1233 lines
30 KiB
C
1233 lines
30 KiB
C
/* Keyring handling
|
|
*
|
|
* Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/security.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/err.h>
|
|
#include <keys/keyring-type.h>
|
|
#include <linux/uaccess.h>
|
|
#include "internal.h"
|
|
|
|
#define rcu_dereference_locked_keyring(keyring) \
|
|
(rcu_dereference_protected( \
|
|
(keyring)->payload.subscriptions, \
|
|
rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
|
|
|
|
#define KEY_LINK_FIXQUOTA 1UL
|
|
|
|
/*
|
|
* When plumbing the depths of the key tree, this sets a hard limit
|
|
* set on how deep we're willing to go.
|
|
*/
|
|
#define KEYRING_SEARCH_MAX_DEPTH 6
|
|
|
|
/*
|
|
* We keep all named keyrings in a hash to speed looking them up.
|
|
*/
|
|
#define KEYRING_NAME_HASH_SIZE (1 << 5)
|
|
|
|
static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
|
|
static DEFINE_RWLOCK(keyring_name_lock);
|
|
|
|
static inline unsigned keyring_hash(const char *desc)
|
|
{
|
|
unsigned bucket = 0;
|
|
|
|
for (; *desc; desc++)
|
|
bucket += (unsigned char)*desc;
|
|
|
|
return bucket & (KEYRING_NAME_HASH_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* The keyring key type definition. Keyrings are simply keys of this type and
|
|
* can be treated as ordinary keys in addition to having their own special
|
|
* operations.
|
|
*/
|
|
static int keyring_instantiate(struct key *keyring,
|
|
const void *data, size_t datalen);
|
|
static int keyring_match(const struct key *keyring, const void *criterion);
|
|
static void keyring_revoke(struct key *keyring);
|
|
static void keyring_destroy(struct key *keyring);
|
|
static void keyring_describe(const struct key *keyring, struct seq_file *m);
|
|
static long keyring_read(const struct key *keyring,
|
|
char __user *buffer, size_t buflen);
|
|
|
|
struct key_type key_type_keyring = {
|
|
.name = "keyring",
|
|
.def_datalen = sizeof(struct keyring_list),
|
|
.instantiate = keyring_instantiate,
|
|
.match = keyring_match,
|
|
.revoke = keyring_revoke,
|
|
.destroy = keyring_destroy,
|
|
.describe = keyring_describe,
|
|
.read = keyring_read,
|
|
};
|
|
EXPORT_SYMBOL(key_type_keyring);
|
|
|
|
/*
|
|
* Semaphore to serialise link/link calls to prevent two link calls in parallel
|
|
* introducing a cycle.
|
|
*/
|
|
static DECLARE_RWSEM(keyring_serialise_link_sem);
|
|
|
|
/*
|
|
* Publish the name of a keyring so that it can be found by name (if it has
|
|
* one).
|
|
*/
|
|
static void keyring_publish_name(struct key *keyring)
|
|
{
|
|
int bucket;
|
|
|
|
if (keyring->description) {
|
|
bucket = keyring_hash(keyring->description);
|
|
|
|
write_lock(&keyring_name_lock);
|
|
|
|
if (!keyring_name_hash[bucket].next)
|
|
INIT_LIST_HEAD(&keyring_name_hash[bucket]);
|
|
|
|
list_add_tail(&keyring->type_data.link,
|
|
&keyring_name_hash[bucket]);
|
|
|
|
write_unlock(&keyring_name_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise a keyring.
|
|
*
|
|
* Returns 0 on success, -EINVAL if given any data.
|
|
*/
|
|
static int keyring_instantiate(struct key *keyring,
|
|
const void *data, size_t datalen)
|
|
{
|
|
int ret;
|
|
|
|
ret = -EINVAL;
|
|
if (datalen == 0) {
|
|
/* make the keyring available by name if it has one */
|
|
keyring_publish_name(keyring);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Match keyrings on their name
|
|
*/
|
|
static int keyring_match(const struct key *keyring, const void *description)
|
|
{
|
|
return keyring->description &&
|
|
strcmp(keyring->description, description) == 0;
|
|
}
|
|
|
|
/*
|
|
* Clean up a keyring when it is destroyed. Unpublish its name if it had one
|
|
* and dispose of its data.
|
|
*/
|
|
static void keyring_destroy(struct key *keyring)
|
|
{
|
|
struct keyring_list *klist;
|
|
int loop;
|
|
|
|
if (keyring->description) {
|
|
write_lock(&keyring_name_lock);
|
|
|
|
if (keyring->type_data.link.next != NULL &&
|
|
!list_empty(&keyring->type_data.link))
|
|
list_del(&keyring->type_data.link);
|
|
|
|
write_unlock(&keyring_name_lock);
|
|
}
|
|
|
|
klist = rcu_dereference_check(keyring->payload.subscriptions,
|
|
atomic_read(&keyring->usage) == 0);
|
|
if (klist) {
|
|
for (loop = klist->nkeys - 1; loop >= 0; loop--)
|
|
key_put(klist->keys[loop]);
|
|
kfree(klist);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Describe a keyring for /proc.
