 2)
|
|
end = ALIGN(end, PAGE_SIZE);
|
|
else
|
|
end += BUFFER_MIN_SIZE;
|
|
end_offset[index] = end;
|
|
binder_selftest_alloc_offset(alloc, end_offset, index + 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* binder_selftest_alloc() - Test alloc and free of buffer pages.
|
|
* @alloc: Pointer to alloc struct.
|
|
*
|
|
* Allocate BUFFER_NUM buffers to cover all page alignment cases,
|
|
* then free them in all orders possible. Check that pages are
|
|
* correctly allocated, put onto lru when buffers are freed, and
|
|
* are freed when binder_alloc_free_page is called.
|
|
*/
|
|
void binder_selftest_alloc(struct binder_alloc *alloc)
|
|
{
|
|
size_t end_offset[BUFFER_NUM];
|
|
|
|
if (!binder_selftest_run)
|
|
return;
|
|
mutex_lock(&binder_selftest_lock);
|
|
if (!binder_selftest_run || !alloc->vma)
|
|
goto done;
|
|
pr_info("STARTED\n");
|
|
binder_selftest_alloc_offset(alloc, end_offset, 0);
|
|
binder_selftest_run = false;
|
|
if (binder_selftest_failures > 0)
|
|
pr_info("%d tests FAILED\n", binder_selftest_failures);
|
|
else
|
|
pr_info("PASSED\n");
|
|
|
|
done:
|
|
mutex_unlock(&binder_selftest_lock);
|
|
}
|