linux/kernel/irq/Kconfig
Thomas Gleixner 0d3f54257d genirq: Introduce effective affinity mask
There is currently no way to evaluate the effective affinity mask of a
given interrupt. Many irq chips allow only a single target CPU or a subset
of CPUs in the affinity mask.

Updating the mask at the time of setting the affinity to the subset would
be counterproductive because information for cpu hotplug about assigned
interrupt affinities gets lost. On CPU hotplug it's also pointless to force
migrate an interrupt, which is not targeted at the CPU effectively. But
currently the information is not available.

Provide a seperate mask to be updated by the irq_chip->irq_set_affinity()
implementations. Implement the read only proc files so the user can see the
effective mask as well w/o trying to deduce it from /proc/interrupts.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.247834245@linutronix.de
2017-06-22 18:21:20 +02:00

127 lines
3.0 KiB
Plaintext

menu "IRQ subsystem"
# Options selectable by the architecture code
# Make sparse irq Kconfig switch below available
config MAY_HAVE_SPARSE_IRQ
bool
# Legacy support, required for itanic
config GENERIC_IRQ_LEGACY
bool
# Enable the generic irq autoprobe mechanism
config GENERIC_IRQ_PROBE
bool
# Use the generic /proc/interrupts implementation
config GENERIC_IRQ_SHOW
bool
# Print level/edge extra information
config GENERIC_IRQ_SHOW_LEVEL
bool
# Supports effective affinity mask
config GENERIC_IRQ_EFFECTIVE_AFF_MASK
bool
# Facility to allocate a hardware interrupt. This is legacy support
# and should not be used in new code. Use irq domains instead.
config GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
bool
# Support for delayed migration from interrupt context
config GENERIC_PENDING_IRQ
bool
# Support for generic irq migrating off cpu before the cpu is offline.
config GENERIC_IRQ_MIGRATION
bool
# Alpha specific irq affinity mechanism
config AUTO_IRQ_AFFINITY
bool
# Tasklet based software resend for pending interrupts on enable_irq()
config HARDIRQS_SW_RESEND
bool
# Preflow handler support for fasteoi (sparc64)
config IRQ_PREFLOW_FASTEOI
bool
# Edge style eoi based handler (cell)
config IRQ_EDGE_EOI_HANDLER
bool
# Generic configurable interrupt chip implementation
config GENERIC_IRQ_CHIP
bool
select IRQ_DOMAIN
# Generic irq_domain hw <--> linux irq number translation
config IRQ_DOMAIN
bool
# Support for hierarchical irq domains
config IRQ_DOMAIN_HIERARCHY
bool
select IRQ_DOMAIN
# Generic IRQ IPI support
config GENERIC_IRQ_IPI
bool
# Generic MSI interrupt support
config GENERIC_MSI_IRQ
bool
# Generic MSI hierarchical interrupt domain support
config GENERIC_MSI_IRQ_DOMAIN
bool
select IRQ_DOMAIN_HIERARCHY
select GENERIC_MSI_IRQ
config HANDLE_DOMAIN_IRQ
bool
config IRQ_DOMAIN_DEBUG
bool "Expose hardware/virtual IRQ mapping via debugfs"
depends on IRQ_DOMAIN && DEBUG_FS
help
This option will show the mapping relationship between hardware irq
numbers and Linux irq numbers. The mapping is exposed via debugfs
in the file "irq_domain_mapping".
If you don't know what this means you don't need it.
# Support forced irq threading
config IRQ_FORCED_THREADING
bool
config SPARSE_IRQ
bool "Support sparse irq numbering" if MAY_HAVE_SPARSE_IRQ
---help---
Sparse irq numbering is useful for distro kernels that want
to define a high CONFIG_NR_CPUS value but still want to have
low kernel memory footprint on smaller machines.
( Sparse irqs can also be beneficial on NUMA boxes, as they spread
out the interrupt descriptors in a more NUMA-friendly way. )
If you don't know what to do here, say N.
config GENERIC_IRQ_DEBUGFS
bool "Expose irq internals in debugfs"
depends on DEBUG_FS
default n
---help---
Exposes internal state information through debugfs. Mostly for
developers and debugging of hard to diagnose interrupt problems.
If you don't know what to do here, say N.
endmenu