6b2f3d1f76
While Linux provided an O_SYNC flag basically since day 1, it took until Linux 2.4.0-test12pre2 to actually get it implemented for filesystems, since that day we had generic_osync_around with only minor changes and the great "For now, when the user asks for O_SYNC, we'll actually give O_DSYNC" comment. This patch intends to actually give us real O_SYNC semantics in addition to the O_DSYNC semantics. After Jan's O_SYNC patches which are required before this patch it's actually surprisingly simple, we just need to figure out when to set the datasync flag to vfs_fsync_range and when not. This patch renames the existing O_SYNC flag to O_DSYNC while keeping it's numerical value to keep binary compatibility, and adds a new real O_SYNC flag. To guarantee backwards compatiblity it is defined as expanding to both the O_DSYNC and the new additional binary flag (__O_SYNC) to make sure we are backwards-compatible when compiled against the new headers. This also means that all places that don't care about the differences can just check O_DSYNC and get the right behaviour for O_SYNC, too - only places that actuall care need to check __O_SYNC in addition. Drivers and network filesystems have been updated in a fail safe way to always do the full sync magic if O_DSYNC is set. The few places setting O_SYNC for lower layers are kept that way for now to stay failsafe. We enforce that O_DSYNC is set when __O_SYNC is set early in the open path to make sure we always get these sane options. Note that parisc really screwed up their headers as they already define a O_DSYNC that has always been a no-op. We try to repair it by using it for the new O_DSYNC and redefinining O_SYNC to send both the traditional O_SYNC numerical value _and_ the O_DSYNC one. Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Grant Grundler <grundler@parisc-linux.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger@sun.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jan Kara <jack@suse.cz>
1026 lines
25 KiB
C
1026 lines
25 KiB
C
/*
|
|
* Handle caching attributes in page tables (PAT)
|
|
*
|
|
* Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
* Suresh B Siddha <suresh.b.siddha@intel.com>
|
|
*
|
|
* Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
|
|
*/
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/rbtree.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/fcntl.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/pat.h>
|
|
#include <asm/io.h>
|
|
|
|
#ifdef CONFIG_X86_PAT
|
|
int __read_mostly pat_enabled = 1;
|
|
|
|
static inline void pat_disable(const char *reason)
|
|
{
|
|
pat_enabled = 0;
|
|
printk(KERN_INFO "%s\n", reason);
|
|
}
|
|
|
|
static int __init nopat(char *str)
|
|
{
|
|
pat_disable("PAT support disabled.");
|
|
return 0;
|
|
}
|
|
early_param("nopat", nopat);
|
|
#else
|
|
static inline void pat_disable(const char *reason)
|
|
{
|
|
(void)reason;
|
|
}
|
|
#endif
|
|
|
|
|
|
static int debug_enable;
|
|
|
|
static int __init pat_debug_setup(char *str)
|
|
{
|
|
debug_enable = 1;
|
|
return 0;
|
|
}
|
|
__setup("debugpat", pat_debug_setup);
|
|
|
|
#define dprintk(fmt, arg...) \
|
|
do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
|
|
|
|
|
|
static u64 __read_mostly boot_pat_state;
|
|
|
|
enum {
|
|
PAT_UC = 0, /* uncached */
|
|
PAT_WC = 1, /* Write combining */
|
|
PAT_WT = 4, /* Write Through */
|
|
PAT_WP = 5, /* Write Protected */
|
|
PAT_WB = 6, /* Write Back (default) */
|
|
PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
|
|
};
|
|
|
|
#define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
|
|
|
|
void pat_init(void)
|
|
{
|
|
u64 pat;
|
|
bool boot_cpu = !boot_pat_state;
|
|
|
|
if (!pat_enabled)
|
|
return;
|
|
|
|
if (!cpu_has_pat) {
|
|
if (!boot_pat_state) {
|
|
pat_disable("PAT not supported by CPU.");
|
|
return;
|
|
} else {
|
|
/*
|
|
* If this happens we are on a secondary CPU, but
|
|
* switched to PAT on the boot CPU. We have no way to
|
|
* undo PAT.