|
|
*/
|
|
static void keyring_describe(const struct key *keyring, struct seq_file *m)
|
|
{
|
|
struct keyring_list *klist;
|
|
|
|
if (keyring->description)
|
|
seq_puts(m, keyring->description);
|
|
else
|
|
seq_puts(m, "[anon]");
|
|
|
|
if (key_is_instantiated(keyring)) {
|
|
rcu_read_lock();
|
|
klist = rcu_dereference(keyring->payload.subscriptions);
|
|
if (klist)
|
|
seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
|
|
else
|
|
seq_puts(m, ": empty");
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a list of key IDs from the keyring's contents in binary form
|
|
*
|
|
* The keyring's semaphore is read-locked by the caller.
|
|
*/
|
|
static long keyring_read(const struct key *keyring,
|
|
char __user *buffer, size_t buflen)
|
|
{
|
|
struct keyring_list *klist;
|
|
struct key *key;
|
|
size_t qty, tmp;
|
|
int loop, ret;
|
|
|
|
ret = 0;
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
if (klist) {
|
|
/* calculate how much data we could return */
|
|
qty = klist->nkeys * sizeof(key_serial_t);
|
|
|
|
if (buffer && buflen > 0) {
|
|
if (buflen > qty)
|
|
buflen = qty;
|
|
|
|
/* copy the IDs of the subscribed keys into the
|
|
* buffer */
|
|
ret = -EFAULT;
|
|
|
|
for (loop = 0; loop < klist->nkeys; loop++) {
|
|
key = klist->keys[loop];
|
|
|
|
tmp = sizeof(key_serial_t);
|
|
if (tmp > buflen)
|
|
tmp = buflen;
|
|
|
|
if (copy_to_user(buffer,
|
|
&key->serial,
|
|
tmp) != 0)
|
|
goto error;
|
|
|
|
buflen -= tmp;
|
|
if (buflen == 0)
|
|
break;
|
|
buffer += tmp;
|
|
}
|
|
}
|
|
|
|
ret = qty;
|
|
}
|
|
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocate a keyring and link into the destination keyring.
|
|
*/
|
|
struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
|
|
const struct cred *cred, unsigned long flags,
|
|
struct key *dest)
|
|
{
|
|
struct key *keyring;
|
|
int ret;
|
|
|
|
keyring = key_alloc(&key_type_keyring, description,
|
|
uid, gid, cred,
|
|
(KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL,
|
|
flags);
|
|
|
|
if (!IS_ERR(keyring)) {
|
|
ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
|
|
if (ret < 0) {
|
|
key_put(keyring);
|
|
keyring = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return keyring;
|
|
}
|
|
|
|
/**
|
|
* keyring_search_aux - Search a keyring tree for a key matching some criteria
|
|
* @keyring_ref: A pointer to the keyring with possession indicator.
|
|
* @cred: The credentials to use for permissions checks.
|
|
* @type: The type of key to search for.
|
|
* @description: Parameter for @match.
|
|
* @match: Function to rule on whether or not a key is the one required.
|
|
* @no_state_check: Don't check if a matching key is bad
|
|
*
|
|
* Search the supplied keyring tree for a key that matches the criteria given.
|
|
* The root keyring and any linked keyrings must grant Search permission to the
|
|
* caller to be searchable and keys can only be found if they too grant Search
|
|
* to the caller. The possession flag on the root keyring pointer controls use
|
|
* of the possessor bits in permissions checking of the entire tree. In
|
|
* addition, the LSM gets to forbid keyring searches and key matches.
|
|
*
|
|
* The search is performed as a breadth-then-depth search up to the prescribed
|
|
* limit (KEYRING_SEARCH_MAX_DEPTH).
|
|
*
|
|
* Keys are matched to the type provided and are then filtered by the match
|
|
* function, which is given the description to use in any way it sees fit. The
|
|
* match function may use any attributes of a key that it wishes to to
|
|
* determine the match. Normally the match function from the key type would be
|
|
* used.
|
|
*
|
|
* RCU is used to prevent the keyring key lists from disappearing without the
|
|
* need to take lots of locks.
|
|
*
|
|
* Returns a pointer to the found key and increments the key usage count if
|
|
* successful; -EAGAIN if no matching keys were found, or if expired or revoked
|
|
* keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
|
|
* specified keyring wasn't a keyring.
|
|
*
|
|
* In the case of a successful return, the possession attribute from
|
|
* @keyring_ref is propagated to the returned key reference.
