440e6ca79a
Use the generic ptrace_resume code for PTRACE_SYSCALL, PTRACE_CONT, PTRACE_KILL and PTRACE_SINGLESTEP. This implies defining arch_has_single_step in <asm/ptrace.h> and implementing the user_enable_single_step and user_disable_single_step functions, which also causes the breakpoint information to be cleared on fork, which could be considered a bug fix. Also the TIF_SYSCALL_TRACE thread flag is now cleared on PTRACE_KILL which it previously wasn't and the single stepping disable only happens if the tracee process isn't a zombie yet, which is consistent with all architectures using the modern ptrace code. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
866 lines
19 KiB
C
866 lines
19 KiB
C
/*
|
|
* linux/arch/arm/kernel/ptrace.c
|
|
*
|
|
* By Ross Biro 1/23/92
|
|
* edited by Linus Torvalds
|
|
* ARM modifications Copyright (C) 2000 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/security.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/system.h>
|
|
#include <asm/traps.h>
|
|
|
|
#include "ptrace.h"
|
|
|
|
#define REG_PC 15
|
|
#define REG_PSR 16
|
|
/*
|
|
* does not yet catch signals sent when the child dies.
|
|
* in exit.c or in signal.c.
|
|
*/
|
|
|
|
#if 0
|
|
/*
|
|
* Breakpoint SWI instruction: SWI &9F0001
|
|
*/
|
|
#define BREAKINST_ARM 0xef9f0001
|
|
#define BREAKINST_THUMB 0xdf00 /* fill this in later */
|
|
#else
|
|
/*
|
|
* New breakpoints - use an undefined instruction. The ARM architecture
|
|
* reference manual guarantees that the following instruction space
|
|
* will produce an undefined instruction exception on all CPUs:
|
|
*
|
|
* ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
|
|
* Thumb: 1101 1110 xxxx xxxx
|
|
*/
|
|
#define BREAKINST_ARM 0xe7f001f0
|
|
#define BREAKINST_THUMB 0xde01
|
|
#endif
|
|
|
|
/*
|
|
* this routine will get a word off of the processes privileged stack.
|
|
* the offset is how far from the base addr as stored in the THREAD.
|
|
* this routine assumes that all the privileged stacks are in our
|
|
* data space.
|
|
*/
|
|
static inline long get_user_reg(struct task_struct *task, int offset)
|
|
{
|
|
return task_pt_regs(task)->uregs[offset];
|
|
}
|
|
|
|
/*
|
|
* this routine will put a word on the processes privileged stack.
|
|
* the offset is how far from the base addr as stored in the THREAD.
|
|
* this routine assumes that all the privileged stacks are in our
|
|
* data space.
|
|
*/
|
|
static inline int
|
|
put_user_reg(struct task_struct *task, int offset, long data)
|
|
{
|
|
struct pt_regs newregs, *regs = task_pt_regs(task);
|
|
int ret = -EINVAL;
|
|
|
|
newregs = *regs;
|
|
newregs.uregs[offset] = data;
|
|
|
|
if (valid_user_regs(&newregs)) {
|
|
regs->uregs[offset] = data;
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
read_u32(struct task_struct *task, unsigned long addr, u32 *res)
|
|
{
|
|
int ret;
|
|
|
|
ret = access_process_vm(task, addr, res, sizeof(*res), 0);
|
|
|
|
return ret == sizeof(*res) ? 0 : -EIO;
|
|
}
|
|
|
|
static inline int
|
|
read_instr(struct task_struct *task, unsigned long addr, u32 *res)
|
|
