linux/drivers/scsi/aic94xx/aic94xx_scb.c

927 lines
27 KiB
C

/*
* Aic94xx SAS/SATA driver SCB management.
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*
* This file is licensed under GPLv2.
*
* This file is part of the aic94xx driver.
*
* The aic94xx driver is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of the
* License.
*
* The aic94xx driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the aic94xx driver; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <scsi/scsi_host.h>
#include "aic94xx.h"
#include "aic94xx_reg.h"
#include "aic94xx_hwi.h"
#include "aic94xx_seq.h"
#include "aic94xx_dump.h"
/* ---------- EMPTY SCB ---------- */
#define DL_PHY_MASK 7
#define BYTES_DMAED 0
#define PRIMITIVE_RECVD 0x08
#define PHY_EVENT 0x10
#define LINK_RESET_ERROR 0x18
#define TIMER_EVENT 0x20
#define REQ_TASK_ABORT 0xF0
#define REQ_DEVICE_RESET 0xF1
#define SIGNAL_NCQ_ERROR 0xF2
#define CLEAR_NCQ_ERROR 0xF3
#define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
| CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
| CURRENT_OOB_ERROR)
static inline void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
{
struct sas_phy *sas_phy = phy->sas_phy.phy;
switch (oob_mode & 7) {
case PHY_SPEED_60:
/* FIXME: sas transport class doesn't have this */
phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
break;
case PHY_SPEED_30:
phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
break;
case PHY_SPEED_15:
phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
break;
}
sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
if (oob_mode & SAS_MODE)
phy->sas_phy.oob_mode = SAS_OOB_MODE;
else if (oob_mode & SATA_MODE)
phy->sas_phy.oob_mode = SATA_OOB_MODE;
}
static inline void asd_phy_event_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
int phy_id = dl->status_block[0] & DL_PHY_MASK;
struct asd_phy *phy = &asd_ha->phys[phy_id];
u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
u8 oob_mode = dl->status_block[2];
switch (oob_status) {
case CURRENT_LOSS_OF_SIGNAL:
/* directly attached device was removed */
ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
asd_turn_led(asd_ha, phy_id, 0);
sas_phy_disconnected(&phy->sas_phy);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
break;
case CURRENT_OOB_DONE:
/* hot plugged device */
asd_turn_led(asd_ha, phy_id, 1);
get_lrate_mode(phy, oob_mode);
ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
break;
case CURRENT_SPINUP_HOLD:
/* hot plug SATA, no COMWAKE sent */
asd_turn_led(asd_ha, phy_id, 1);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
break;
case CURRENT_GTO_TIMEOUT:
case CURRENT_OOB_ERROR:
ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
dl->status_block[1]);
asd_turn_led(asd_ha, phy_id, 0);
sas_phy_disconnected(&phy->sas_phy);
sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
break;
}
}
/* If phys are enabled sparsely, this will do the right thing. */
static inline unsigned ord_phy(struct asd_ha_struct *asd_ha,
struct asd_phy *phy)
{
u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
int i, k = 0;
for_each_phy(enabled_mask, enabled_mask, i) {
if (&asd_ha->phys[i] == phy)
return k;
k++;
}
return 0;
}
/**
* asd_get_attached_sas_addr -- extract/generate attached SAS address
* phy: pointer to asd_phy
* sas_addr: pointer to buffer where the SAS address is to be written
*
* This function extracts the SAS address from an IDENTIFY frame
* received. If OOB is SATA, then a SAS address is generated from the
* HA tables.
*
* LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
* buffer.