|
|
*/
|
|
key_ref_t keyring_search_aux(key_ref_t keyring_ref,
|
|
const struct cred *cred,
|
|
struct key_type *type,
|
|
const void *description,
|
|
key_match_func_t match,
|
|
bool no_state_check)
|
|
{
|
|
struct {
|
|
struct keyring_list *keylist;
|
|
int kix;
|
|
} stack[KEYRING_SEARCH_MAX_DEPTH];
|
|
|
|
struct keyring_list *keylist;
|
|
struct timespec now;
|
|
unsigned long possessed, kflags;
|
|
struct key *keyring, *key;
|
|
key_ref_t key_ref;
|
|
long err;
|
|
int sp, nkeys, kix;
|
|
|
|
keyring = key_ref_to_ptr(keyring_ref);
|
|
possessed = is_key_possessed(keyring_ref);
|
|
key_check(keyring);
|
|
|
|
/* top keyring must have search permission to begin the search */
|
|
err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
|
|
if (err < 0) {
|
|
key_ref = ERR_PTR(err);
|
|
goto error;
|
|
}
|
|
|
|
key_ref = ERR_PTR(-ENOTDIR);
|
|
if (keyring->type != &key_type_keyring)
|
|
goto error;
|
|
|
|
rcu_read_lock();
|
|
|
|
now = current_kernel_time();
|
|
err = -EAGAIN;
|
|
sp = 0;
|
|
|
|
/* firstly we should check to see if this top-level keyring is what we
|
|
* are looking for */
|
|
key_ref = ERR_PTR(-EAGAIN);
|
|
kflags = keyring->flags;
|
|
if (keyring->type == type && match(keyring, description)) {
|
|
key = keyring;
|
|
if (no_state_check)
|
|
goto found;
|
|
|
|
/* check it isn't negative and hasn't expired or been
|
|
* revoked */
|
|
if (kflags & (1 << KEY_FLAG_REVOKED))
|
|
goto error_2;
|
|
if (key->expiry && now.tv_sec >= key->expiry)
|
|
goto error_2;
|
|
key_ref = ERR_PTR(key->type_data.reject_error);
|
|
if (kflags & (1 << KEY_FLAG_NEGATIVE))
|
|
goto error_2;
|
|
goto found;
|
|
}
|
|
|
|
/* otherwise, the top keyring must not be revoked, expired, or
|
|
* negatively instantiated if we are to search it */
|
|
key_ref = ERR_PTR(-EAGAIN);
|
|
if (kflags & ((1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_NEGATIVE)) ||
|
|
(keyring->expiry && now.tv_sec >= keyring->expiry))
|
|
goto error_2;
|
|
|
|
/* start processing a new keyring */
|
|
descend:
|
|
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
|
|
goto not_this_keyring;
|
|
|
|
keylist = rcu_dereference(keyring->payload.subscriptions);
|
|
if (!keylist)
|
|
goto not_this_keyring;
|
|
|
|
/* iterate through the keys in this keyring first */
|
|
nkeys = keylist->nkeys;
|
|
smp_rmb();
|
|
for (kix = 0; kix < nkeys; kix++) {
|
|
key = keylist->keys[kix];
|
|
kflags = key->flags;
|
|
|
|
/* ignore keys not of this type */
|
|
if (key->type != type)
|
|
continue;
|
|
|
|
/* skip revoked keys and expired keys */
|
|
if (!no_state_check) {
|
|
if (kflags & (1 << KEY_FLAG_REVOKED))
|
|
continue;
|
|
|
|
if (key->expiry && now.tv_sec >= key->expiry)
|
|
continue;
|
|
}
|
|
|
|
/* keys that don't match */
|
|
if (!match(key, description))
|
|
continue;
|
|
|
|
/* key must have search permissions */
|
|
if (key_task_permission(make_key_ref(key, possessed),
|
|
cred, KEY_SEARCH) < 0)
|
|
continue;
|
|
|
|
if (no_state_check)
|
|
goto found;
|
|
|
|
/* we set a different error code if we pass a negative key */
|
|
if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
|
|
err = key->type_data.reject_error;
|
|
continue;
|
|
}
|
|
|
|
goto found;
|
|
}
|
|
|
|
/* search through the keyrings nested in this one */
|
|
kix = 0;
|
|
ascend:
|
|
nkeys = keylist->nkeys;
|
|
smp_rmb();
|
|
for (; kix < nkeys; kix++) {
|
|
key = keylist->keys[kix];
|
|
if (key->type != &key_type_keyring)
|
|
continue;
|
|
|
|
/* recursively search nested keyrings
|
|
* - only search keyrings for which we have search permission
|
|
*/
|
|
if (sp >= KEYRING_SEARCH_MAX_DEPTH)
|
|
continue;
|
|
|
|
if (key_task_permission(make_key_ref(key, possessed),
|
|
cred, KEY_SEARCH) < 0)
|
|
continue;
|
|
|
|
/* stack the current position */
|
|
stack[sp].keylist = keylist;
|
|
stack[sp].kix = kix;
|
|
sp++;
|
|
|
|
/* begin again with the new keyring */
|
|
keyring = key;
|
|
goto descend;
|
|
}
|
|
|
|
/* the keyring we're looking at was disqualified or didn't contain a
|
|
* matching key */
|
|
not_this_keyring:
|
|
if (sp > 0) {
|
|
/* resume the processing of a keyring higher up in the tree */
|
|
sp--;
|
|
keylist = stack[sp].keylist;
|
|
kix = stack[sp].kix + 1;
|
|
goto ascend;
|
|
}
|
|
|
|
key_ref = ERR_PTR(err);
|
|
goto error_2;
|
|
|
|
/* we found a viable match */
|
|
found:
|
|
atomic_inc(&key->usage);
|
|
key_check(key);
|
|
key_ref = make_key_ref(key, possessed);
|
|
error_2:
|
|
rcu_read_unlock();
|
|
error:
|
|
return key_ref;
|
|
}
|
|
|
|
/**
|
|
* keyring_search - Search the supplied keyring tree for a matching key
|
|
* @keyring: The root of the keyring tree to be searched.