{
|
|
int ret;
|
|
|
|
if (addr & 1) {
|
|
u16 val;
|
|
ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0);
|
|
ret = ret == sizeof(val) ? 0 : -EIO;
|
|
*res = val;
|
|
} else {
|
|
u32 val;
|
|
ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0);
|
|
ret = ret == sizeof(val) ? 0 : -EIO;
|
|
*res = val;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get value of register `rn' (in the instruction)
|
|
*/
|
|
static unsigned long
|
|
ptrace_getrn(struct task_struct *child, unsigned long insn)
|
|
{
|
|
unsigned int reg = (insn >> 16) & 15;
|
|
unsigned long val;
|
|
|
|
val = get_user_reg(child, reg);
|
|
if (reg == 15)
|
|
val += 8;
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Get value of operand 2 (in an ALU instruction)
|
|
*/
|
|
static unsigned long
|
|
ptrace_getaluop2(struct task_struct *child, unsigned long insn)
|
|
{
|
|
unsigned long val;
|
|
int shift;
|
|
int type;
|
|
|
|
if (insn & 1 << 25) {
|
|
val = insn & 255;
|
|
shift = (insn >> 8) & 15;
|
|
type = 3;
|
|
} else {
|
|
val = get_user_reg (child, insn & 15);
|
|
|
|
if (insn & (1 << 4))
|
|
shift = (int)get_user_reg (child, (insn >> 8) & 15);
|
|
else
|
|
shift = (insn >> 7) & 31;
|
|
|
|
type = (insn >> 5) & 3;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0: val <<= shift; break;
|
|
case 1: val >>= shift; break;
|
|
case 2:
|
|
val = (((signed long)val) >> shift);
|
|
break;
|
|
case 3:
|
|
val = (val >> shift) | (val << (32 - shift));
|
|
break;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Get value of operand 2 (in a LDR instruction)
|
|
*/
|
|
static unsigned long
|
|
ptrace_getldrop2(struct task_struct *child, unsigned long insn)
|
|
{
|
|
unsigned long val;
|
|
int shift;
|
|
int type;
|
|
|
|
val = get_user_reg(child, insn & 15);
|
|
shift = (insn >> 7) & 31;
|
|
type = (insn >> 5) & 3;
|
|
|
|
switch (type) {
|
|
case 0: val <<= shift; break;
|
|
case 1: val >>= shift; break;
|
|
case 2:
|
|
val = (((signed long)val) >> shift);
|
|
break;
|
|
case 3:
|
|
val = (val >> shift) | (val << (32 - shift));
|
|
break;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define OP_MASK 0x01e00000
|
|
#define OP_AND 0x00000000
|
|
#define OP_EOR 0x00200000
|
|
#define OP_SUB 0x00400000
|
|
#define OP_RSB 0x00600000
|
|
#define OP_ADD 0x00800000
|
|
#define OP_ADC 0x00a00000
|
|
#define OP_SBC 0x00c00000
|
|
#define OP_RSC 0x00e00000
|
|
#define OP_ORR 0x01800000
|
|
#define OP_MOV 0x01a00000
|
|
#define OP_BIC 0x01c00000
|
|
#define OP_MVN 0x01e00000
|
|
|
|
static unsigned long
|
|
get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn)
|
|
{
|
|
u32 alt = 0;
|
|
|
|
switch (insn & 0x0e000000) {
|
|
case 0x00000000:
|
|
case 0x02000000: {
|
|
/*
|
|
* data processing
|
|
*/
|
|
long aluop1, aluop2, ccbit;
|
|
|
|
if ((insn & 0x0fffffd0) == 0x012fff10) {
|
|
/*
|
|
* bx or blx
|
|
*/
|
|
alt = get_user_reg(child, insn & 15);
|
|
break;
|
|
}
|
|
|
|
|
|
if ((insn & 0xf000) != 0xf000)
|
|
break;
|
|
|
|
aluop1 = ptrace_getrn(child, insn);
|
|
aluop2 = ptrace_getaluop2(child, insn);
|
|
ccbit = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0;
