linux/sound/pci/ice1712/quartet.c
Takashi Iwai 9ab0cb309e ALSA: Replace the word "slave" in vmaster API
Follow the recent inclusive terminology guidelines and replace the
word "slave" in vmaster API.  I chose the word "follower" at this time
since it seems fitting for the purpose.

Note that the word "master" is kept in API, since it refers rather to
audio master volume control.

Also, while we're at it, a typo in comments is corrected, too.

Link: https://lore.kernel.org/r/20200717154517.27599-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-07-20 10:10:47 +02:00

1089 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ALSA driver for ICEnsemble VT1724 (Envy24HT)
*
* Lowlevel functions for Infrasonic Quartet
*
* Copyright (c) 2009 Pavel Hofman <pavel.hofman@ivitera.com>
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <sound/core.h>
#include <sound/tlv.h>
#include <sound/info.h>
#include "ice1712.h"
#include "envy24ht.h"
#include <sound/ak4113.h>
#include "quartet.h"
struct qtet_spec {
struct ak4113 *ak4113;
unsigned int scr; /* system control register */
unsigned int mcr; /* monitoring control register */
unsigned int cpld; /* cpld register */
};
struct qtet_kcontrol_private {
unsigned int bit;
void (*set_register)(struct snd_ice1712 *ice, unsigned int val);
unsigned int (*get_register)(struct snd_ice1712 *ice);
const char * const texts[2];
};
enum {
IN12_SEL = 0,
IN34_SEL,
AIN34_SEL,
COAX_OUT,
IN12_MON12,
IN12_MON34,
IN34_MON12,
IN34_MON34,
OUT12_MON34,
OUT34_MON12,
};
static const char * const ext_clock_names[3] = {"IEC958 In", "Word Clock 1xFS",
"Word Clock 256xFS"};
/* chip address on I2C bus */
#define AK4113_ADDR 0x26 /* S/PDIF receiver */
/* chip address on SPI bus */
#define AK4620_ADDR 0x02 /* ADC/DAC */
/*
* GPIO pins
*/
/* GPIO0 - O - DATA0, def. 0 */
#define GPIO_D0 (1<<0)
/* GPIO1 - I/O - DATA1, Jack Detect Input0 (0:present, 1:missing), def. 1 */
#define GPIO_D1_JACKDTC0 (1<<1)
/* GPIO2 - I/O - DATA2, Jack Detect Input1 (0:present, 1:missing), def. 1 */
#define GPIO_D2_JACKDTC1 (1<<2)
/* GPIO3 - I/O - DATA3, def. 1 */
#define GPIO_D3 (1<<3)
/* GPIO4 - I/O - DATA4, SPI CDTO, def. 1 */
#define GPIO_D4_SPI_CDTO (1<<4)
/* GPIO5 - I/O - DATA5, SPI CCLK, def. 1 */
#define GPIO_D5_SPI_CCLK (1<<5)
/* GPIO6 - I/O - DATA6, Cable Detect Input (0:detected, 1:not detected */
#define GPIO_D6_CD (1<<6)
/* GPIO7 - I/O - DATA7, Device Detect Input (0:detected, 1:not detected */
#define GPIO_D7_DD (1<<7)
/* GPIO8 - O - CPLD Chip Select, def. 1 */
#define GPIO_CPLD_CSN (1<<8)
/* GPIO9 - O - CPLD register read/write (0:write, 1:read), def. 0 */
#define GPIO_CPLD_RW (1<<9)
/* GPIO10 - O - SPI Chip Select for CODEC#0, def. 1 */
#define GPIO_SPI_CSN0 (1<<10)
/* GPIO11 - O - SPI Chip Select for CODEC#1, def. 1 */
#define GPIO_SPI_CSN1 (1<<11)
/* GPIO12 - O - Ex. Register Output Enable (0:enable, 1:disable), def. 1,
* init 0 */
#define GPIO_EX_GPIOE (1<<12)
/* GPIO13 - O - Ex. Register0 Chip Select for System Control Register,
* def. 1 */
#define GPIO_SCR (1<<13)
/* GPIO14 - O - Ex. Register1 Chip Select for Monitor Control Register,
* def. 1 */
#define GPIO_MCR (1<<14)
#define GPIO_SPI_ALL (GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK |\
