142 lines
4.7 KiB
C
142 lines
4.7 KiB
C
/*
|
|
* Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef _CHELSIO_L2T_H
|
|
#define _CHELSIO_L2T_H
|
|
|
|
#include <linux/spinlock.h>
|
|
#include "t3cdev.h"
|
|
#include <asm/atomic.h>
|
|
|
|
enum {
|
|
L2T_STATE_VALID, /* entry is up to date */
|
|
L2T_STATE_STALE, /* entry may be used but needs revalidation */
|
|
L2T_STATE_RESOLVING, /* entry needs address resolution */
|
|
L2T_STATE_UNUSED /* entry not in use */
|
|
};
|
|
|
|
struct neighbour;
|
|
struct sk_buff;
|
|
|
|
/*
|
|
* Each L2T entry plays multiple roles. First of all, it keeps state for the
|
|
* corresponding entry of the HW L2 table and maintains a queue of offload
|
|
* packets awaiting address resolution. Second, it is a node of a hash table
|
|
* chain, where the nodes of the chain are linked together through their next
|
|
* pointer. Finally, each node is a bucket of a hash table, pointing to the
|
|
* first element in its chain through its first pointer.
|
|
*/
|
|
struct l2t_entry {
|
|
u16 state; /* entry state */
|
|
u16 idx; /* entry index */
|
|
u32 addr; /* dest IP address */
|
|
int ifindex; /* neighbor's net_device's ifindex */
|
|
u16 smt_idx; /* SMT index */
|
|
u16 vlan; /* VLAN TCI (id: bits 0-11, prio: 13-15 */
|
|
struct neighbour *neigh; /* associated neighbour */
|
|
struct l2t_entry *first; /* start of hash chain */
|
|
struct l2t_entry *next; /* next l2t_entry on chain */
|
|
struct sk_buff_head arpq; /* queue of packets awaiting resolution */
|
|
spinlock_t lock;
|
|
atomic_t refcnt; /* entry reference count */
|
|
u8 dmac[6]; /* neighbour's MAC address */
|
|
};
|
|
|
|
struct l2t_data {
|
|
unsigned int nentries; /* number of entries */
|
|
struct l2t_entry *rover; /* starting point for next allocation */
|
|
atomic_t nfree; /* number of free entries */
|
|
rwlock_t lock;
|
|
struct l2t_entry l2tab[0];
|
|
};
|
|
|
|
typedef void (*arp_failure_handler_func)(struct t3cdev * dev,
|
|
struct sk_buff * skb);
|
|
|
|
/*
|
|
* Callback stored in an skb to handle address resolution failure.
|
|
*/
|
|
struct l2t_skb_cb {
|
|
arp_failure_handler_func arp_failure_handler;
|
|
};
|
|
|
|
#define L2T_SKB_CB(skb) ((struct l2t_skb_cb *)(skb)->cb)
|
|
|
|
static inline void set_arp_failure_handler(struct sk_buff *skb,
|
|
arp_failure_handler_func hnd)
|
|
{
|
|
L2T_SKB_CB(skb)->arp_failure_handler = hnd;
|
|
}
|
|
|
|
/*
|
|
* Getting to the L2 data from an offload device.
|
|
*/
|
|
#define L2DATA(dev) ((dev)->l2opt)
|
|
|
|
#define W_TCB_L2T_IX 0
|
|
#define S_TCB_L2T_IX 7
|
|
#define M_TCB_L2T_IX 0x7ffULL
|
|
#define V_TCB_L2T_IX(x) ((x) << S_TCB_L2T_IX)
|
|
|
|
void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e);
|
|
void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh);
|
|
struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh,
|
|
struct net_device *dev);
|
|
int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
|
|
struct l2t_entry *e);
|
|
void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e);
|
|
struct l2t_data *t3_init_l2t(unsigned int l2t_capacity);
|
|
void t3_free_l2t(struct l2t_data *d);
|
|
|
|
int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb);
|
|
|
|
static inline int l2t_send(struct t3cdev *dev, struct sk_buff *skb,
|
|
struct l2t_entry *e)
|
|
{
|
|
if (likely(e->state == L2T_STATE_VALID))
|
|
return cxgb3_ofld_send(dev, skb);
|
|
return t3_l2t_send_slow(dev, skb, e);
|
|
}
|
|
|
|
static inline void l2t_release(struct l2t_data *d, struct l2t_entry *e)
|
|
{
|
|
if (atomic_dec_and_test(&e->refcnt))
|
|
t3_l2e_free(d, e);
|
|
}
|
|
|
|
static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
|
|
{
|
|
if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
|
|
atomic_dec(&d->nfree);
|
|
}
|
|
|
|
#endif
|