|
|
* @type: The type of keyring we want to find.
|
|
* @description: The name of the keyring we want to find.
|
|
*
|
|
* As keyring_search_aux() above, but using the current task's credentials and
|
|
* type's default matching function.
|
|
*/
|
|
key_ref_t keyring_search(key_ref_t keyring,
|
|
struct key_type *type,
|
|
const char *description)
|
|
{
|
|
if (!type->match)
|
|
return ERR_PTR(-ENOKEY);
|
|
|
|
return keyring_search_aux(keyring, current->cred,
|
|
type, description, type->match, false);
|
|
}
|
|
EXPORT_SYMBOL(keyring_search);
|
|
|
|
/*
|
|
* Search the given keyring only (no recursion).
|
|
*
|
|
* The caller must guarantee that the keyring is a keyring and that the
|
|
* permission is granted to search the keyring as no check is made here.
|
|
*
|
|
* RCU is used to make it unnecessary to lock the keyring key list here.
|
|
*
|
|
* Returns a pointer to the found key with usage count incremented if
|
|
* successful and returns -ENOKEY if not found. Revoked keys and keys not
|
|
* providing the requested permission are skipped over.
|
|
*
|
|
* If successful, the possession indicator is propagated from the keyring ref
|
|
* to the returned key reference.
|
|
*/
|
|
key_ref_t __keyring_search_one(key_ref_t keyring_ref,
|
|
const struct key_type *ktype,
|
|
const char *description,
|
|
key_perm_t perm)
|
|
{
|
|
struct keyring_list *klist;
|
|
unsigned long possessed;
|
|
struct key *keyring, *key;
|
|
int nkeys, loop;
|
|
|
|
keyring = key_ref_to_ptr(keyring_ref);
|
|
possessed = is_key_possessed(keyring_ref);
|
|
|
|
rcu_read_lock();
|
|
|
|
klist = rcu_dereference(keyring->payload.subscriptions);
|
|
if (klist) {
|
|
nkeys = klist->nkeys;
|
|
smp_rmb();
|
|
for (loop = 0; loop < nkeys ; loop++) {
|
|
key = klist->keys[loop];
|
|
|
|
if (key->type == ktype &&
|
|
(!key->type->match ||
|
|
key->type->match(key, description)) &&
|
|
key_permission(make_key_ref(key, possessed),
|
|
perm) == 0 &&
|
|
!test_bit(KEY_FLAG_REVOKED, &key->flags)
|
|
)
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
return ERR_PTR(-ENOKEY);
|
|
|
|
found:
|
|
atomic_inc(&key->usage);
|
|
rcu_read_unlock();
|
|
return make_key_ref(key, possessed);
|
|
}
|
|
|
|
/*
|
|
* Find a keyring with the specified name.
|
|
*
|
|
* All named keyrings in the current user namespace are searched, provided they
|
|
* grant Search permission directly to the caller (unless this check is
|
|
* skipped). Keyrings whose usage points have reached zero or who have been
|
|
* revoked are skipped.
|
|
*
|
|
* Returns a pointer to the keyring with the keyring's refcount having being
|
|
* incremented on success. -ENOKEY is returned if a key could not be found.
|
|
*/
|
|
struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
|
|
{
|
|
struct key *keyring;
|
|
int bucket;
|
|
|
|
if (!name)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
bucket = keyring_hash(name);
|
|
|
|
read_lock(&keyring_name_lock);
|
|
|
|
if (keyring_name_hash[bucket].next) {
|
|
/* search this hash bucket for a keyring with a matching name
|
|
* that's readable and that hasn't been revoked */
|
|
list_for_each_entry(keyring,
|
|
&keyring_name_hash[bucket],
|
|
type_data.link
|
|
) {
|
|
if (keyring->user->user_ns != current_user_ns())
|
|
continue;
|
|
|
|
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
|
|
continue;
|
|
|
|
if (strcmp(keyring->description, name) != 0)
|
|
continue;
|
|
|
|
if (!skip_perm_check &&
|
|
key_permission(make_key_ref(keyring, 0),
|
|
KEY_SEARCH) < 0)
|
|
continue;
|
|
|
|
/* we've got a match but we might end up racing with
|
|
* key_cleanup() if the keyring is currently 'dead'
|
|
* (ie. it has a zero usage count) */
|
|
if (!atomic_inc_not_zero(&keyring->usage))
|
|
continue;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
keyring = ERR_PTR(-ENOKEY);
|
|
out:
|
|
read_unlock(&keyring_name_lock);
|
|
return keyring;
|
|
}
|
|
|
|
/*
|
|
* See if a cycle will will be created by inserting acyclic tree B in acyclic
|
|
* tree A at the topmost level (ie: as a direct child of A).