GPIO_SPI_CSN0 | GPIO_SPI_CSN1)
#define GPIO_DATA_MASK (GPIO_D0 | GPIO_D1_JACKDTC0 | \
GPIO_D2_JACKDTC1 | GPIO_D3 | \
GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK | \
GPIO_D6_CD | GPIO_D7_DD)
/* System Control Register GPIO_SCR data bits */
/* Mic/Line select relay (0:line, 1:mic) */
#define SCR_RELAY GPIO_D0
/* Phantom power drive control (0:5V, 1:48V) */
#define SCR_PHP_V GPIO_D1_JACKDTC0
/* H/W mute control (0:Normal, 1:Mute) */
#define SCR_MUTE GPIO_D2_JACKDTC1
/* Phantom power control (0:Phantom on, 1:off) */
#define SCR_PHP GPIO_D3
/* Analog input 1/2 Source Select */
#define SCR_AIN12_SEL0 GPIO_D4_SPI_CDTO
#define SCR_AIN12_SEL1 GPIO_D5_SPI_CCLK
/* Analog input 3/4 Source Select (0:line, 1:hi-z) */
#define SCR_AIN34_SEL GPIO_D6_CD
/* Codec Power Down (0:power down, 1:normal) */
#define SCR_CODEC_PDN GPIO_D7_DD
#define SCR_AIN12_LINE (0)
#define SCR_AIN12_MIC (SCR_AIN12_SEL0)
#define SCR_AIN12_LOWCUT (SCR_AIN12_SEL1 | SCR_AIN12_SEL0)
/* Monitor Control Register GPIO_MCR data bits */
/* Input 1/2 to Monitor 1/2 (0:off, 1:on) */
#define MCR_IN12_MON12 GPIO_D0
/* Input 1/2 to Monitor 3/4 (0:off, 1:on) */
#define MCR_IN12_MON34 GPIO_D1_JACKDTC0
/* Input 3/4 to Monitor 1/2 (0:off, 1:on) */
#define MCR_IN34_MON12 GPIO_D2_JACKDTC1
/* Input 3/4 to Monitor 3/4 (0:off, 1:on) */
#define MCR_IN34_MON34 GPIO_D3
/* Output to Monitor 1/2 (0:off, 1:on) */
#define MCR_OUT34_MON12 GPIO_D4_SPI_CDTO
/* Output to Monitor 3/4 (0:off, 1:on) */
#define MCR_OUT12_MON34 GPIO_D5_SPI_CCLK
/* CPLD Register DATA bits */
/* Clock Rate Select */
#define CPLD_CKS0 GPIO_D0
#define CPLD_CKS1 GPIO_D1_JACKDTC0
#define CPLD_CKS2 GPIO_D2_JACKDTC1
/* Sync Source Select (0:Internal, 1:External) */
#define CPLD_SYNC_SEL GPIO_D3
/* Word Clock FS Select (0:FS, 1:256FS) */
#define CPLD_WORD_SEL GPIO_D4_SPI_CDTO
/* Coaxial Output Source (IS-Link) (0:SPDIF, 1:I2S) */
#define CPLD_COAX_OUT GPIO_D5_SPI_CCLK
/* Input 1/2 Source Select (0:Analog12, 1:An34) */
#define CPLD_IN12_SEL GPIO_D6_CD
/* Input 3/4 Source Select (0:Analog34, 1:Digital In) */
#define CPLD_IN34_SEL GPIO_D7_DD
/* internal clock (CPLD_SYNC_SEL = 0) options */
#define CPLD_CKS_44100HZ (0)
#define CPLD_CKS_48000HZ (CPLD_CKS0)
#define CPLD_CKS_88200HZ (CPLD_CKS1)
#define CPLD_CKS_96000HZ (CPLD_CKS1 | CPLD_CKS0)
#define CPLD_CKS_176400HZ (CPLD_CKS2)
#define CPLD_CKS_192000HZ (CPLD_CKS2 | CPLD_CKS0)
#define CPLD_CKS_MASK (CPLD_CKS0 | CPLD_CKS1 | CPLD_CKS2)
/* external clock (CPLD_SYNC_SEL = 1) options */
/* external clock - SPDIF */
#define CPLD_EXT_SPDIF (0 | CPLD_SYNC_SEL)
/* external clock - WordClock 1xfs */
#define CPLD_EXT_WORDCLOCK_1FS (CPLD_CKS1 | CPLD_SYNC_SEL)
/* external clock - WordClock 256xfs */
#define CPLD_EXT_WORDCLOCK_256FS (CPLD_CKS1 | CPLD_WORD_SEL |\
CPLD_SYNC_SEL)
#define EXT_SPDIF_TYPE 0
#define EXT_WORDCLOCK_1FS_TYPE 1
#define EXT_WORDCLOCK_256FS_TYPE 2
#define AK4620_DFS0 (1<<0)
#define AK4620_DFS1 (1<<1)
#define AK4620_CKS0 (1<<2)
#define AK4620_CKS1 (1<<3)
/* Clock and Format Control register */
#define AK4620_DFS_REG 0x02
/* Deem and Volume Control register */
#define AK4620_DEEMVOL_REG 0x03
#define AK4620_SMUTE (1<<7)
/*
* Conversion from int value to its binary form. Used for debugging.