|
|
|
|
switch (insn & OP_MASK) {
|
|
case OP_AND: alt = aluop1 & aluop2; break;
|
|
case OP_EOR: alt = aluop1 ^ aluop2; break;
|
|
case OP_SUB: alt = aluop1 - aluop2; break;
|
|
case OP_RSB: alt = aluop2 - aluop1; break;
|
|
case OP_ADD: alt = aluop1 + aluop2; break;
|
|
case OP_ADC: alt = aluop1 + aluop2 + ccbit; break;
|
|
case OP_SBC: alt = aluop1 - aluop2 + ccbit; break;
|
|
case OP_RSC: alt = aluop2 - aluop1 + ccbit; break;
|
|
case OP_ORR: alt = aluop1 | aluop2; break;
|
|
case OP_MOV: alt = aluop2; break;
|
|
case OP_BIC: alt = aluop1 & ~aluop2; break;
|
|
case OP_MVN: alt = ~aluop2; break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0x04000000:
|
|
case 0x06000000:
|
|
/*
|
|
* ldr
|
|
*/
|
|
if ((insn & 0x0010f000) == 0x0010f000) {
|
|
unsigned long base;
|
|
|
|
base = ptrace_getrn(child, insn);
|
|
if (insn & 1 << 24) {
|
|
long aluop2;
|
|
|
|
if (insn & 0x02000000)
|
|
aluop2 = ptrace_getldrop2(child, insn);
|
|
else
|
|
aluop2 = insn & 0xfff;
|
|
|
|
if (insn & 1 << 23)
|
|
base += aluop2;
|
|
else
|
|
base -= aluop2;
|
|
}
|
|
read_u32(child, base, &alt);
|
|
}
|
|
break;
|
|
|
|
case 0x08000000:
|
|
/*
|
|
* ldm
|
|
*/
|
|
if ((insn & 0x00108000) == 0x00108000) {
|
|
unsigned long base;
|
|
unsigned int nr_regs;
|
|
|
|
if (insn & (1 << 23)) {
|
|
nr_regs = hweight16(insn & 65535) << 2;
|
|
|
|
if (!(insn & (1 << 24)))
|
|
nr_regs -= 4;
|
|
} else {
|
|
if (insn & (1 << 24))
|
|
nr_regs = -4;
|
|
else
|
|
nr_regs = 0;
|
|
}
|
|
|
|
base = ptrace_getrn(child, insn);
|
|
|
|
read_u32(child, base + nr_regs, &alt);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 0x0a000000: {
|
|
/*
|
|
* bl or b
|
|
*/
|
|
signed long displ;
|
|
/* It's a branch/branch link: instead of trying to
|
|
* figure out whether the branch will be taken or not,
|
|
* we'll put a breakpoint at both locations. This is
|
|
* simpler, more reliable, and probably not a whole lot
|
|
* slower than the alternative approach of emulating the
|
|
* branch.
|
|
*/
|
|
displ = (insn & 0x00ffffff) << 8;
|
|
displ = (displ >> 6) + 8;
|
|
if (displ != 0 && displ != 4)
|
|
alt = pc + displ;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return alt;
|
|
}
|
|
|
|
static int
|
|
swap_insn(struct task_struct *task, unsigned long addr,
|
|
void *old_insn, void *new_insn, int size)
|
|
{
|
|
int ret;
|
|
|
|
ret = access_process_vm(task, addr, old_insn, size, 0);
|
|
if (ret == size)
|
|
ret = access_process_vm(task, addr, new_insn, size, 1);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr)
|
|
{
|
|
int nr = dbg->nsaved;
|
|
|
|
if (nr < 2) {
|
|
u32 new_insn = BREAKINST_ARM;
|
|
int res;
|
|
|
|
res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4);
|
|
|
|
if (res == 4) {
|
|
dbg->bp[nr].address = addr;
|
|
dbg->nsaved += 1;
|
|
}
|
|
} else
|
|
printk(KERN_ERR "ptrace: too many breakpoints\n");
|
|
}
|
|
|
|
/*
|
|
* Clear one breakpoint in the user program. We copy what the hardware
|
|
* does and use bit 0 of the address to indicate whether this is a Thumb
|
|
* breakpoint or an ARM breakpoint.