|
|
*/
|
|
printk(KERN_ERR "PAT enabled, "
|
|
"but not supported by secondary CPU\n");
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Set PWT to Write-Combining. All other bits stay the same */
|
|
/*
|
|
* PTE encoding used in Linux:
|
|
* PAT
|
|
* |PCD
|
|
* ||PWT
|
|
* |||
|
|
* 000 WB _PAGE_CACHE_WB
|
|
* 001 WC _PAGE_CACHE_WC
|
|
* 010 UC- _PAGE_CACHE_UC_MINUS
|
|
* 011 UC _PAGE_CACHE_UC
|
|
* PAT bit unused
|
|
*/
|
|
pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
|
|
PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
|
|
|
|
/* Boot CPU check */
|
|
if (!boot_pat_state)
|
|
rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
|
|
|
|
wrmsrl(MSR_IA32_CR_PAT, pat);
|
|
|
|
if (boot_cpu)
|
|
printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
|
|
smp_processor_id(), boot_pat_state, pat);
|
|
}
|
|
|
|
#undef PAT
|
|
|
|
static char *cattr_name(unsigned long flags)
|
|
{
|
|
switch (flags & _PAGE_CACHE_MASK) {
|
|
case _PAGE_CACHE_UC: return "uncached";
|
|
case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
|
|
case _PAGE_CACHE_WB: return "write-back";
|
|
case _PAGE_CACHE_WC: return "write-combining";
|
|
default: return "broken";
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The global memtype list keeps track of memory type for specific
|
|
* physical memory areas. Conflicting memory types in different
|
|
* mappings can cause CPU cache corruption. To avoid this we keep track.
|
|
*
|
|
* The list is sorted based on starting address and can contain multiple
|
|
* entries for each address (this allows reference counting for overlapping
|
|
* areas). All the aliases have the same cache attributes of course.
|
|
* Zero attributes are represented as holes.
|
|
*
|
|
* The data structure is a list that is also organized as an rbtree
|
|
* sorted on the start address of memtype range.
|
|
*
|
|
* memtype_lock protects both the linear list and rbtree.
|
|
*/
|
|
|
|
struct memtype {
|
|
u64 start;
|
|
u64 end;
|
|
unsigned long type;
|
|
struct list_head nd;
|
|
struct rb_node rb;
|
|
};
|
|
|
|
static struct rb_root memtype_rbroot = RB_ROOT;
|
|
static LIST_HEAD(memtype_list);
|
|
static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
|
|
|
|
static struct memtype *memtype_rb_search(struct rb_root *root, u64 start)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct memtype *last_lower = NULL;
|
|
|
|
while (node) {
|
|
struct memtype *data = container_of(node, struct memtype, rb);
|
|
|
|
if (data->start < start) {
|
|
last_lower = data;
|
|
node = node->rb_right;
|
|
} else if (data->start > start) {
|
|
node = node->rb_left;
|
|
} else
|
|
return data;
|
|
}
|
|
|
|
/* Will return NULL if there is no entry with its start <= start */
|
|
return last_lower;
|
|
}
|
|
|
|
static void memtype_rb_insert(struct rb_root *root, struct memtype *data)
|
|
{
|
|
struct rb_node **new = &(root->rb_node);
|
|
struct rb_node *parent = NULL;
|
|
|
|
while (*new) {
|
|
struct memtype *this = container_of(*new, struct memtype, rb);
|
|
|
|
parent = *new;
|
|
if (data->start <= this->start)
|
|
new = &((*new)->rb_left);
|
|
else if (data->start > this->start)
|
|
new = &((*new)->rb_right);
|
|
}
|
|
|
|
rb_link_node(&data->rb, parent, new);
|
|
rb_insert_color(&data->rb, root);
|
|
}
|
|
|
|
/*
|
|
* Does intersection of PAT memory type and MTRR memory type and returns
|
|
* the resulting memory type as PAT understands it.
|
|
* (Type in pat and mtrr will not have same value)
|
|
* The intersection is based on "Effective Memory Type" tables in IA-32
|
|
* SDM vol 3a
|
|
*/
|
|
static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
|
|
{
|
|
/*
|
|
* Look for MTRR hint to get the effective type in case where PAT
|
|
* request is for WB.