* The output buffer must be allocated prior to calling the function.
*/
static char *get_binary(char *buffer, int value)
{
int i, j, pos;
pos = 0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 8; ++j) {
if (value & (1 << (31-(i*8 + j))))
buffer[pos] = '1';
else
buffer[pos] = '0';
pos++;
}
if (i < 3) {
buffer[pos] = ' ';
pos++;
}
}
buffer[pos] = '\0';
return buffer;
}
/*
* Initial setup of the conversion array GPIO <-> rate
*/
static const unsigned int qtet_rates[] = {
44100, 48000, 88200,
96000, 176400, 192000,
};
static const unsigned int cks_vals[] = {
CPLD_CKS_44100HZ, CPLD_CKS_48000HZ, CPLD_CKS_88200HZ,
CPLD_CKS_96000HZ, CPLD_CKS_176400HZ, CPLD_CKS_192000HZ,
};
static const struct snd_pcm_hw_constraint_list qtet_rates_info = {
.count = ARRAY_SIZE(qtet_rates),
.list = qtet_rates,
.mask = 0,
};
static void qtet_ak4113_write(void *private_data, unsigned char reg,
unsigned char val)
{
snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4113_ADDR,
reg, val);
}
static unsigned char qtet_ak4113_read(void *private_data, unsigned char reg)
{
return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data,
AK4113_ADDR, reg);
}
/*
* AK4620 section
*/
/*
* Write data to addr register of ak4620
*/
static void qtet_akm_write(struct snd_akm4xxx *ak, int chip,
unsigned char addr, unsigned char data)
{
unsigned int tmp, orig_dir;
int idx;
unsigned int addrdata;
struct snd_ice1712 *ice = ak->private_data[0];
if (snd_BUG_ON(chip < 0 || chip >= 4))
return;
/*dev_dbg(ice->card->dev, "Writing to AK4620: chip=%d, addr=0x%x,
data=0x%x\n", chip, addr, data);*/
orig_dir = ice->gpio.get_dir(ice);
ice->gpio.set_dir(ice, orig_dir | GPIO_SPI_ALL);
/* set mask - only SPI bits */
ice->gpio.set_mask(ice, ~GPIO_SPI_ALL);
tmp = ice->gpio.get_data(ice);
/* high all */
tmp |= GPIO_SPI_ALL;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* drop chip select */
if (chip)
/* CODEC 1 */
tmp &= ~GPIO_SPI_CSN1;
else
tmp &= ~GPIO_SPI_CSN0;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* build I2C address + data byte */
addrdata = (AK4620_ADDR << 6) | 0x20 | (addr & 0x1f);
addrdata = (addrdata << 8) | data;
for (idx = 15; idx >= 0; idx--) {
/* drop clock */
tmp &= ~GPIO_D5_SPI_CCLK;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* set data */
if (addrdata & (1 << idx))
tmp |= GPIO_D4_SPI_CDTO;
else
tmp &= ~GPIO_D4_SPI_CDTO;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* raise clock */
tmp |= GPIO_D5_SPI_CCLK;
ice->gpio.set_data(ice, tmp);
udelay(100);
}
/* all back to 1 */
tmp |= GPIO_SPI_ALL;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* return all gpios to non-writable */
ice->gpio.set_mask(ice, 0xffffff);
/* restore GPIOs direction */
ice->gpio.set_dir(ice, orig_dir);
}
static void qtet_akm_set_regs(struct snd_akm4xxx *ak, unsigned char addr,
unsigned char mask, unsigned char value)
{
unsigned char tmp;
int chip;
for (chip = 0; chip < ak->num_chips; chip++) {
tmp = snd_akm4xxx_get(ak, chip, addr);
/* clear the bits */
tmp &= ~mask;
/* set the new bits */
tmp |= value;
snd_akm4xxx_write(ak, chip, addr, tmp);
}
}
/*
* change the rate of AK4620
*/
static void qtet_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate)
{
unsigned char ak4620_dfs;
if (rate == 0) /* no hint - S/PDIF input is master or the new spdif
input rate undetected, simply return */
return;
/* adjust DFS on codecs - see datasheet */
if (rate > 108000)
ak4620_dfs = AK4620_DFS1 | AK4620_CKS1;
else if (rate > 54000)
ak4620_dfs = AK4620_DFS0 | AK4620_CKS0;
else
ak4620_dfs = 0;
/* set new value */
qtet_akm_set_regs(ak, AK4620_DFS_REG, AK4620_DFS0 | AK4620_DFS1 |
