linux/drivers/isdn/hisax/avm_pci.c
Jesper Juhl 3c7208f253 [PATCH] kfree cleanup: drivers/isdn
This is the drivers/isdn/ part of the big kfree cleanup patch.

Remove pointless checks for NULL prior to calling kfree() in drivers/isdn/.

Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Acked-by: Karsten Keil <kkeil@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 07:54:02 -08:00

864 lines
22 KiB
C

/* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
*
* low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* Thanks to AVM, Berlin for information
*
*/
#include <linux/config.h>
#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/isapnp.h>
#include <linux/interrupt.h>
extern const char *CardType[];
static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
#define AVM_FRITZ_PCI 1
#define AVM_FRITZ_PNP 2
#define HDLC_FIFO 0x0
#define HDLC_STATUS 0x4
#define AVM_HDLC_1 0x00
#define AVM_HDLC_2 0x01
#define AVM_ISAC_FIFO 0x02
#define AVM_ISAC_REG_LOW 0x04
#define AVM_ISAC_REG_HIGH 0x06
#define AVM_STATUS0_IRQ_ISAC 0x01
#define AVM_STATUS0_IRQ_HDLC 0x02
#define AVM_STATUS0_IRQ_TIMER 0x04
#define AVM_STATUS0_IRQ_MASK 0x07
#define AVM_STATUS0_RESET 0x01
#define AVM_STATUS0_DIS_TIMER 0x02
#define AVM_STATUS0_RES_TIMER 0x04
#define AVM_STATUS0_ENA_IRQ 0x08
#define AVM_STATUS0_TESTBIT 0x10
#define AVM_STATUS1_INT_SEL 0x0f
#define AVM_STATUS1_ENA_IOM 0x80
#define HDLC_MODE_ITF_FLG 0x01
#define HDLC_MODE_TRANS 0x02
#define HDLC_MODE_CCR_7 0x04
#define HDLC_MODE_CCR_16 0x08
#define HDLC_MODE_TESTLOOP 0x80
#define HDLC_INT_XPR 0x80
#define HDLC_INT_XDU 0x40
#define HDLC_INT_RPR 0x20
#define HDLC_INT_MASK 0xE0
#define HDLC_STAT_RME 0x01
#define HDLC_STAT_RDO 0x10
#define HDLC_STAT_CRCVFRRAB 0x0E
#define HDLC_STAT_CRCVFR 0x06
#define HDLC_STAT_RML_MASK 0x3f00
#define HDLC_CMD_XRS 0x80
#define HDLC_CMD_XME 0x01
#define HDLC_CMD_RRS 0x20
#define HDLC_CMD_XML_MASK 0x3f00
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
register u_char val;
outb(idx, cs->hw.avm.cfg_reg + 4);
val = inb(cs->hw.avm.isac + (offset & 0xf));
return (val);
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
outb(idx, cs->hw.avm.cfg_reg + 4);
outb(value, cs->hw.avm.isac + (offset & 0xf));
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
insb(cs->hw.avm.isac, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
outsb(cs->hw.avm.isac, data, size);
}
static inline u_int
ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
{
register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
register u_int val;
outl(idx, cs->hw.avm.cfg_reg + 4);
val = inl(cs->hw.avm.isac + offset);
return (val);
}
static inline void
WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
{
register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
outl(idx, cs->hw.avm.cfg_reg + 4);
outl(value, cs->hw.avm.isac + offset);
}
static inline u_char
ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
{
register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
register u_char val;
outb(idx, cs->hw.avm.cfg_reg + 4);
val = inb(cs->hw.avm.isac + offset);
return (val);
}
static inline void
WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
{
register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
outb(idx, cs->hw.avm.cfg_reg + 4);
outb(value, cs->hw.avm.isac + offset);
}
static u_char
ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
{
return(0xff & ReadHDLCPCI(cs, chan, offset));
}
static void
WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
{
WriteHDLCPCI(cs, chan, offset, value);
}
static inline
struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return(&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return(&cs->bcs[1]);
else
return(NULL);
}
static void
write_ctrl(struct BCState *bcs, int which) {
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
} else {
if (which & 4)
WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
bcs->hw.hdlc.ctrl.sr.mode);
if (which & 2)
WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
bcs->hw.hdlc.ctrl.sr.xml);
if (which & 1)
WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
bcs->hw.hdlc.ctrl.sr.cmd);
}
}
static void
modehdlc(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int hdlc = bcs->channel;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
'A' + hdlc, bcs->mode, mode, hdlc, bc);
bcs->hw.hdlc.ctrl.ctrl = 0;
switch (mode) {
case (-1): /* used for init */
bcs->mode = 1;
bcs->channel = bc;
bc = 0;
case (L1_MODE_NULL):
if (bcs->mode == L1_MODE_NULL)