|
|
*/
|
|
if (req_type == _PAGE_CACHE_WB) {
|
|
u8 mtrr_type;
|
|
|
|
mtrr_type = mtrr_type_lookup(start, end);
|
|
if (mtrr_type != MTRR_TYPE_WRBACK)
|
|
return _PAGE_CACHE_UC_MINUS;
|
|
|
|
return _PAGE_CACHE_WB;
|
|
}
|
|
|
|
return req_type;
|
|
}
|
|
|
|
static int
|
|
chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
|
|
{
|
|
if (new->type != entry->type) {
|
|
if (type) {
|
|
new->type = entry->type;
|
|
*type = entry->type;
|
|
} else
|
|
goto conflict;
|
|
}
|
|
|
|
/* check overlaps with more than one entry in the list */
|
|
list_for_each_entry_continue(entry, &memtype_list, nd) {
|
|
if (new->end <= entry->start)
|
|
break;
|
|
else if (new->type != entry->type)
|
|
goto conflict;
|
|
}
|
|
return 0;
|
|
|
|
conflict:
|
|
printk(KERN_INFO "%s:%d conflicting memory types "
|
|
"%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
|
|
new->end, cattr_name(new->type), cattr_name(entry->type));
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
|
|
{
|
|
int ram_page = 0, not_rampage = 0;
|
|
unsigned long page_nr;
|
|
|
|
for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
|
|
++page_nr) {
|
|
/*
|
|
* For legacy reasons, physical address range in the legacy ISA
|
|
* region is tracked as non-RAM. This will allow users of
|
|
* /dev/mem to map portions of legacy ISA region, even when
|
|
* some of those portions are listed(or not even listed) with
|
|
* different e820 types(RAM/reserved/..)
|
|
*/
|
|
if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
|
|
page_is_ram(page_nr))
|
|
ram_page = 1;
|
|
else
|
|
not_rampage = 1;
|
|
|
|
if (ram_page == not_rampage)
|
|
return -1;
|
|
}
|
|
|
|
return ram_page;
|
|
}
|
|
|
|
/*
|
|
* For RAM pages, we use page flags to mark the pages with appropriate type.
|
|
* Here we do two pass:
|
|
* - Find the memtype of all the pages in the range, look for any conflicts
|
|
* - In case of no conflicts, set the new memtype for pages in the range
|
|
*
|
|
* Caller must hold memtype_lock for atomicity.
|
|
*/
|
|
static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
|
|
unsigned long *new_type)
|
|
{
|
|
struct page *page;
|
|
u64 pfn;
|
|
|
|
if (req_type == _PAGE_CACHE_UC) {
|
|
/* We do not support strong UC */
|
|
WARN_ON_ONCE(1);
|
|
req_type = _PAGE_CACHE_UC_MINUS;
|
|
}
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
unsigned long type;
|
|
|
|
page = pfn_to_page(pfn);
|
|
type = get_page_memtype(page);
|
|
if (type != -1) {
|
|
printk(KERN_INFO "reserve_ram_pages_type failed "
|
|
"0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n",
|
|
start, end, type, req_type);
|
|
if (new_type)
|
|
*new_type = type;
|
|
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
if (new_type)
|
|
*new_type = req_type;
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
page = pfn_to_page(pfn);
|
|
set_page_memtype(page, req_type);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int free_ram_pages_type(u64 start, u64 end)
|
|
{
|
|
struct page *page;
|
|
u64 pfn;
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
page = pfn_to_page(pfn);
|
|
set_page_memtype(page, -1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* req_type typically has one of the:
|
|
* - _PAGE_CACHE_WB
|
|
* - _PAGE_CACHE_WC
|
|
* - _PAGE_CACHE_UC_MINUS
|
|
* - _PAGE_CACHE_UC
|
|
*
|
|
* If new_type is NULL, function will return an error if it cannot reserve the
|
|
* region with req_type. If new_type is non-NULL, function will return
|
|
* available type in new_type in case of no error. In case of any error
|
|
* it will return a negative return value.
|
|
*/
|
|
int reserve_memtype(u64 start, u64 end, unsigned long req_type,
|
|
unsigned long *new_type)
|
|
{
|
|
struct memtype *new, *entry;
|
|
unsigned long actual_type;
|
|
struct list_head *where;
|
|
int is_range_ram;
|
|
int err = 0;
|
|
|
|
BUG_ON(start >= end); /* end is exclusive */
|
|
|
|
if (!pat_enabled) {
|
|
/* This is identical to page table setting without PAT */
|
|
if (new_type) {
|
|
if (req_type == _PAGE_CACHE_WC)
|
|
*new_type = _PAGE_CACHE_UC_MINUS;
|
|
else
|
|
*new_type = req_type & _PAGE_CACHE_MASK;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Low ISA region is always mapped WB in page table. No need to track */
|
|
if (x86_platform.is_untracked_pat_range(start, end)) {
|
|
if (new_type)
|
|
*new_type = _PAGE_CACHE_WB;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call mtrr_lookup to get the type hint. This is an
|
|
* optimization for /dev/mem mmap'ers into WB memory (BIOS
|
|
* tools and ACPI tools). Use WB request for WB memory and use
|
|
* UC_MINUS otherwise.