AK4620_CKS0 | AK4620_CKS1, ak4620_dfs);
}
#define AK_CONTROL(xname, xch) { .name = xname, .num_channels = xch }
#define PCM_12_PLAYBACK_VOLUME "PCM 1/2 Playback Volume"
#define PCM_34_PLAYBACK_VOLUME "PCM 3/4 Playback Volume"
#define PCM_12_CAPTURE_VOLUME "PCM 1/2 Capture Volume"
#define PCM_34_CAPTURE_VOLUME "PCM 3/4 Capture Volume"
static const struct snd_akm4xxx_dac_channel qtet_dac[] = {
AK_CONTROL(PCM_12_PLAYBACK_VOLUME, 2),
AK_CONTROL(PCM_34_PLAYBACK_VOLUME, 2),
};
static const struct snd_akm4xxx_adc_channel qtet_adc[] = {
AK_CONTROL(PCM_12_CAPTURE_VOLUME, 2),
AK_CONTROL(PCM_34_CAPTURE_VOLUME, 2),
};
static const struct snd_akm4xxx akm_qtet_dac = {
.type = SND_AK4620,
.num_dacs = 4, /* DAC1 - Output 12
*/
.num_adcs = 4, /* ADC1 - Input 12
*/
.ops = {
.write = qtet_akm_write,
.set_rate_val = qtet_akm_set_rate_val,
},
.dac_info = qtet_dac,
.adc_info = qtet_adc,
};
/* Communication routines with the CPLD */
/* Writes data to external register reg, both reg and data are
* GPIO representations */
static void reg_write(struct snd_ice1712 *ice, unsigned int reg,
unsigned int data)
{
unsigned int tmp;
mutex_lock(&ice->gpio_mutex);
/* set direction of used GPIOs*/
/* all outputs */
tmp = 0x00ffff;
ice->gpio.set_dir(ice, tmp);
/* mask - writable bits */
ice->gpio.set_mask(ice, ~(tmp));
/* write the data */
tmp = ice->gpio.get_data(ice);
tmp &= ~GPIO_DATA_MASK;
tmp |= data;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* drop output enable */
tmp &= ~GPIO_EX_GPIOE;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* drop the register gpio */
tmp &= ~reg;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* raise the register GPIO */
tmp |= reg;
ice->gpio.set_data(ice, tmp);
udelay(100);
/* raise all data gpios */
tmp |= GPIO_DATA_MASK;
ice->gpio.set_data(ice, tmp);
/* mask - immutable bits */
ice->gpio.set_mask(ice, 0xffffff);
/* outputs only 8-15 */
ice->gpio.set_dir(ice, 0x00ff00);
mutex_unlock(&ice->gpio_mutex);
}
static unsigned int get_scr(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
return spec->scr;
}
static unsigned int get_mcr(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
return spec->mcr;
}
static unsigned int get_cpld(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
return spec->cpld;
}
static void set_scr(struct snd_ice1712 *ice, unsigned int val)
{
struct qtet_spec *spec = ice->spec;
reg_write(ice, GPIO_SCR, val);
spec->scr = val;
}
static void set_mcr(struct snd_ice1712 *ice, unsigned int val)
{
struct qtet_spec *spec = ice->spec;
reg_write(ice, GPIO_MCR, val);
spec->mcr = val;
}
static void set_cpld(struct snd_ice1712 *ice, unsigned int val)
{
struct qtet_spec *spec = ice->spec;
reg_write(ice, GPIO_CPLD_CSN, val);
spec->cpld = val;
}
static void proc_regs_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_ice1712 *ice = entry->private_data;
char bin_buffer[36];
snd_iprintf(buffer, "SCR: %s\n", get_binary(bin_buffer,
get_scr(ice)));
snd_iprintf(buffer, "MCR: %s\n", get_binary(bin_buffer,
get_mcr(ice)));
snd_iprintf(buffer, "CPLD: %s\n", get_binary(bin_buffer,
get_cpld(ice)));
}
static void proc_init(struct snd_ice1712 *ice)
{
snd_card_ro_proc_new(ice->card, "quartet", ice, proc_regs_read);
}
static int qtet_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int val;
val = get_scr(ice) & SCR_MUTE;
ucontrol->value.integer.value[0] = (val) ? 0 : 1;
return 0;
}
static int qtet_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new, smute;
old = get_scr(ice) & SCR_MUTE;
if (ucontrol->value.integer.value[0]) {
/* unmute */
new = 0;