|
|
*/
|
|
static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp)
|
|
{
|
|
unsigned long addr = bp->address;
|
|
union debug_insn old_insn;
|
|
int ret;
|
|
|
|
if (addr & 1) {
|
|
ret = swap_insn(task, addr & ~1, &old_insn.thumb,
|
|
&bp->insn.thumb, 2);
|
|
|
|
if (ret != 2 || old_insn.thumb != BREAKINST_THUMB)
|
|
printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at "
|
|
"0x%08lx (0x%04x)\n", task->comm,
|
|
task_pid_nr(task), addr, old_insn.thumb);
|
|
} else {
|
|
ret = swap_insn(task, addr & ~3, &old_insn.arm,
|
|
&bp->insn.arm, 4);
|
|
|
|
if (ret != 4 || old_insn.arm != BREAKINST_ARM)
|
|
printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at "
|
|
"0x%08lx (0x%08x)\n", task->comm,
|
|
task_pid_nr(task), addr, old_insn.arm);
|
|
}
|
|
}
|
|
|
|
void ptrace_set_bpt(struct task_struct *child)
|
|
{
|
|
struct pt_regs *regs;
|
|
unsigned long pc;
|
|
u32 insn;
|
|
int res;
|
|
|
|
regs = task_pt_regs(child);
|
|
pc = instruction_pointer(regs);
|
|
|
|
if (thumb_mode(regs)) {
|
|
printk(KERN_WARNING "ptrace: can't handle thumb mode\n");
|
|
return;
|
|
}
|
|
|
|
res = read_instr(child, pc, &insn);
|
|
if (!res) {
|
|
struct debug_info *dbg = &child->thread.debug;
|
|
unsigned long alt;
|
|
|
|
dbg->nsaved = 0;
|
|
|
|
alt = get_branch_address(child, pc, insn);
|
|
if (alt)
|
|
add_breakpoint(child, dbg, alt);
|
|
|
|
/*
|
|
* Note that we ignore the result of setting the above
|
|
* breakpoint since it may fail. When it does, this is
|
|
* not so much an error, but a forewarning that we may
|
|
* be receiving a prefetch abort shortly.
|
|
*
|
|
* If we don't set this breakpoint here, then we can
|
|
* lose control of the thread during single stepping.
|
|
*/
|
|
if (!alt || predicate(insn) != PREDICATE_ALWAYS)
|
|
add_breakpoint(child, dbg, pc + 4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure no single-step breakpoint is pending. Returns non-zero
|
|
* value if child was being single-stepped.
|
|
*/
|
|
void ptrace_cancel_bpt(struct task_struct *child)
|
|
{
|
|
int i, nsaved = child->thread.debug.nsaved;
|
|
|
|
child->thread.debug.nsaved = 0;
|
|
|
|
if (nsaved > 2) {
|
|
printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
|
|
nsaved = 2;
|
|
}
|
|
|
|
for (i = 0; i < nsaved; i++)
|
|
clear_breakpoint(child, &child->thread.debug.bp[i]);
|
|
}
|
|
|
|
void user_disable_single_step(struct task_struct *task)
|
|
{
|
|
task->ptrace &= ~PT_SINGLESTEP;
|
|
ptrace_cancel_bpt(task);
|
|
}
|
|
|
|
void user_enable_single_step(struct task_struct *task)
|
|
{
|
|
task->ptrace |= PT_SINGLESTEP;
|
|
}
|
|
|
|
/*
|
|
* Called by kernel/ptrace.c when detaching..
|
|
*/
|
|
void ptrace_disable(struct task_struct *child)
|
|
{
|
|
user_disable_single_step(child);
|
|
}
|
|
|
|
/*
|
|
* Handle hitting a breakpoint.
|
|
*/
|
|
void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
ptrace_cancel_bpt(tsk);
|
|
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_BRKPT;
|
|
info.si_addr = (void __user *)instruction_pointer(regs);
|
|
|
|
force_sig_info(SIGTRAP, &info, tsk);
|
|
}
|
|
|
|
static int break_trap(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
ptrace_break(current, regs);
|
|
return 0;
|
|
}
|
|
|
|
static struct undef_hook arm_break_hook = {
|
|
.instr_mask = 0x0fffffff,
|
|
.instr_val = 0x07f001f0,
|
|
.cpsr_mask = PSR_T_BIT,
|
|
.cpsr_val = 0,
|
|
.fn = break_trap,
|
|
};
|
|
|
|
static struct undef_hook thumb_break_hook = {
|
|
.instr_mask = 0xffff,
|
|
.instr_val = 0xde01,
|
|
.cpsr_mask = PSR_T_BIT,
|
|
.cpsr_val = PSR_T_BIT,
|
|
.fn = break_trap,
|
|
};
|
|
|
|
static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
|
|
{
|
|
unsigned int instr2;
|
|
void __user *pc;
|
|
|
|
/* Check the second half of the instruction. */
|
|
pc = (void __user *)(instruction_pointer(regs) + 2);
|
|
|
|
if (processor_mode(regs) == SVC_MODE) {
|
|
instr2 = *(u16 *) pc;
|
|
} else {
|
|
get_user(instr2, (u16 __user *)pc);
|
|
}
|
|
|
|
if (instr2 == 0xa000) {
|
|
ptrace_break(current, regs);
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static struct undef_hook thumb2_break_hook = {
|
|
.instr_mask = 0xffff,
|
|
.instr_val = 0xf7f0,
|
|
.cpsr_mask = PSR_T_BIT,
|
|
.cpsr_val = PSR_T_BIT,
|
|
.fn = thumb2_break_trap,
|
|
};
|
|
|
|
static int __init ptrace_break_init(void)
|
|
{
|
|
register_undef_hook(&arm_break_hook);
|
|
register_undef_hook(&thumb_break_hook);
|
|
register_undef_hook(&thumb2_break_hook);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(ptrace_break_init);
|
|
|
|
/*
|
|
* Read the word at offset "off" into the "struct user". We
|
|
* actually access the pt_regs stored on the kernel stack.