return;
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
write_ctrl(bcs, 5);
bcs->mode = L1_MODE_NULL;
bcs->channel = bc;
break;
case (L1_MODE_TRANS):
bcs->mode = mode;
bcs->channel = bc;
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
write_ctrl(bcs, 5);
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd = 0;
schedule_event(bcs, B_XMTBUFREADY);
break;
case (L1_MODE_HDLC):
bcs->mode = mode;
bcs->channel = bc;
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
write_ctrl(bcs, 5);
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd = 0;
schedule_event(bcs, B_XMTBUFREADY);
break;
}
}
static inline void
hdlc_empty_fifo(struct BCState *bcs, int count)
{
register u_int *ptr;
u_char *p;
u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
int cnt=0;
struct IsdnCardState *cs = bcs->cs;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hdlc_empty_fifo %d", count);
if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
return;
}
p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
ptr = (u_int *)p;
bcs->hw.hdlc.rcvidx += count;
if (cs->subtyp == AVM_FRITZ_PCI) {
outl(idx, cs->hw.avm.cfg_reg + 4);
while (cnt < count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
*ptr++ = in_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
#else
*ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
#endif /* CONFIG_APUS */
#else
*ptr++ = inl(cs->hw.avm.isac);
#endif /* __powerpc__ */
cnt += 4;
}
} else {
outb(idx, cs->hw.avm.cfg_reg + 4);
while (cnt < count) {
*p++ = inb(cs->hw.avm.isac);
cnt++;
}
}
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
if (cs->subtyp == AVM_FRITZ_PNP)
p = (u_char *) ptr;
t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
bcs->channel ? 'B' : 'A', count);
QuickHex(t, p, count);
debugl1(cs, bcs->blog);
}
}
static inline void
hdlc_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int count, cnt =0;
int fifo_size = 32;
u_char *p;
u_int *ptr;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hdlc_fill_fifo");
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
if (bcs->tx_skb->len > fifo_size) {
count = fifo_size;
} else {
count = bcs->tx_skb->len;
if (bcs->mode != L1_MODE_TRANS)
bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
}
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
p = bcs->tx_skb->data;
ptr = (u_int *)p;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.hdlc.count += count;
bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
write_ctrl(bcs, 3); /* sets the correct index too */
if (cs->subtyp == AVM_FRITZ_PCI) {
while (cnt<count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
out_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
#else
out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
#endif /* CONFIG_APUS */
#else
outl(*ptr++, cs->hw.avm.isac);
#endif /* __powerpc__ */
cnt += 4;
}
} else {
while (cnt<count) {
outb(*p++, cs->hw.avm.isac);
cnt++;
}
}
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
if (cs->subtyp == AVM_FRITZ_PNP)
p = (u_char *) ptr;
t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
bcs->channel ? 'B' : 'A', count);
QuickHex(t, p, count);
debugl1(cs, bcs->blog);
}
}
static inline void
HDLC_irq(struct BCState *bcs, u_int stat) {
int len;
struct sk_buff *skb;
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
if (stat & HDLC_INT_RPR) {
if (stat & HDLC_STAT_RDO) {
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "RDO");
else
debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
bcs->hw.hdlc.ctrl.sr.xml = 0;
bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.rcvidx = 0;
} else {
if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
len = 32;
hdlc_empty_fifo(bcs, len);
if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
(bcs->mode == L1_MODE_TRANS)) {
if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
printk(KERN_WARNING "HDLC: receive out of memory\n");
else {
memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.hdlc.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
} else {
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "invalid frame");
else
debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
bcs->hw.hdlc.rcvidx = 0;
}
}
}
}
if (stat & HDLC_INT_XDU) {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
bcs->tx_cnt += bcs->hw.hdlc.count;
bcs->hw.hdlc.count = 0;
if (bcs->cs->debug & L1_DEB_WARN)
debugl1(bcs->cs, "ch%d XDU", bcs->channel);
} else if (bcs->cs->debug & L1_DEB_WARN)
debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