/* un-smuting DAC */
smute = 0;
} else {
/* mute */
new = SCR_MUTE;
/* smuting DAC */
smute = AK4620_SMUTE;
}
if (old != new) {
struct snd_akm4xxx *ak = ice->akm;
set_scr(ice, (get_scr(ice) & ~SCR_MUTE) | new);
/* set smute */
qtet_akm_set_regs(ak, AK4620_DEEMVOL_REG, AK4620_SMUTE, smute);
return 1;
}
/* no change */
return 0;
}
static int qtet_ain12_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[3] =
{"Line In 1/2", "Mic", "Mic + Low-cut"};
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
}
static int qtet_ain12_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int val, result;
val = get_scr(ice) & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
switch (val) {
case SCR_AIN12_LINE:
result = 0;
break;
case SCR_AIN12_MIC:
result = 1;
break;
case SCR_AIN12_LOWCUT:
result = 2;
break;
default:
/* BUG - no other combinations allowed */
snd_BUG();
result = 0;
}
ucontrol->value.integer.value[0] = result;
return 0;
}
static int qtet_ain12_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new, tmp, masked_old;
old = new = get_scr(ice);
masked_old = old & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
tmp = ucontrol->value.integer.value[0];
if (tmp == 2)
tmp = 3; /* binary 10 is not supported */
tmp <<= 4; /* shifting to SCR_AIN12_SEL0 */
if (tmp != masked_old) {
/* change requested */
switch (tmp) {
case SCR_AIN12_LINE:
new = old & ~(SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
set_scr(ice, new);
/* turn off relay */
new &= ~SCR_RELAY;
set_scr(ice, new);
break;
case SCR_AIN12_MIC:
/* turn on relay */
new = old | SCR_RELAY;
set_scr(ice, new);
new = (new & ~SCR_AIN12_SEL1) | SCR_AIN12_SEL0;
set_scr(ice, new);
break;
case SCR_AIN12_LOWCUT:
/* turn on relay */
new = old | SCR_RELAY;
set_scr(ice, new);
new |= SCR_AIN12_SEL1 | SCR_AIN12_SEL0;
set_scr(ice, new);
break;
default:
snd_BUG();
}
return 1;
}
/* no change */
return 0;
}
static int qtet_php_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int val;
/* if phantom voltage =48V, phantom on */
val = get_scr(ice) & SCR_PHP_V;
ucontrol->value.integer.value[0] = val ? 1 : 0;
return 0;
}
static int qtet_php_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new;
old = new = get_scr(ice);
if (ucontrol->value.integer.value[0] /* phantom on requested */
&& (~old & SCR_PHP_V)) /* 0 = voltage 5V */ {
/* is off, turn on */
/* turn voltage on first, = 1 */
new = old | SCR_PHP_V;
set_scr(ice, new);
/* turn phantom on, = 0 */
new &= ~SCR_PHP;
set_scr(ice, new);
} else if (!ucontrol->value.integer.value[0] && (old & SCR_PHP_V)) {
/* phantom off requested and 1 = voltage 48V */
/* is on, turn off */
/* turn voltage off first, = 0 */
new = old & ~SCR_PHP_V;
set_scr(ice, new);
/* turn phantom off, = 1 */
new |= SCR_PHP;
set_scr(ice, new);
}
if (old != new)
return 1;
/* no change */
return 0;
}
#define PRIV_SW(xid, xbit, xreg) [xid] = {.bit = xbit,\
.set_register = set_##xreg,\
.get_register = get_##xreg, }
#define PRIV_ENUM2(xid, xbit, xreg, xtext1, xtext2) [xid] = {.bit = xbit,\
.set_register = set_##xreg,\
.get_register = get_##xreg,\
.texts = {xtext1, xtext2} }
static const struct qtet_kcontrol_private qtet_privates[] = {
PRIV_ENUM2(IN12_SEL, CPLD_IN12_SEL, cpld, "An In 1/2", "An In 3/4"),
PRIV_ENUM2(IN34_SEL, CPLD_IN34_SEL, cpld, "An In 3/4", "IEC958 In"),
PRIV_ENUM2(AIN34_SEL, SCR_AIN34_SEL, scr, "Line In 3/4", "Hi-Z"),
PRIV_ENUM2(COAX_OUT, CPLD_COAX_OUT, cpld, "IEC958", "I2S"),
PRIV_SW(IN12_MON12, MCR_IN12_MON12, mcr),
PRIV_SW(IN12_MON34, MCR_IN12_MON34, mcr),
PRIV_SW(IN34_MON12, MCR_IN34_MON12, mcr),
PRIV_SW(IN34_MON34, MCR_IN34_MON34, mcr),