|
|
*/
|
|
actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
|
|
|
|
if (new_type)
|
|
*new_type = actual_type;
|
|
|
|
is_range_ram = pat_pagerange_is_ram(start, end);
|
|
if (is_range_ram == 1) {
|
|
|
|
spin_lock(&memtype_lock);
|
|
err = reserve_ram_pages_type(start, end, req_type, new_type);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
return err;
|
|
} else if (is_range_ram < 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
new->start = start;
|
|
new->end = end;
|
|
new->type = actual_type;
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
/* Search for existing mapping that overlaps the current range */
|
|
where = NULL;
|
|
list_for_each_entry(entry, &memtype_list, nd) {
|
|
if (end <= entry->start) {
|
|
where = entry->nd.prev;
|
|
break;
|
|
} else if (start <= entry->start) { /* end > entry->start */
|
|
err = chk_conflict(new, entry, new_type);
|
|
if (!err) {
|
|
dprintk("Overlap at 0x%Lx-0x%Lx\n",
|
|
entry->start, entry->end);
|
|
where = entry->nd.prev;
|
|
}
|
|
break;
|
|
} else if (start < entry->end) { /* start > entry->start */
|
|
err = chk_conflict(new, entry, new_type);
|
|
if (!err) {
|
|
dprintk("Overlap at 0x%Lx-0x%Lx\n",
|
|
entry->start, entry->end);
|
|
|
|
/*
|
|
* Move to right position in the linked
|
|
* list to add this new entry
|
|
*/
|
|
list_for_each_entry_continue(entry,
|
|
&memtype_list, nd) {
|
|
if (start <= entry->start) {
|
|
where = entry->nd.prev;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
|
|
"track %s, req %s\n",
|
|
start, end, cattr_name(new->type), cattr_name(req_type));
|
|
kfree(new);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
if (where)
|
|
list_add(&new->nd, where);
|
|
else
|
|
list_add_tail(&new->nd, &memtype_list);
|
|
|
|
memtype_rb_insert(&memtype_rbroot, new);
|
|
|
|
spin_unlock(&memtype_lock);
|
|
|
|
dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
|
|
start, end, cattr_name(new->type), cattr_name(req_type),
|
|
new_type ? cattr_name(*new_type) : "-");
|
|
|
|
return err;
|
|
}
|
|
|
|
int free_memtype(u64 start, u64 end)
|
|
{
|
|
struct memtype *entry, *saved_entry;
|
|
int err = -EINVAL;
|
|
int is_range_ram;
|
|
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
/* Low ISA region is always mapped WB. No need to track */
|
|
if (x86_platform.is_untracked_pat_range(start, end))
|
|
return 0;
|
|
|
|
is_range_ram = pat_pagerange_is_ram(start, end);
|
|
if (is_range_ram == 1) {
|
|
|
|
spin_lock(&memtype_lock);
|
|
err = free_ram_pages_type(start, end);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
return err;
|
|
} else if (is_range_ram < 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
entry = memtype_rb_search(&memtype_rbroot, start);
|
|
if (unlikely(entry == NULL))
|
|
goto unlock_ret;
|
|
|
|
/*
|
|
* Saved entry points to an entry with start same or less than what
|
|
* we searched for. Now go through the list in both directions to look
|
|
* for the entry that matches with both start and end, with list stored
|
|
* in sorted start address
|
|
*/
|
|
saved_entry = entry;
|
|
list_for_each_entry_from(entry, &memtype_list, nd) {
|
|
if (entry->start == start && entry->end == end) {
|
|
rb_erase(&entry->rb, &memtype_rbroot);
|
|
list_del(&entry->nd);
|
|
kfree(entry);
|
|
err = 0;
|
|
break;
|
|
} else if (entry->start > start) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!err)
|
|
goto unlock_ret;
|
|
|
|
entry = saved_entry;
|
|
list_for_each_entry_reverse(entry, &memtype_list, nd) {
|
|
if (entry->start == start && entry->end == end) {
|
|
rb_erase(&entry->rb, &memtype_rbroot);
|
|
list_del(&entry->nd);
|
|
kfree(entry);
|
|
err = 0;
|
|
break;
|
|
} else if (entry->start < start) {
|
|
break;
|
|
}
|
|
}
|
|
unlock_ret:
|
|
spin_unlock(&memtype_lock);
|
|
|
|
if (err) {
|
|
printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
|
|
current->comm, current->pid, start, end);
|
|
}
|
|
|
|
dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
/**
|
|
* lookup_memtype - Looksup the memory type for a physical address
|
|
* @paddr: physical address of which memory type needs to be looked up
|
|
*
|
|
* Only to be called when PAT is enabled
|
|
*
|
|
* Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
|
|
* _PAGE_CACHE_UC
|
|
*/
|
|
static unsigned long lookup_memtype(u64 paddr)
|
|
{
|
|
int rettype = _PAGE_CACHE_WB;
|
|
struct memtype *entry;
|
|
|
|
if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
|
|
return rettype;
|
|
|
|
if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
|
|
struct page *page;
|
|
spin_lock(&memtype_lock);
|
|
page = pfn_to_page(paddr >> PAGE_SHIFT);
|
|
rettype = get_page_memtype(page);
|
|
spin_unlock(&memtype_lock);
|
|
/*
|
|
* -1 from get_page_memtype() implies RAM page is in its
|
|
* default state and not reserved, and hence of type WB
|
|
*/
|
|
if (rettype == -1)
|
|
rettype = _PAGE_CACHE_WB;
|
|
|
|
return rettype;
|
|
}
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
entry = memtype_rb_search(&memtype_rbroot, paddr);
|
|
if (entry != NULL)
|
|
rettype = entry->type;
|
|
else
|
|
rettype = _PAGE_CACHE_UC_MINUS;
|
|
|
|
spin_unlock(&memtype_lock);
|
|
return rettype;
|
|
}
|
|
|
|
/**
|
|
* io_reserve_memtype - Request a memory type mapping for a region of memory
|
|
* @start: start (physical address) of the region
|
|
* @end: end (physical address) of the region
|
|
* @type: A pointer to memtype, with requested type. On success, requested
|
|
* or any other compatible type that was available for the region is returned
|
|
*
|
|
* On success, returns 0
|
|
* On failure, returns non-zero
|
|
*/
|
|
int io_reserve_memtype(resource_size_t start, resource_size_t end,
|
|
unsigned long *type)
|
|
{
|
|
resource_size_t size = end - start;
|
|
unsigned long req_type = *type;
|
|
unsigned long new_type;
|
|
int ret;
|
|
|
|
WARN_ON_ONCE(iomem_map_sanity_check(start, size));
|
|
|
|
ret = reserve_memtype(start, end, req_type, &new_type);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (!is_new_memtype_allowed(start, size, req_type, new_type))
|
|
goto out_free;
|
|
|
|
if (kernel_map_sync_memtype(start, size, new_type) < 0)
|
|
goto out_free;
|
|
|
|
*type = new_type;
|
|
return 0;
|
|
|
|
out_free:
|
|
free_memtype(start, end);
|
|
ret = -EBUSY;
|
|
out_err:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* io_free_memtype - Release a memory type mapping for a region of memory
|
|
* @start: start (physical address) of the region
|
|
* @end: end (physical address) of the region
|
|
*/
|
|
void io_free_memtype(resource_size_t start, resource_size_t end)
|
|
{
|
|
free_memtype(start, end);
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
return vma_prot;
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_DEVMEM
|
|
/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
return 1;
|
|
}
|
|
#else
|
|
/* This check is needed to avoid cache aliasing when PAT is enabled */
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
u64 from = ((u64)pfn) << PAGE_SHIFT;
|
|
u64 to = from + size;
|
|
u64 cursor = from;
|
|
|
|
if (!pat_enabled)
|
|
return 1;
|
|
|
|
while (cursor < to) {
|
|
if (!devmem_is_allowed(pfn)) {
|
|
printk(KERN_INFO
|
|
"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
|
|
current->comm, from, to);
|
|
return 0;
|
|
}
|
|
cursor += PAGE_SIZE;
|
|
pfn++;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_STRICT_DEVMEM */
|
|
|
|
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t *vma_prot)
|
|
{
|
|
unsigned long flags = _PAGE_CACHE_WB;
|
|
|
|
if (!range_is_allowed(pfn, size))
|
|
return 0;
|
|
|
|
if (file->f_flags & O_DSYNC)
|
|
flags = _PAGE_CACHE_UC_MINUS;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* On the PPro and successors, the MTRRs are used to set
|
|
* memory types for physical addresses outside main memory,
|
|
* so blindly setting UC or PWT on those pages is wrong.
