linux/arch/x86/include/asm/uv/uv_hub.h

610 lines
18 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV architectural definitions
*
* Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
#ifdef CONFIG_X86_64
#include <linux/numa.h>
#include <linux/percpu.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <asm/types.h>
#include <asm/percpu.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>
/*
* Addressing Terminology
*
* M - The low M bits of a physical address represent the offset
* into the blade local memory. RAM memory on a blade is physically
* contiguous (although various IO spaces may punch holes in
* it)..
*
* N - Number of bits in the node portion of a socket physical
* address.
*
* NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
* routers always have low bit of 1, C/MBricks have low bit
* equal to 0. Most addressing macros that target UV hub chips
* right shift the NASID by 1 to exclude the always-zero bit.
* NASIDs contain up to 15 bits.
*
* GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
* of nasids.
*
* PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
* of the nasid for socket usage.
*
* GPA - (global physical address) a socket physical address converted
* so that it can be used by the GRU as a global address. Socket
* physical addresses 1) need additional NASID (node) bits added
* to the high end of the address, and 2) unaliased if the
* partition does not have a physical address 0. In addition, on
* UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
*
*
* NumaLink Global Physical Address Format:
* +--------------------------------+---------------------+
* |00..000| GNODE | NodeOffset |
* +--------------------------------+---------------------+
* |<-------53 - M bits --->|<--------M bits ----->
*
* M - number of node offset bits (35 .. 40)
*
*
* Memory/UV-HUB Processor Socket Address Format:
* +----------------+---------------+---------------------+
* |00..000000000000| PNODE | NodeOffset |
* +----------------+---------------+---------------------+
* <--- N bits --->|<--------M bits ----->
*
* M - number of node offset bits (35 .. 40)
* N - number of PNODE bits (0 .. 10)
*
* Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
* The actual values are configuration dependent and are set at
* boot time. M & N values are set by the hardware/BIOS at boot.
*
*
* APICID format
* NOTE!!!!!! This is the current format of the APICID. However, code
* should assume that this will change in the future. Use functions
* in this file for all APICID bit manipulations and conversion.
*
* 1111110000000000
* 5432109876543210
* pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
* ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
* pppppppppppcccch SandyBridge (15 bits in hdw reg)
* sssssssssss
*
* p = pnode bits
* l = socket number on board
* c = core
* h = hyperthread
* s = bits that are in the SOCKET_ID CSR
*
* Note: Processor may support fewer bits in the APICID register. The ACPI
* tables hold all 16 bits. Software needs to be aware of this.
*
* Unless otherwise specified, all references to APICID refer to
* the FULL value contained in ACPI tables, not the subset in the
* processor APICID register.
*/
/*
* Maximum number of bricks in all partitions and in all coherency domains.
* This is the total number of bricks accessible in the numalink fabric. It
* includes all C & M bricks. Routers are NOT included.
*
* This value is also the value of the maximum number of non-router NASIDs
* in the numalink fabric.
*
* NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
*/
#define UV_MAX_NUMALINK_BLADES 16384
/*
* Maximum number of C/Mbricks within a software SSI (hardware may support
* more).
*/
#define UV_MAX_SSI_BLADES 256
/*
* The largest possible NASID of a C or M brick (+ 2)
*/
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
struct uv_scir_s {
struct timer_list timer;
unsigned long offset;
unsigned long last;
unsigned long idle_on;
unsigned long idle_off;
unsigned char state;
unsigned char enabled;
};
/*
* The following defines attributes of the HUB chip. These attributes are
* frequently referenced and are kept in the per-cpu data areas of each cpu.
* They are kept together in a struct to minimize cache misses.