PRIV_SW(OUT12_MON34, MCR_OUT12_MON34, mcr),
PRIV_SW(OUT34_MON12, MCR_OUT34_MON12, mcr),
};
static int qtet_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct qtet_kcontrol_private private =
qtet_privates[kcontrol->private_value];
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(private.texts),
private.texts);
}
static int qtet_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct qtet_kcontrol_private private =
qtet_privates[kcontrol->private_value];
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] =
(private.get_register(ice) & private.bit) ? 1 : 0;
return 0;
}
static int qtet_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct qtet_kcontrol_private private =
qtet_privates[kcontrol->private_value];
struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
unsigned int old, new;
old = private.get_register(ice);
if (ucontrol->value.integer.value[0])
new = old | private.bit;
else
new = old & ~private.bit;
if (old != new) {
private.set_register(ice, new);
return 1;
}
/* no change */
return 0;
}
#define qtet_sw_info snd_ctl_boolean_mono_info
#define QTET_CONTROL(xname, xtype, xpriv) \
{.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname,\
.info = qtet_##xtype##_info,\
.get = qtet_sw_get,\
.put = qtet_sw_put,\
.private_value = xpriv }
static const struct snd_kcontrol_new qtet_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = qtet_sw_info,
.get = qtet_mute_get,
.put = qtet_mute_put,
.private_value = 0
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Phantom Power",
.info = qtet_sw_info,
.get = qtet_php_get,
.put = qtet_php_put,
.private_value = 0
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog In 1/2 Capture Switch",
.info = qtet_ain12_enum_info,
.get = qtet_ain12_sw_get,
.put = qtet_ain12_sw_put,
.private_value = 0
},
QTET_CONTROL("Analog In 3/4 Capture Switch", enum, AIN34_SEL),
QTET_CONTROL("PCM In 1/2 Capture Switch", enum, IN12_SEL),
QTET_CONTROL("PCM In 3/4 Capture Switch", enum, IN34_SEL),
QTET_CONTROL("Coax Output Source", enum, COAX_OUT),
QTET_CONTROL("Analog In 1/2 to Monitor 1/2", sw, IN12_MON12),
QTET_CONTROL("Analog In 1/2 to Monitor 3/4", sw, IN12_MON34),
QTET_CONTROL("Analog In 3/4 to Monitor 1/2", sw, IN34_MON12),
QTET_CONTROL("Analog In 3/4 to Monitor 3/4", sw, IN34_MON34),
QTET_CONTROL("Output 1/2 to Monitor 3/4", sw, OUT12_MON34),
QTET_CONTROL("Output 3/4 to Monitor 1/2", sw, OUT34_MON12),
};
static const char * const follower_vols[] = {
PCM_12_PLAYBACK_VOLUME,
PCM_34_PLAYBACK_VOLUME,
NULL
};
static
DECLARE_TLV_DB_SCALE(qtet_master_db_scale, -6350, 50, 1);
static struct snd_kcontrol *ctl_find(struct snd_card *card,
const char *name)
{
struct snd_ctl_elem_id sid = {0};
strlcpy(sid.name, name, sizeof(sid.name));
sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
return snd_ctl_find_id(card, &sid);
}
static void add_followers(struct snd_card *card,
struct snd_kcontrol *master, const char * const *list)
{
for (; *list; list++) {
struct snd_kcontrol *follower = ctl_find(card, *list);
if (follower)
snd_ctl_add_follower(master, follower);
}
}
static int qtet_add_controls(struct snd_ice1712 *ice)
{
struct qtet_spec *spec = ice->spec;
int err, i;
struct snd_kcontrol *vmaster;
err = snd_ice1712_akm4xxx_build_controls(ice);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(qtet_controls); i++) {
err = snd_ctl_add(ice->card,
snd_ctl_new1(&qtet_controls[i], ice));
if (err < 0)
return err;
}
/* Create virtual master control */
vmaster = snd_ctl_make_virtual_master("Master Playback Volume",
qtet_master_db_scale);
if (!vmaster)
return -ENOMEM;