|
|
*
|
|
* Since we are adding B to A at the top level, checking for cycles should just
|
|
* be a matter of seeing if node A is somewhere in tree B.
|
|
*/
|
|
static int keyring_detect_cycle(struct key *A, struct key *B)
|
|
{
|
|
struct {
|
|
struct keyring_list *keylist;
|
|
int kix;
|
|
} stack[KEYRING_SEARCH_MAX_DEPTH];
|
|
|
|
struct keyring_list *keylist;
|
|
struct key *subtree, *key;
|
|
int sp, nkeys, kix, ret;
|
|
|
|
rcu_read_lock();
|
|
|
|
ret = -EDEADLK;
|
|
if (A == B)
|
|
goto cycle_detected;
|
|
|
|
subtree = B;
|
|
sp = 0;
|
|
|
|
/* start processing a new keyring */
|
|
descend:
|
|
if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
|
|
goto not_this_keyring;
|
|
|
|
keylist = rcu_dereference(subtree->payload.subscriptions);
|
|
if (!keylist)
|
|
goto not_this_keyring;
|
|
kix = 0;
|
|
|
|
ascend:
|
|
/* iterate through the remaining keys in this keyring */
|
|
nkeys = keylist->nkeys;
|
|
smp_rmb();
|
|
for (; kix < nkeys; kix++) {
|
|
key = keylist->keys[kix];
|
|
|
|
if (key == A)
|
|
goto cycle_detected;
|
|
|
|
/* recursively check nested keyrings */
|
|
if (key->type == &key_type_keyring) {
|
|
if (sp >= KEYRING_SEARCH_MAX_DEPTH)
|
|
goto too_deep;
|
|
|
|
/* stack the current position */
|
|
stack[sp].keylist = keylist;
|
|
stack[sp].kix = kix;
|
|
sp++;
|
|
|
|
/* begin again with the new keyring */
|
|
subtree = key;
|
|
goto descend;
|
|
}
|
|
}
|
|
|
|
/* the keyring we're looking at was disqualified or didn't contain a
|
|
* matching key */
|
|
not_this_keyring:
|
|
if (sp > 0) {
|
|
/* resume the checking of a keyring higher up in the tree */
|
|
sp--;
|
|
keylist = stack[sp].keylist;
|
|
kix = stack[sp].kix + 1;
|
|
goto ascend;
|
|
}
|
|
|
|
ret = 0; /* no cycles detected */
|
|
|
|
error:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
|
|
too_deep:
|
|
ret = -ELOOP;
|
|
goto error;
|
|
|
|
cycle_detected:
|
|
ret = -EDEADLK;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Dispose of a keyring list after the RCU grace period, freeing the unlinked
|
|
* key
|
|
*/
|
|
static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
|
|
{
|
|
struct keyring_list *klist =
|
|
container_of(rcu, struct keyring_list, rcu);
|
|
|
|
if (klist->delkey != USHRT_MAX)
|
|
key_put(klist->keys[klist->delkey]);
|
|
kfree(klist);
|
|
}
|
|
|
|
/*
|
|
* Preallocate memory so that a key can be linked into to a keyring.
|
|
*/
|
|
int __key_link_begin(struct key *keyring, const struct key_type *type,
|
|
const char *description, unsigned long *_prealloc)
|
|
__acquires(&keyring->sem)
|
|
{
|
|
struct keyring_list *klist, *nklist;
|
|
unsigned long prealloc;
|
|
unsigned max;
|
|
size_t size;
|
|
int loop, ret;
|
|
|
|
kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
|
|
|
|
if (keyring->type != &key_type_keyring)
|
|
return -ENOTDIR;
|
|
|
|
down_write(&keyring->sem);
|
|
|
|
ret = -EKEYREVOKED;
|
|
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
|
|
goto error_krsem;
|
|
|
|
/* serialise link/link calls to prevent parallel calls causing a cycle
|
|
* when linking two keyring in opposite orders */
|
|
if (type == &key_type_keyring)
|
|
down_write(&keyring_serialise_link_sem);
|
|
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
|
|
/* see if there's a matching key we can displace */
|
|
if (klist && klist->nkeys > 0) {
|
|
for (loop = klist->nkeys - 1; loop >= 0; loop--) {
|
|
if (klist->keys[loop]->type == type &&
|
|
strcmp(klist->keys[loop]->description,
|
|
description) == 0
|
|
) {
|
|
/* found a match - we'll replace this one with
|
|
* the new key */
|
|
size = sizeof(struct key *) * klist->maxkeys;
|
|
size += sizeof(*klist);
|
|
BUG_ON(size > PAGE_SIZE);
|
|
|
|
ret = -ENOMEM;
|
|
nklist = kmemdup(klist, size, GFP_KERNEL);
|
|
if (!nklist)
|
|
goto error_sem;
|
|
|
|
/* note replacement slot */
|
|
klist->delkey = nklist->delkey = loop;
|
|
prealloc = (unsigned long)nklist;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check that we aren't going to overrun the user's quota */
|
|
ret = key_payload_reserve(keyring,
|
|
keyring->datalen + KEYQUOTA_LINK_BYTES);
|
|
if (ret < 0)
|
|
goto error_sem;
|
|
|
|