|
|
*/
|
|
static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
|
|
unsigned long __user *ret)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
if (off & 3 || off >= sizeof(struct user))
|
|
return -EIO;
|
|
|
|
tmp = 0;
|
|
if (off == PT_TEXT_ADDR)
|
|
tmp = tsk->mm->start_code;
|
|
else if (off == PT_DATA_ADDR)
|
|
tmp = tsk->mm->start_data;
|
|
else if (off == PT_TEXT_END_ADDR)
|
|
tmp = tsk->mm->end_code;
|
|
else if (off < sizeof(struct pt_regs))
|
|
tmp = get_user_reg(tsk, off >> 2);
|
|
|
|
return put_user(tmp, ret);
|
|
}
|
|
|
|
/*
|
|
* Write the word at offset "off" into "struct user". We
|
|
* actually access the pt_regs stored on the kernel stack.
|
|
*/
|
|
static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
|
|
unsigned long val)
|
|
{
|
|
if (off & 3 || off >= sizeof(struct user))
|
|
return -EIO;
|
|
|
|
if (off >= sizeof(struct pt_regs))
|
|
return 0;
|
|
|
|
return put_user_reg(tsk, off >> 2, val);
|
|
}
|
|
|
|
/*
|
|
* Get all user integer registers.
|
|
*/
|
|
static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
|
|
return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set all user integer registers.
|
|
*/
|
|
static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
|
|
{
|
|
struct pt_regs newregs;
|
|
int ret;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
|
|
struct pt_regs *regs = task_pt_regs(tsk);
|
|
|
|
ret = -EINVAL;
|
|
if (valid_user_regs(&newregs)) {
|
|
*regs = newregs;
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get the child FPU state.
|
|
*/
|
|
static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
return copy_to_user(ufp, &task_thread_info(tsk)->fpstate,
|
|
sizeof(struct user_fp)) ? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set the child FPU state.
|
|
*/
|
|
static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
thread->used_cp[1] = thread->used_cp[2] = 1;
|
|
return copy_from_user(&thread->fpstate, ufp,
|
|
sizeof(struct user_fp)) ? -EFAULT : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
|
|
/*
|
|
* Get the child iWMMXt state.
|
|
*/
|
|
static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
|
|
return -ENODATA;
|
|
iwmmxt_task_disable(thread); /* force it to ram */
|
|
return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set the child iWMMXt state.
|
|
*/
|
|
static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
|
|
return -EACCES;
|
|
iwmmxt_task_release(thread); /* force a reload */
|
|
return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRUNCH
|
|
/*
|
|
* Get the child Crunch state.
|
|
*/
|
|
static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
crunch_task_disable(thread); /* force it to ram */
|
|
return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Set the child Crunch state.
|
|
*/
|
|
static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
|
|
crunch_task_release(thread); /* force a reload */
|
|
return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
|
|
? -EFAULT : 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_VFP
|
|
/*
|
|
* Get the child VFP state.