add_followers(ice->card, vmaster, follower_vols);
err = snd_ctl_add(ice->card, vmaster);
if (err < 0)
return err;
/* only capture SPDIF over AK4113 */
return snd_ak4113_build(spec->ak4113,
ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream);
}
static inline int qtet_is_spdif_master(struct snd_ice1712 *ice)
{
/* CPLD_SYNC_SEL: 0 = internal, 1 = external (i.e. spdif master) */
return (get_cpld(ice) & CPLD_SYNC_SEL) ? 1 : 0;
}
static unsigned int qtet_get_rate(struct snd_ice1712 *ice)
{
int i;
unsigned char result;
result = get_cpld(ice) & CPLD_CKS_MASK;
for (i = 0; i < ARRAY_SIZE(cks_vals); i++)
if (cks_vals[i] == result)
return qtet_rates[i];
return 0;
}
static int get_cks_val(int rate)
{
int i;
for (i = 0; i < ARRAY_SIZE(qtet_rates); i++)
if (qtet_rates[i] == rate)
return cks_vals[i];
return 0;
}
/* setting new rate */
static void qtet_set_rate(struct snd_ice1712 *ice, unsigned int rate)
{
unsigned int new;
unsigned char val;
/* switching ice1724 to external clock - supplied by ext. circuits */
val = inb(ICEMT1724(ice, RATE));
outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
new = (get_cpld(ice) & ~CPLD_CKS_MASK) | get_cks_val(rate);
/* switch to internal clock, drop CPLD_SYNC_SEL */
new &= ~CPLD_SYNC_SEL;
/* dev_dbg(ice->card->dev, "QT - set_rate: old %x, new %x\n",
get_cpld(ice), new); */
set_cpld(ice, new);
}
static inline unsigned char qtet_set_mclk(struct snd_ice1712 *ice,
unsigned int rate)
{
/* no change in master clock */
return 0;
}
/* setting clock to external - SPDIF */
static int qtet_set_spdif_clock(struct snd_ice1712 *ice, int type)
{
unsigned int old, new;
old = new = get_cpld(ice);
new &= ~(CPLD_CKS_MASK | CPLD_WORD_SEL);
switch (type) {
case EXT_SPDIF_TYPE:
new |= CPLD_EXT_SPDIF;
break;
case EXT_WORDCLOCK_1FS_TYPE:
new |= CPLD_EXT_WORDCLOCK_1FS;
break;
case EXT_WORDCLOCK_256FS_TYPE:
new |= CPLD_EXT_WORDCLOCK_256FS;
break;
default:
snd_BUG();
}
if (old != new) {
set_cpld(ice, new);
/* changed */
return 1;
}
return 0;
}
static int qtet_get_spdif_master_type(struct snd_ice1712 *ice)
{
unsigned int val;
int result;
val = get_cpld(ice);
/* checking only rate/clock-related bits */
val &= (CPLD_CKS_MASK | CPLD_WORD_SEL | CPLD_SYNC_SEL);
if (!(val & CPLD_SYNC_SEL)) {
/* switched to internal clock, is not any external type */
result = -1;
} else {
switch (val) {
case (CPLD_EXT_SPDIF):
result = EXT_SPDIF_TYPE;
break;
case (CPLD_EXT_WORDCLOCK_1FS):
result = EXT_WORDCLOCK_1FS_TYPE;
break;
case (CPLD_EXT_WORDCLOCK_256FS):
result = EXT_WORDCLOCK_256FS_TYPE;
break;
default:
/* undefined combination of external clock setup */
snd_BUG();
result = 0;
}
}
return result;
}
/* Called when ak4113 detects change in the input SPDIF stream */
static void qtet_ak4113_change(struct ak4113 *ak4113, unsigned char c0,
unsigned char c1)
{
struct snd_ice1712 *ice = ak4113->change_callback_private;
int rate;
if ((qtet_get_spdif_master_type(ice) == EXT_SPDIF_TYPE) &&
c1) {
/* only for SPDIF master mode, rate was changed */
rate = snd_ak4113_external_rate(ak4113);
/* dev_dbg(ice->card->dev, "ak4113 - input rate changed to %d\n",
rate); */
qtet_akm_set_rate_val(ice->akm, rate);
}
}
/*
* If clock slaved to SPDIF-IN, setting runtime rate
* to the detected external rate
*/
static void qtet_spdif_in_open(struct snd_ice1712 *ice,
struct snd_pcm_substream *substream)
{
struct qtet_spec *spec = ice->spec;
struct snd_pcm_runtime *runtime = substream->runtime;
int rate;
if (qtet_get_spdif_master_type(ice) != EXT_SPDIF_TYPE)
/* not external SPDIF, no rate limitation */
return;
/* only external SPDIF can detect incoming sample rate */