bcs->hw.hdlc.ctrl.sr.xml = 0;
bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
write_ctrl(bcs, 1);
hdlc_fill_fifo(bcs);
} else if (stat & HDLC_INT_XPR) {
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
hdlc_fill_fifo(bcs);
return;
} else {
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hdlc.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_irq(bcs->tx_skb);
bcs->hw.hdlc.count = 0;
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hdlc.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
hdlc_fill_fifo(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
static inline void
HDLC_irq_main(struct IsdnCardState *cs)
{
u_int stat;
struct BCState *bcs;
if (cs->subtyp == AVM_FRITZ_PCI) {
stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
} else {
stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
if (stat & HDLC_INT_RPR)
stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
}
if (stat & HDLC_INT_MASK) {
if (!(bcs = Sel_BCS(cs, 0))) {
if (cs->debug)
debugl1(cs, "hdlc spurious channel 0 IRQ");
} else
HDLC_irq(bcs, stat);
}
if (cs->subtyp == AVM_FRITZ_PCI) {
stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
} else {
stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
if (stat & HDLC_INT_RPR)
stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
}
if (stat & HDLC_INT_MASK) {
if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hdlc spurious channel 1 IRQ");
} else
HDLC_irq(bcs, stat);
}
}
static void
hdlc_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->hw.hdlc.count = 0;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
} else {
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->hw.hdlc.count = 0;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
modehdlc(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
modehdlc(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
static void
close_hdlcstate(struct BCState *bcs)
{
modehdlc(bcs, 0, 0);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
kfree(bcs->hw.hdlc.rcvbuf);
bcs->hw.hdlc.rcvbuf = NULL;
kfree(bcs->blog);
bcs->blog = NULL;
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
static int
open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for hdlc.rcvbuf\n");
return (1);
}
if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for bcs->blog\n");
test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
kfree(bcs->hw.hdlc.rcvbuf);
bcs->hw.hdlc.rcvbuf = NULL;
return (2);
}
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.hdlc.rcvidx = 0;
bcs->tx_cnt = 0;
return (0);
}
static int
setstack_hdlc(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hdlcstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hdlc_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
#if 0
void __init
clear_pending_hdlc_ints(struct IsdnCardState *cs)
{
u_int val;
if (cs->subtyp == AVM_FRITZ_PCI) {
val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
debugl1(cs, "HDLC 1 STA %x", val);
val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
debugl1(cs, "HDLC 2 STA %x", val);
} else {
val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
debugl1(cs, "HDLC 1 STA %x", val);
val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
debugl1(cs, "HDLC 1 RML %x", val);
val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
debugl1(cs, "HDLC 1 MODE %x", val);
val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
debugl1(cs, "HDLC 1 VIN %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
debugl1(cs, "HDLC 2 STA %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
debugl1(cs, "HDLC 2 RML %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
debugl1(cs, "HDLC 2 MODE %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
debugl1(cs, "HDLC 2 VIN %x", val);
}
}
#endif /* 0 */
static void __init
inithdlc(struct IsdnCardState *cs)
{
cs->bcs[0].BC_SetStack = setstack_hdlc;
cs->bcs[1].BC_SetStack = setstack_hdlc;
cs->bcs[0].BC_Close = close_hdlcstate;
cs->bcs[1].BC_Close = close_hdlcstate;
modehdlc(cs->bcs, -1, 0);
modehdlc(cs->bcs + 1, -1, 1);
}
static irqreturn_t
avm_pcipnp_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
struct IsdnCardState *cs = dev_id;
u_long flags;
u_char val;
u_char sval;
spin_lock_irqsave(&cs->lock, flags);
sval = inb(cs->hw.avm.cfg_reg + 2);
if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
/* possible a shared IRQ reqest */
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
val = ReadISAC(cs, ISAC_ISTA);