|
|
*/
|
|
static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
union vfp_state *vfp = &thread->vfpstate;
|
|
struct user_vfp __user *ufp = data;
|
|
|
|
vfp_sync_hwstate(thread);
|
|
|
|
/* copy the floating point registers */
|
|
if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs,
|
|
sizeof(vfp->hard.fpregs)))
|
|
return -EFAULT;
|
|
|
|
/* copy the status and control register */
|
|
if (put_user(vfp->hard.fpscr, &ufp->fpscr))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the child VFP state.
|
|
*/
|
|
static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data)
|
|
{
|
|
struct thread_info *thread = task_thread_info(tsk);
|
|
union vfp_state *vfp = &thread->vfpstate;
|
|
struct user_vfp __user *ufp = data;
|
|
|
|
vfp_sync_hwstate(thread);
|
|
|
|
/* copy the floating point registers */
|
|
if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs,
|
|
sizeof(vfp->hard.fpregs)))
|
|
return -EFAULT;
|
|
|
|
/* copy the status and control register */
|
|
if (get_user(vfp->hard.fpscr, &ufp->fpscr))
|
|
return -EFAULT;
|
|
|
|
vfp_flush_hwstate(thread);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
long arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
|
{
|
|
int ret;
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKUSR:
|
|
ret = ptrace_read_user(child, addr, (unsigned long __user *)data);
|
|
break;
|
|
|
|
case PTRACE_POKEUSR:
|
|
ret = ptrace_write_user(child, addr, data);
|
|
break;
|
|
|
|
case PTRACE_GETREGS:
|
|
ret = ptrace_getregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_SETREGS:
|
|
ret = ptrace_setregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_GETFPREGS:
|
|
ret = ptrace_getfpregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_SETFPREGS:
|
|
ret = ptrace_setfpregs(child, (void __user *)data);
|
|
break;
|
|
|
|
#ifdef CONFIG_IWMMXT
|
|
case PTRACE_GETWMMXREGS:
|
|
ret = ptrace_getwmmxregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_SETWMMXREGS:
|
|
ret = ptrace_setwmmxregs(child, (void __user *)data);
|
|
break;
|
|
#endif
|
|
|
|
case PTRACE_GET_THREAD_AREA:
|
|
ret = put_user(task_thread_info(child)->tp_value,
|
|
(unsigned long __user *) data);
|
|
break;
|
|
|
|
case PTRACE_SET_SYSCALL:
|
|
task_thread_info(child)->syscall = data;
|
|
ret = 0;
|
|
break;
|
|
|
|
#ifdef CONFIG_CRUNCH
|
|
case PTRACE_GETCRUNCHREGS:
|
|
ret = ptrace_getcrunchregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_SETCRUNCHREGS:
|
|
ret = ptrace_setcrunchregs(child, (void __user *)data);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_VFP
|
|
case PTRACE_GETVFPREGS:
|
|
ret = ptrace_getvfpregs(child, (void __user *)data);
|
|
break;
|
|
|
|
case PTRACE_SETVFPREGS:
|
|
ret = ptrace_setvfpregs(child, (void __user *)data);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
|
|
{
|
|
unsigned long ip;
|
|
|
|
if (!test_thread_flag(TIF_SYSCALL_TRACE))
|
|
return scno;
|
|
if (!(current->ptrace & PT_PTRACED))
|
|
return scno;
|
|
|
|
/*
|
|
* Save IP. IP is used to denote syscall entry/exit:
|
|
* IP = 0 -> entry, = 1 -> exit
|
|
*/
|
|
ip = regs->ARM_ip;
|
|
regs->ARM_ip = why;
|
|
|
|
current_thread_info()->syscall = scno;
|
|
|
|
/* the 0x80 provides a way for the tracing parent to distinguish
|
|
between a syscall stop and SIGTRAP delivery */
|
|
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
|
|
? 0x80 : 0));
|
|
/*
|
|
* this isn't the same as continuing with a signal, but it will do
|
|
* for normal use. strace only continues with a signal if the
|
|
* stopping signal is not SIGTRAP. -brl
|
|
*/
|
|
if (current->exit_code) {
|
|
send_sig(current->exit_code, current, 1);
|
|
current->exit_code = 0;
|
|
}
|
|
regs->ARM_ip = ip;
|
|
|
|
return current_thread_info()->syscall;
|
|
}
|