if (klist && klist->nkeys < klist->maxkeys) {
|
|
/* there's sufficient slack space to append directly */
|
|
nklist = NULL;
|
|
prealloc = KEY_LINK_FIXQUOTA;
|
|
} else {
|
|
/* grow the key list */
|
|
max = 4;
|
|
if (klist)
|
|
max += klist->maxkeys;
|
|
|
|
ret = -ENFILE;
|
|
if (max > USHRT_MAX - 1)
|
|
goto error_quota;
|
|
size = sizeof(*klist) + sizeof(struct key *) * max;
|
|
if (size > PAGE_SIZE)
|
|
goto error_quota;
|
|
|
|
ret = -ENOMEM;
|
|
nklist = kmalloc(size, GFP_KERNEL);
|
|
if (!nklist)
|
|
goto error_quota;
|
|
|
|
nklist->maxkeys = max;
|
|
if (klist) {
|
|
memcpy(nklist->keys, klist->keys,
|
|
sizeof(struct key *) * klist->nkeys);
|
|
nklist->delkey = klist->nkeys;
|
|
nklist->nkeys = klist->nkeys + 1;
|
|
klist->delkey = USHRT_MAX;
|
|
} else {
|
|
nklist->nkeys = 1;
|
|
nklist->delkey = 0;
|
|
}
|
|
|
|
/* add the key into the new space */
|
|
nklist->keys[nklist->delkey] = NULL;
|
|
}
|
|
|
|
prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
|
|
done:
|
|
*_prealloc = prealloc;
|
|
kleave(" = 0");
|
|
return 0;
|
|
|
|
error_quota:
|
|
/* undo the quota changes */
|
|
key_payload_reserve(keyring,
|
|
keyring->datalen - KEYQUOTA_LINK_BYTES);
|
|
error_sem:
|
|
if (type == &key_type_keyring)
|
|
up_write(&keyring_serialise_link_sem);
|
|
error_krsem:
|
|
up_write(&keyring->sem);
|
|
kleave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check already instantiated keys aren't going to be a problem.
|
|
*
|
|
* The caller must have called __key_link_begin(). Don't need to call this for
|
|
* keys that were created since __key_link_begin() was called.
|
|
*/
|
|
int __key_link_check_live_key(struct key *keyring, struct key *key)
|
|
{
|
|
if (key->type == &key_type_keyring)
|
|
/* check that we aren't going to create a cycle by linking one
|
|
* keyring to another */
|
|
return keyring_detect_cycle(keyring, key);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Link a key into to a keyring.
|
|
*
|
|
* Must be called with __key_link_begin() having being called. Discards any
|
|
* already extant link to matching key if there is one, so that each keyring
|
|
* holds at most one link to any given key of a particular type+description
|
|
* combination.
|
|
*/
|
|
void __key_link(struct key *keyring, struct key *key,
|
|
unsigned long *_prealloc)
|
|
{
|
|
struct keyring_list *klist, *nklist;
|
|
|
|
nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
|
|
*_prealloc = 0;
|
|
|
|
kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
|
|
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
|
|
atomic_inc(&key->usage);
|
|
|
|
/* there's a matching key we can displace or an empty slot in a newly
|
|
* allocated list we can fill */
|
|
if (nklist) {
|
|
kdebug("replace %hu/%hu/%hu",
|
|
nklist->delkey, nklist->nkeys, nklist->maxkeys);
|
|
|
|
nklist->keys[nklist->delkey] = key;
|
|
|
|
rcu_assign_pointer(keyring->payload.subscriptions, nklist);
|
|
|
|
/* dispose of the old keyring list and, if there was one, the
|
|
* displaced key */
|
|
if (klist) {
|
|
kdebug("dispose %hu/%hu/%hu",
|
|
klist->delkey, klist->nkeys, klist->maxkeys);
|
|
call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
|
|
}
|
|
} else {
|
|
/* there's sufficient slack space to append directly */
|
|
klist->keys[klist->nkeys] = key;
|
|
smp_wmb();
|
|
klist->nkeys++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish linking a key into to a keyring.
|
|
*
|
|
* Must be called with __key_link_begin() having being called.
|
|
*/
|
|
void __key_link_end(struct key *keyring, struct key_type *type,
|
|
unsigned long prealloc)
|
|
__releases(&keyring->sem)
|
|
{
|
|
BUG_ON(type == NULL);
|
|
BUG_ON(type->name == NULL);
|
|
kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
|
|
|
|
if (type == &key_type_keyring)
|
|
up_write(&keyring_serialise_link_sem);
|
|
|
|
if (prealloc) {
|
|
if (prealloc & KEY_LINK_FIXQUOTA)
|
|
key_payload_reserve(keyring,
|
|
keyring->datalen -
|
|
KEYQUOTA_LINK_BYTES);
|
|
kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
|
|
}
|
|
up_write(&keyring->sem);
|
|
}
|
|
|
|
/**
|
|
* key_link - Link a key to a keyring
|
|
* @keyring: The keyring to make the link in.