|
|
* For Pentiums and earlier, the surround logic should disable
|
|
* caching for the high addresses through the KEN pin, but
|
|
* we maintain the tradition of paranoia in this code.
|
|
*/
|
|
if (!pat_enabled &&
|
|
!(boot_cpu_has(X86_FEATURE_MTRR) ||
|
|
boot_cpu_has(X86_FEATURE_K6_MTRR) ||
|
|
boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
|
|
boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
|
|
(pfn << PAGE_SHIFT) >= __pa(high_memory)) {
|
|
flags = _PAGE_CACHE_UC;
|
|
}
|
|
#endif
|
|
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
|
|
flags);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Change the memory type for the physial address range in kernel identity
|
|
* mapping space if that range is a part of identity map.
|
|
*/
|
|
int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
|
|
{
|
|
unsigned long id_sz;
|
|
|
|
if (base >= __pa(high_memory))
|
|
return 0;
|
|
|
|
id_sz = (__pa(high_memory) < base + size) ?
|
|
__pa(high_memory) - base :
|
|
size;
|
|
|
|
if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
|
|
printk(KERN_INFO
|
|
"%s:%d ioremap_change_attr failed %s "
|
|
"for %Lx-%Lx\n",
|
|
current->comm, current->pid,
|
|
cattr_name(flags),
|
|
base, (unsigned long long)(base + size));
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal interface to reserve a range of physical memory with prot.
|
|
* Reserved non RAM regions only and after successful reserve_memtype,
|
|
* this func also keeps identity mapping (if any) in sync with this new prot.
|
|
*/
|
|
static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
|
|
int strict_prot)
|
|
{
|
|
int is_ram = 0;
|
|
int ret;
|
|
unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
|
|
unsigned long flags = want_flags;
|
|
|
|
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
|
|
|
|
/*
|
|
* reserve_pfn_range() for RAM pages. We do not refcount to keep
|
|
* track of number of mappings of RAM pages. We can assert that
|
|
* the type requested matches the type of first page in the range.
|
|
*/
|
|
if (is_ram) {
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
flags = lookup_memtype(paddr);
|
|
if (want_flags != flags) {
|
|
printk(KERN_WARNING
|
|
"%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n",
|
|
current->comm, current->pid,
|
|
cattr_name(want_flags),
|
|
(unsigned long long)paddr,
|
|
(unsigned long long)(paddr + size),
|
|
cattr_name(flags));
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
|
|
(~_PAGE_CACHE_MASK)) |
|
|
flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (flags != want_flags) {
|
|
if (strict_prot ||
|
|
!is_new_memtype_allowed(paddr, size, want_flags, flags)) {
|
|
free_memtype(paddr, paddr + size);
|
|
printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
|
|
" for %Lx-%Lx, got %s\n",
|
|
current->comm, current->pid,
|
|
cattr_name(want_flags),
|
|
(unsigned long long)paddr,
|
|
(unsigned long long)(paddr + size),
|
|
cattr_name(flags));
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* We allow returning different type than the one requested in
|
|
* non strict case.
|
|
*/
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
|
|
(~_PAGE_CACHE_MASK)) |
|
|
flags);
|
|
}
|
|
|
|
if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
|
|
free_memtype(paddr, paddr + size);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal interface to free a range of physical memory.
|
|
* Frees non RAM regions only.
|
|
*/
|
|
static void free_pfn_range(u64 paddr, unsigned long size)
|
|
{
|
|
int is_ram;
|
|
|
|
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
|
|
if (is_ram == 0)
|
|
free_memtype(paddr, paddr + size);
|
|
}
|
|
|
|
/*
|
|
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
|
|
* copied through copy_page_range().