*/
struct uv_hub_info_s {
unsigned long global_mmr_base;
unsigned long gpa_mask;
unsigned int gnode_extra;
unsigned char hub_revision;
unsigned char apic_pnode_shift;
unsigned char m_shift;
unsigned char n_lshift;
unsigned long gnode_upper;
unsigned long lowmem_remap_top;
unsigned long lowmem_remap_base;
unsigned short pnode;
unsigned short pnode_mask;
unsigned short coherency_domain_number;
unsigned short numa_blade_id;
unsigned char blade_processor_id;
unsigned char m_val;
unsigned char n_val;
struct uv_scir_s scir;
};
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
/*
* Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
* hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
* This is a software convention - NOT the hardware revision numbers in
* the hub chip.
*/
#define UV1_HUB_REVISION_BASE 1
#define UV2_HUB_REVISION_BASE 3
static inline int is_uv1_hub(void)
{
return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}
static inline int is_uv2_hub(void)
{
return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
}
static inline int is_uv2_1_hub(void)
{
return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
}
static inline int is_uv2_2_hub(void)
{
return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
}
union uvh_apicid {
unsigned long v;
struct uvh_apicid_s {
unsigned long local_apic_mask : 24;
unsigned long local_apic_shift : 5;
unsigned long unused1 : 3;
unsigned long pnode_mask : 24;
unsigned long pnode_shift : 5;
unsigned long unused2 : 3;
} s;
};
/*
* Local & Global MMR space macros.
* Note: macros are intended to be used ONLY by inline functions
* in this file - not by other kernel code.
* n - NASID (full 15-bit global nasid)
* g - GNODE (full 15-bit global nasid, right shifted 1)
* p - PNODE (local part of nsids, right shifted 1)
*/
#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
#define UV1_LOCAL_MMR_BASE 0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
#define UV2_LOCAL_MMR_BASE 0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE \
: UV2_LOCAL_MMR_BASE)
#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE \
: UV2_GLOBAL_MMR32_BASE)
#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
UV2_LOCAL_MMR_SIZE)
#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
UV2_GLOBAL_MMR32_SIZE)
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
#define UVH_APICID 0x002D0E00L
#define UV_APIC_PNODE_SHIFT 6
#define UV_APICID_HIBIT_MASK 0xffff0000
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE 0x1c00000
#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
/*
* System Controller Interface Reg
*
* Note there are NO leds on a UV system. This register is only
* used by the system controller to monitor system-wide operation.
* There are 64 regs per node. With Nahelem cpus (2 cores per node,
* 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
* a node.
*
* The window is located at top of ACPI MMR space
*/
#define SCIR_WINDOW_COUNT 64
#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
LOCAL_BUS_SIZE - \
SCIR_WINDOW_COUNT)
#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
/* Loop through all installed blades */
#define for_each_possible_blade(bid) \
for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
/*
* Macros for converting between kernel virtual addresses, socket local physical
* addresses, and UV global physical addresses.
* Note: use the standard __pa() & __va() macros for converting
* between socket virtual and socket physical addresses.
*/
/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
if (paddr < uv_hub_info->lowmem_remap_top)
paddr |= uv_hub_info->lowmem_remap_base;
paddr |= uv_hub_info->gnode_upper;
paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
return paddr;
}
/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
return uv_soc_phys_ram_to_gpa(__pa(v));
}
/* Top two bits indicate the requested address is in MMR space. */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
return (gpa >> 62) == 0x3UL;
}
/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
unsigned long paddr;
unsigned long remap_base = uv_hub_info->lowmem_remap_base;
unsigned long remap_top = uv_hub_info->lowmem_remap_top;
gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
paddr = gpa & uv_hub_info->gpa_mask;
if (paddr >= remap_base && paddr < remap_base + remap_top)
paddr -= remap_base;
return paddr;
}
/* gpa -> pnode */
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
return gpa >> uv_hub_info->n_lshift;
}
/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
return uv_gpa_to_gnode(gpa) & n_mask;
}
/* gpa -> node offset*/
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
}
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
/*
* Extract a PNODE from an APICID (full apicid, not processor subset)
*/
static inline int uv_apicid_to_pnode(int apicid)
{
return (apicid >> uv_hub_info->apic_pnode_shift);
}
/*
* Convert an apicid to the socket number on the blade
*/
static inline int uv_apicid_to_socket(int apicid)
{
if (is_uv1_hub())
return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
else
return 0;
}
/*
* Access global MMRs using the low memory MMR32 space. This region supports
* faster MMR access but not all MMRs are accessible in this space.