rate = snd_ak4113_external_rate(spec->ak4113);
if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) {
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
}
/*
* initialize the chip
*/
static int qtet_init(struct snd_ice1712 *ice)
{
static const unsigned char ak4113_init_vals[] = {
/* AK4113_REG_PWRDN */ AK4113_RST | AK4113_PWN |
AK4113_OCKS0 | AK4113_OCKS1,
/* AK4113_REQ_FORMAT */ AK4113_DIF_I24I2S | AK4113_VTX |
AK4113_DEM_OFF | AK4113_DEAU,
/* AK4113_REG_IO0 */ AK4113_OPS2 | AK4113_TXE |
AK4113_XTL_24_576M,
/* AK4113_REG_IO1 */ AK4113_EFH_1024LRCLK | AK4113_IPS(0),
/* AK4113_REG_INT0_MASK */ 0,
/* AK4113_REG_INT1_MASK */ 0,
/* AK4113_REG_DATDTS */ 0,
};
int err;
struct qtet_spec *spec;
struct snd_akm4xxx *ak;
unsigned char val;
/* switching ice1724 to external clock - supplied by ext. circuits */
val = inb(ICEMT1724(ice, RATE));
outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (!spec)
return -ENOMEM;
/* qtet is clocked by Xilinx array */
ice->hw_rates = &qtet_rates_info;
ice->is_spdif_master = qtet_is_spdif_master;
ice->get_rate = qtet_get_rate;
ice->set_rate = qtet_set_rate;
ice->set_mclk = qtet_set_mclk;
ice->set_spdif_clock = qtet_set_spdif_clock;
ice->get_spdif_master_type = qtet_get_spdif_master_type;
ice->ext_clock_names = ext_clock_names;
ice->ext_clock_count = ARRAY_SIZE(ext_clock_names);
/* since Qtet can detect correct SPDIF-in rate, all streams can be
* limited to this specific rate */
ice->spdif.ops.open = ice->pro_open = qtet_spdif_in_open;
ice->spec = spec;
/* Mute Off */
/* SCR Initialize*/
/* keep codec power down first */
set_scr(ice, SCR_PHP);
udelay(1);
/* codec power up */
set_scr(ice, SCR_PHP | SCR_CODEC_PDN);
/* MCR Initialize */
set_mcr(ice, 0);
/* CPLD Initialize */
set_cpld(ice, 0);
ice->num_total_dacs = 2;
ice->num_total_adcs = 2;
ice->akm = kcalloc(2, sizeof(struct snd_akm4xxx), GFP_KERNEL);
ak = ice->akm;
if (!ak)
return -ENOMEM;
/* only one codec with two chips */
ice->akm_codecs = 1;
err = snd_ice1712_akm4xxx_init(ak, &akm_qtet_dac, NULL, ice);
if (err < 0)
return err;
err = snd_ak4113_create(ice->card,
qtet_ak4113_read,
qtet_ak4113_write,
ak4113_init_vals,
ice, &spec->ak4113);
if (err < 0)
return err;
/* callback for codecs rate setting */
spec->ak4113->change_callback = qtet_ak4113_change;
spec->ak4113->change_callback_private = ice;
/* AK41143 in Quartet can detect external rate correctly
* (i.e. check_flags = 0) */
spec->ak4113->check_flags = 0;
proc_init(ice);
qtet_set_rate(ice, 44100);
return 0;
}
static const unsigned char qtet_eeprom[] = {
[ICE_EEP2_SYSCONF] = 0x28, /* clock 256(24MHz), mpu401, 1xADC,
1xDACs, SPDIF in */
[ICE_EEP2_ACLINK] = 0x80, /* I2S */
[ICE_EEP2_I2S] = 0x78, /* 96k, 24bit, 192k */
[ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, in, out-ext */
[ICE_EEP2_GPIO_DIR] = 0x00, /* 0-7 inputs, switched to output
only during output operations */
[ICE_EEP2_GPIO_DIR1] = 0xff, /* 8-15 outputs */
[ICE_EEP2_GPIO_DIR2] = 0x00,
[ICE_EEP2_GPIO_MASK] = 0xff, /* changed only for OUT operations */
[ICE_EEP2_GPIO_MASK1] = 0x00,
[ICE_EEP2_GPIO_MASK2] = 0xff,
[ICE_EEP2_GPIO_STATE] = 0x00, /* inputs */
[ICE_EEP2_GPIO_STATE1] = 0x7d, /* all 1, but GPIO_CPLD_RW
and GPIO15 always zero */
[ICE_EEP2_GPIO_STATE2] = 0x00, /* inputs */
};
/* entry point */
struct snd_ice1712_card_info snd_vt1724_qtet_cards[] = {
{
.subvendor = VT1724_SUBDEVICE_QTET,
.name = "Infrasonic Quartet",
.model = "quartet",
.chip_init = qtet_init,
.build_controls = qtet_add_controls,
.eeprom_size = sizeof(qtet_eeprom),
.eeprom_data = qtet_eeprom,
},
{ } /* terminator */
};