|
|
*
|
|
* If the vma has a linear pfn mapping for the entire range, we get the prot
|
|
* from pte and reserve the entire vma range with single reserve_pfn_range call.
|
|
*/
|
|
int track_pfn_vma_copy(struct vm_area_struct *vma)
|
|
{
|
|
resource_size_t paddr;
|
|
unsigned long prot;
|
|
unsigned long vma_size = vma->vm_end - vma->vm_start;
|
|
pgprot_t pgprot;
|
|
|
|
if (is_linear_pfn_mapping(vma)) {
|
|
/*
|
|
* reserve the whole chunk covered by vma. We need the
|
|
* starting address and protection from pte.
|
|
*/
|
|
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
pgprot = __pgprot(prot);
|
|
return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
|
|
* for physical range indicated by pfn and size.
|
|
*
|
|
* prot is passed in as a parameter for the new mapping. If the vma has a
|
|
* linear pfn mapping for the entire range reserve the entire vma range with
|
|
* single reserve_pfn_range call.
|
|
*/
|
|
int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long size)
|
|
{
|
|
unsigned long flags;
|
|
resource_size_t paddr;
|
|
unsigned long vma_size = vma->vm_end - vma->vm_start;
|
|
|
|
if (is_linear_pfn_mapping(vma)) {
|
|
/* reserve the whole chunk starting from vm_pgoff */
|
|
paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
return reserve_pfn_range(paddr, vma_size, prot, 0);
|
|
}
|
|
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
/* for vm_insert_pfn and friends, we set prot based on lookup */
|
|
flags = lookup_memtype(pfn << PAGE_SHIFT);
|
|
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
|
|
flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
* can be for the entire vma (in which case size can be zero).
|
|
*/
|
|
void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
|
|
unsigned long size)
|
|
{
|
|
resource_size_t paddr;
|
|
unsigned long vma_size = vma->vm_end - vma->vm_start;
|
|
|
|
if (is_linear_pfn_mapping(vma)) {
|
|
/* free the whole chunk starting from vm_pgoff */
|
|
paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
free_pfn_range(paddr, vma_size);
|
|
return;
|
|
}
|
|
}
|
|
|
|
pgprot_t pgprot_writecombine(pgprot_t prot)
|
|
{
|
|
if (pat_enabled)
|
|
return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
|
|
else
|
|
return pgprot_noncached(prot);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pgprot_writecombine);
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
|
|
|
|
/* get Nth element of the linked list */
|
|
static struct memtype *memtype_get_idx(loff_t pos)
|
|
{
|
|
struct memtype *list_node, *print_entry;
|
|
int i = 1;
|
|
|
|
print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
|
|
if (!print_entry)
|
|
return NULL;
|
|
|
|
spin_lock(&memtype_lock);
|
|
list_for_each_entry(list_node, &memtype_list, nd) {
|
|
if (pos == i) {
|
|
*print_entry = *list_node;
|
|
spin_unlock(&memtype_lock);
|
|
return print_entry;
|
|
}
|
|
++i;
|
|
}
|
|
spin_unlock(&memtype_lock);
|
|
kfree(print_entry);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
if (*pos == 0) {
|
|
++*pos;
|
|
seq_printf(seq, "PAT memtype list:\n");
|
|
}
|
|
|
|
return memtype_get_idx(*pos);
|
|
}
|
|
|
|
static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return memtype_get_idx(*pos);
|
|
}
|
|
|
|
static void memtype_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
}
|
|
|
|
static int memtype_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct memtype *print_entry = (struct memtype *)v;
|
|
|
|
seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
|
|
print_entry->start, print_entry->end);
|
|
kfree(print_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations memtype_seq_ops = {
|
|
.start = memtype_seq_start,
|
|
.next = memtype_seq_next,
|
|
.stop = memtype_seq_stop,
|
|
.show = memtype_seq_show,
|
|
};
|
|
|
|
static int memtype_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &memtype_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations memtype_fops = {
|
|
.open = memtype_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init pat_memtype_list_init(void)
|
|
{
|
|
if (pat_enabled) {
|
|
debugfs_create_file("pat_memtype_list", S_IRUSR,
|
|
arch_debugfs_dir, NULL, &memtype_fops);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(pat_memtype_list_init);
|
|
|
|
#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
|