*/
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
{
return __va(UV_GLOBAL_MMR32_BASE |
UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
}
static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
{
writeq(val, uv_global_mmr32_address(pnode, offset));
}
static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
{
return readq(uv_global_mmr32_address(pnode, offset));
}
/*
* Access Global MMR space using the MMR space located at the top of physical
* memory.
*/
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
{
return __va(UV_GLOBAL_MMR64_BASE |
UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
}
static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
{
writeq(val, uv_global_mmr64_address(pnode, offset));
}
static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
{
return readq(uv_global_mmr64_address(pnode, offset));
}
/*
* Global MMR space addresses when referenced by the GRU. (GRU does
* NOT use socket addressing).
*/
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
return UV_GLOBAL_GRU_MMR_BASE | offset |
((unsigned long)pnode << uv_hub_info->m_val);
}
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
writeb(val, uv_global_mmr64_address(pnode, offset));
}
static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
return readb(uv_global_mmr64_address(pnode, offset));
}
/*
* Access hub local MMRs. Faster than using global space but only local MMRs
* are accessible.
*/
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
return __va(UV_LOCAL_MMR_BASE | offset);
}
static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
return readq(uv_local_mmr_address(offset));
}
static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
writeq(val, uv_local_mmr_address(offset));
}
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
return readb(uv_local_mmr_address(offset));
}
static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
writeb(val, uv_local_mmr_address(offset));
}
/*
* Structures and definitions for converting between cpu, node, pnode, and blade
* numbers.
*/
struct uv_blade_info {
unsigned short nr_possible_cpus;
unsigned short nr_online_cpus;
unsigned short pnode;
short memory_nid;
spinlock_t nmi_lock;
unsigned long nmi_count;
};
extern struct uv_blade_info *uv_blade_info;
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
return uv_hub_info->blade_processor_id;
}
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
return uv_hub_info->numa_blade_id;
}
/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
return uv_cpu_to_blade[cpu];
}
/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
return uv_node_to_blade[nid];
}
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
{
return uv_blade_info[bid].pnode;
}
/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
return uv_blade_info[bid].memory_nid;
}
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
return uv_blade_info[bid].nr_possible_cpus;
}
/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
return uv_blade_info[bid].nr_online_cpus;
}
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
{
return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
}
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
{
return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
}
/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
return uv_possible_blades;
}
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
if (uv_hub_info->scir.state != value) {
uv_hub_info->scir.state = value;
uv_write_local_mmr8(uv_hub_info->scir.offset, value);
}
}
static inline unsigned long uv_scir_offset(int apicid)
{
return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
if (uv_cpu_hub_info(cpu)->scir.state != value) {
uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
uv_cpu_hub_info(cpu)->scir.offset, value);
uv_cpu_hub_info(cpu)->scir.state = value;
}
}
extern unsigned int uv_apicid_hibits;
static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
{
apicid |= uv_apicid_hibits;
return (1UL << UVH_IPI_INT_SEND_SHFT) |
((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
(vector << UVH_IPI_INT_VECTOR_SHFT);
}
static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
{
unsigned long val;
unsigned long dmode = dest_Fixed;
if (vector == NMI_VECTOR)
dmode = dest_NMI;
val = uv_hub_ipi_value(apicid, vector, dmode);
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}
/*
* Get the minimum revision number of the hub chips within the partition.
* 1 - UV1 rev 1.0 initial silicon
* 2 - UV1 rev 2.0 production silicon
* 3 - UV2 rev 1.0 initial silicon
*/
static inline int uv_get_min_hub_revision_id(void)
{
return uv_hub_info->hub_revision;
}
#endif /* CONFIG_X86_64 */
#endif /* _ASM_X86_UV_UV_HUB_H */