|
|
* @key: The key to link to.
|
|
*
|
|
* Make a link in a keyring to a key, such that the keyring holds a reference
|
|
* on that key and the key can potentially be found by searching that keyring.
|
|
*
|
|
* This function will write-lock the keyring's semaphore and will consume some
|
|
* of the user's key data quota to hold the link.
|
|
*
|
|
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
|
|
* -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
|
|
* full, -EDQUOT if there is insufficient key data quota remaining to add
|
|
* another link or -ENOMEM if there's insufficient memory.
|
|
*
|
|
* It is assumed that the caller has checked that it is permitted for a link to
|
|
* be made (the keyring should have Write permission and the key Link
|
|
* permission).
|
|
*/
|
|
int key_link(struct key *keyring, struct key *key)
|
|
{
|
|
unsigned long prealloc;
|
|
int ret;
|
|
|
|
key_check(keyring);
|
|
key_check(key);
|
|
|
|
ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
|
|
if (ret == 0) {
|
|
ret = __key_link_check_live_key(keyring, key);
|
|
if (ret == 0)
|
|
__key_link(keyring, key, &prealloc);
|
|
__key_link_end(keyring, key->type, prealloc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(key_link);
|
|
|
|
/**
|
|
* key_unlink - Unlink the first link to a key from a keyring.
|
|
* @keyring: The keyring to remove the link from.
|
|
* @key: The key the link is to.
|
|
*
|
|
* Remove a link from a keyring to a key.
|
|
*
|
|
* This function will write-lock the keyring's semaphore.
|
|
*
|
|
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
|
|
* the key isn't linked to by the keyring or -ENOMEM if there's insufficient
|
|
* memory.
|
|
*
|
|
* It is assumed that the caller has checked that it is permitted for a link to
|
|
* be removed (the keyring should have Write permission; no permissions are
|
|
* required on the key).
|
|
*/
|
|
int key_unlink(struct key *keyring, struct key *key)
|
|
{
|
|
struct keyring_list *klist, *nklist;
|
|
int loop, ret;
|
|
|
|
key_check(keyring);
|
|
key_check(key);
|
|
|
|
ret = -ENOTDIR;
|
|
if (keyring->type != &key_type_keyring)
|
|
goto error;
|
|
|
|
down_write(&keyring->sem);
|
|
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
if (klist) {
|
|
/* search the keyring for the key */
|
|
for (loop = 0; loop < klist->nkeys; loop++)
|
|
if (klist->keys[loop] == key)
|
|
goto key_is_present;
|
|
}
|
|
|
|
up_write(&keyring->sem);
|
|
ret = -ENOENT;
|
|
goto error;
|
|
|
|
key_is_present:
|
|
/* we need to copy the key list for RCU purposes */
|
|
nklist = kmalloc(sizeof(*klist) +
|
|
sizeof(struct key *) * klist->maxkeys,
|
|
GFP_KERNEL);
|
|
if (!nklist)
|
|
goto nomem;
|
|
nklist->maxkeys = klist->maxkeys;
|
|
nklist->nkeys = klist->nkeys - 1;
|
|
|
|
if (loop > 0)
|
|
memcpy(&nklist->keys[0],
|
|
&klist->keys[0],
|
|
loop * sizeof(struct key *));
|
|
|
|
if (loop < nklist->nkeys)
|
|
memcpy(&nklist->keys[loop],
|
|
&klist->keys[loop + 1],
|
|
(nklist->nkeys - loop) * sizeof(struct key *));
|
|
|
|
/* adjust the user's quota */
|
|
key_payload_reserve(keyring,
|
|
keyring->datalen - KEYQUOTA_LINK_BYTES);
|
|
|
|
rcu_assign_pointer(keyring->payload.subscriptions, nklist);
|
|
|
|
up_write(&keyring->sem);
|
|
|
|
/* schedule for later cleanup */
|
|
klist->delkey = loop;
|
|
call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
|
|
|
|
ret = 0;
|
|
|
|
error:
|
|
return ret;
|
|
nomem:
|
|
ret = -ENOMEM;
|
|
up_write(&keyring->sem);
|
|
goto error;
|
|
}
|
|
EXPORT_SYMBOL(key_unlink);
|
|
|
|
/*
|
|
* Dispose of a keyring list after the RCU grace period, releasing the keys it
|
|
* links to.
|
|
*/
|
|
static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
|
|
{
|
|
struct keyring_list *klist;
|
|
int loop;
|
|
|
|
klist = container_of(rcu, struct keyring_list, rcu);
|
|
|
|
for (loop = klist->nkeys - 1; loop >= 0; loop--)
|
|
key_put(klist->keys[loop]);
|
|
|
|
kfree(klist);
|
|
}
|
|
|
|
/**
|
|
* keyring_clear - Clear a keyring
|
|
* @keyring: The keyring to clear.