isac_interrupt(cs, val);
}
if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
HDLC_irq_main(cs);
}
WriteISAC(cs, ISAC_MASK, 0xFF);
WriteISAC(cs, ISAC_MASK, 0x0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static void
reset_avmpcipnp(struct IsdnCardState *cs)
{
printk(KERN_INFO "AVM PCI/PnP: reset\n");
outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
mdelay(10);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
mdelay(10);
printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
}
static int
AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_avmpcipnp(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return(0);
case CARD_RELEASE:
outb(0, cs->hw.avm.cfg_reg + 2);
release_region(cs->hw.avm.cfg_reg, 32);
return(0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
reset_avmpcipnp(cs);
clear_pending_isac_ints(cs);
initisac(cs);
inithdlc(cs);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
cs->hw.avm.cfg_reg + 2);
WriteISAC(cs, ISAC_MASK, 0);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
/* RESET Receiver and Transmitter */
WriteISAC(cs, ISAC_CMDR, 0x41);
spin_unlock_irqrestore(&cs->lock, flags);
return(0);
case CARD_TEST:
return(0);
}
return(0);
}
#ifdef CONFIG_PCI
static struct pci_dev *dev_avm __initdata = NULL;
#endif
#ifdef __ISAPNP__
static struct pnp_card *pnp_avm_c __initdata = NULL;
#endif
int __init
setup_avm_pcipnp(struct IsdnCard *card)
{
u_int val, ver;
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, avm_pci_rev);
printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_FRITZPCI)
return (0);
if (card->para[1]) {
/* old manual method */
cs->hw.avm.cfg_reg = card->para[1];
cs->irq = card->para[0];
cs->subtyp = AVM_FRITZ_PNP;
goto ready;
}
#ifdef __ISAPNP__
if (isapnp_present()) {
struct pnp_dev *pnp_avm_d = NULL;
if ((pnp_avm_c = pnp_find_card(
ISAPNP_VENDOR('A', 'V', 'M'),
ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
ISAPNP_VENDOR('A', 'V', 'M'),
ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
int err;
pnp_disable_dev(pnp_avm_d);
err = pnp_activate_dev(pnp_avm_d);
if (err<0) {
printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
__FUNCTION__, err);
return(0);
}
cs->hw.avm.cfg_reg =
pnp_port_start(pnp_avm_d, 0);
cs->irq = pnp_irq(pnp_avm_d, 0);
if (!cs->irq) {
printk(KERN_ERR "FritzPnP:No IRQ\n");
return(0);
}
if (!cs->hw.avm.cfg_reg) {
printk(KERN_ERR "FritzPnP:No IO address\n");
return(0);
}
cs->subtyp = AVM_FRITZ_PNP;
goto ready;
}
}
} else {
printk(KERN_INFO "FritzPnP: no ISA PnP present\n");
}
#endif
#ifdef CONFIG_PCI
if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
PCI_DEVICE_ID_AVM_A1, dev_avm))) {
if (pci_enable_device(dev_avm))
return(0);
cs->irq = dev_avm->irq;
if (!cs->irq) {
printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
return(0);
}
cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
if (!cs->hw.avm.cfg_reg) {
printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
return(0);
}
cs->subtyp = AVM_FRITZ_PCI;
} else {
printk(KERN_WARNING "FritzPCI: No PCI card found\n");
return(0);
}
cs->irq_flags |= SA_SHIRQ;
#else
printk(KERN_WARNING "FritzPCI: NO_PCI_BIOS\n");
return (0);
#endif /* CONFIG_PCI */
ready:
cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
if (!request_region(cs->hw.avm.cfg_reg, 32,
(cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
printk(KERN_WARNING
"HiSax: %s config port %x-%x already in use\n",
CardType[card->typ],
cs->hw.avm.cfg_reg,
cs->hw.avm.cfg_reg + 31);
return (0);
}
switch (cs->subtyp) {
case AVM_FRITZ_PCI:
val = inl(cs->hw.avm.cfg_reg);
printk(KERN_INFO "AVM PCI: stat %#x\n", val);
printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
val & 0xff, (val>>8) & 0xff);
cs->BC_Read_Reg = &ReadHDLC_s;
cs->BC_Write_Reg = &WriteHDLC_s;
break;
case AVM_FRITZ_PNP:
val = inb(cs->hw.avm.cfg_reg);
ver = inb(cs->hw.avm.cfg_reg + 1);
printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
cs->BC_Read_Reg = &ReadHDLCPnP;
cs->BC_Write_Reg = &WriteHDLCPnP;
break;
default:
printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
return(0);
}
printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
(cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
cs->irq, cs->hw.avm.cfg_reg);
setup_isac(cs);
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->BC_Send_Data = &hdlc_fill_fifo;
cs->cardmsg = &AVM_card_msg;
cs->irq_func = &avm_pcipnp_interrupt;
cs->writeisac(cs, ISAC_MASK, 0xFF);
ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
return (1);
}