|
|
*
|
|
* Clear the contents of the specified keyring.
|
|
*
|
|
* Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
|
|
*/
|
|
int keyring_clear(struct key *keyring)
|
|
{
|
|
struct keyring_list *klist;
|
|
int ret;
|
|
|
|
ret = -ENOTDIR;
|
|
if (keyring->type == &key_type_keyring) {
|
|
/* detach the pointer block with the locks held */
|
|
down_write(&keyring->sem);
|
|
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
if (klist) {
|
|
/* adjust the quota */
|
|
key_payload_reserve(keyring,
|
|
sizeof(struct keyring_list));
|
|
|
|
rcu_assign_pointer(keyring->payload.subscriptions,
|
|
NULL);
|
|
}
|
|
|
|
up_write(&keyring->sem);
|
|
|
|
/* free the keys after the locks have been dropped */
|
|
if (klist)
|
|
call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(keyring_clear);
|
|
|
|
/*
|
|
* Dispose of the links from a revoked keyring.
|
|
*
|
|
* This is called with the key sem write-locked.
|
|
*/
|
|
static void keyring_revoke(struct key *keyring)
|
|
{
|
|
struct keyring_list *klist;
|
|
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
|
|
/* adjust the quota */
|
|
key_payload_reserve(keyring, 0);
|
|
|
|
if (klist) {
|
|
rcu_assign_pointer(keyring->payload.subscriptions, NULL);
|
|
call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine whether a key is dead.
|
|
*/
|
|
static bool key_is_dead(struct key *key, time_t limit)
|
|
{
|
|
return test_bit(KEY_FLAG_DEAD, &key->flags) ||
|
|
(key->expiry > 0 && key->expiry <= limit);
|
|
}
|
|
|
|
/*
|
|
* Collect garbage from the contents of a keyring, replacing the old list with
|
|
* a new one with the pointers all shuffled down.
|
|
*
|
|
* Dead keys are classed as oned that are flagged as being dead or are revoked,
|
|
* expired or negative keys that were revoked or expired before the specified
|
|
* limit.
|
|
*/
|
|
void keyring_gc(struct key *keyring, time_t limit)
|
|
{
|
|
struct keyring_list *klist, *new;
|
|
struct key *key;
|
|
int loop, keep, max;
|
|
|
|
kenter("{%x,%s}", key_serial(keyring), keyring->description);
|
|
|
|
down_write(&keyring->sem);
|
|
|
|
klist = rcu_dereference_locked_keyring(keyring);
|
|
if (!klist)
|
|
goto no_klist;
|
|
|
|
/* work out how many subscriptions we're keeping */
|
|
keep = 0;
|
|
for (loop = klist->nkeys - 1; loop >= 0; loop--)
|
|
if (!key_is_dead(klist->keys[loop], limit))
|
|
keep++;
|
|
|
|
if (keep == klist->nkeys)
|
|
goto just_return;
|
|
|
|
/* allocate a new keyring payload */
|
|
max = roundup(keep, 4);
|
|
new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
|
|
GFP_KERNEL);
|
|
if (!new)
|
|
goto nomem;
|
|
new->maxkeys = max;
|
|
new->nkeys = 0;
|
|
new->delkey = 0;
|
|
|
|
/* install the live keys
|
|
* - must take care as expired keys may be updated back to life
|
|
*/
|
|
keep = 0;
|
|
for (loop = klist->nkeys - 1; loop >= 0; loop--) {
|
|
key = klist->keys[loop];
|
|
if (!key_is_dead(key, limit)) {
|
|
if (keep >= max)
|
|
goto discard_new;
|
|
new->keys[keep++] = key_get(key);
|
|
}
|
|
}
|
|
new->nkeys = keep;
|
|
|
|
/* adjust the quota */
|
|
key_payload_reserve(keyring,
|
|
sizeof(struct keyring_list) +
|
|
KEYQUOTA_LINK_BYTES * keep);
|
|
|
|
if (keep == 0) {
|
|
rcu_assign_pointer(keyring->payload.subscriptions, NULL);
|
|
kfree(new);
|
|
} else {
|
|
rcu_assign_pointer(keyring->payload.subscriptions, new);
|
|
}
|
|
|
|
up_write(&keyring->sem);
|
|
|
|
call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
|
|
kleave(" [yes]");
|
|
return;
|
|
|
|
discard_new:
|
|
new->nkeys = keep;
|
|
keyring_clear_rcu_disposal(&new->rcu);
|
|
up_write(&keyring->sem);
|
|
kleave(" [discard]");
|
|
return;
|
|
|
|
just_return:
|
|
up_write(&keyring->sem);
|
|
kleave(" [no dead]");
|
|
return;
|
|
|
|
no_klist:
|
|
up_write(&keyring->sem);
|
|
kleave(" [no_klist]");
|
|
return;
|
|
|
|
nomem:
|
|
up_write(&keyring->sem);
|
|
kleave(" [oom]");
|
|
}
|