*/
static inline void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
{
if (phy->sas_phy.frame_rcvd[0] == 0x34
&& phy->sas_phy.oob_mode == SATA_OOB_MODE) {
struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
/* FIS device-to-host */
u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
*(__be64 *)sas_addr = cpu_to_be64(addr);
} else {
struct sas_identify_frame *idframe =
(void *) phy->sas_phy.frame_rcvd;
memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
}
}
static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
{
int i;
struct asd_port *free_port = NULL;
struct asd_port *port;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
unsigned long flags;
spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
if (!phy->asd_port) {
for (i = 0; i < ASD_MAX_PHYS; i++) {
port = &asd_ha->asd_ports[i];
/* Check for wide port */
if (port->num_phys > 0 &&
memcmp(port->sas_addr, sas_phy->sas_addr,
SAS_ADDR_SIZE) == 0 &&
memcmp(port->attached_sas_addr,
sas_phy->attached_sas_addr,
SAS_ADDR_SIZE) == 0) {
break;
}
/* Find a free port */
if (port->num_phys == 0 && free_port == NULL) {
free_port = port;
}
}
/* Use a free port if this doesn't form a wide port */
if (i >= ASD_MAX_PHYS) {
port = free_port;
BUG_ON(!port);
memcpy(port->sas_addr, sas_phy->sas_addr,
SAS_ADDR_SIZE);
memcpy(port->attached_sas_addr,
sas_phy->attached_sas_addr,
SAS_ADDR_SIZE);
}
port->num_phys++;
port->phy_mask |= (1U << sas_phy->id);
phy->asd_port = port;
}
ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
__FUNCTION__, phy->asd_port->phy_mask, sas_phy->id);
asd_update_port_links(asd_ha, phy);
spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
}
static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
{
struct asd_port *port = phy->asd_port;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
unsigned long flags;
spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
if (port) {
port->num_phys--;
port->phy_mask &= ~(1U << sas_phy->id);
phy->asd_port = NULL;
}
spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
}
static inline void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl,
int edb_id, int phy_id)
{
unsigned long flags;
int edb_el = edb_id + ascb->edb_index;
struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
struct asd_phy *phy = &ascb->ha->phys[phy_id];
struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
size = min(size, (u16) sizeof(phy->frame_rcvd));
spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
phy->sas_phy.frame_rcvd_size = size;
asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
asd_dump_frame_rcvd(phy, dl);
asd_form_port(ascb->ha, phy);
sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
}
static inline void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl,
int phy_id)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
struct asd_phy *phy = &asd_ha->phys[phy_id];
u8 lr_error = dl->status_block[1];
u8 retries_left = dl->status_block[2];
switch (lr_error) {
case 0:
ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
break;
case 1:
ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
break;
case 2:
ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
break;
case 3:
ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
break;
default:
ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
phy_id, lr_error);
break;
}
asd_turn_led(asd_ha, phy_id, 0);
sas_phy_disconnected(sas_phy);
asd_deform_port(asd_ha, phy);
sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
if (retries_left == 0) {
int num = 1;
struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
GFP_ATOMIC);
if (!cp) {
asd_printk("%s: out of memory\n", __FUNCTION__);
goto out;
}
ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
phy_id);
asd_build_control_phy(cp, phy_id, ENABLE_PHY);
if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
asd_ascb_free(cp);
}
out:
;
}
static inline void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
struct done_list_struct *dl,
int phy_id)
{
unsigned long flags;
struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
struct asd_ha_struct *asd_ha = ascb->ha;
struct asd_phy *phy = &asd_ha->phys[phy_id];
u8 reg = dl->status_block[1];
u32 cont = dl->status_block[2] << ((reg & 3)*8);
reg &= ~3;
switch (reg) {
case LmPRMSTAT0BYTE0:
switch (cont) {
case LmBROADCH:
case LmBROADRVCH0:
case LmBROADRVCH1:
case LmBROADSES:
ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
phy_id, cont);
spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
sas_phy->sas_prim = ffs(cont);
spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
break;
case LmUNKNOWNP:
ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
break;
default:
ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
phy_id, reg, cont);
break;
}
break;
case LmPRMSTAT1BYTE0:
switch (cont) {
case LmHARDRST:
ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
phy_id);
/* The sequencer disables all phys on that port.
* We have to re-enable the phys ourselves. */
asd_deform_port(asd_ha, phy);
sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
break;
default:
ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
phy_id, reg, cont);
break;
}
break;
default:
ASD_DPRINTK("unknown primitive register:0x%x\n",
dl->status_block[1]);
break;
}
}
/**
* asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
* @ascb: pointer to Empty SCB
* @edb_id: index [0,6] to the empty data buffer which is to be invalidated
*
* After an EDB has been invalidated, if all EDBs in this ESCB have been
* invalidated, the ESCB is posted back to the sequencer.
* Context is tasklet/IRQ.
*/
void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
{
struct asd_seq_data *seq = &ascb->ha->seq;
struct empty_scb *escb = &ascb->scb->escb;
struct sg_el *eb = &escb->eb[edb_id];
struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
memset(edb->vaddr, 0, ASD_EDB_SIZE);
eb->flags |= ELEMENT_NOT_VALID;
escb->num_valid--;
if (escb->num_valid == 0) {
int i;
/* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
"dma_handle: 0x%08llx, next: 0x%08llx, "
"index:%d, opcode:0x%02x\n",
ascb->dma_scb.vaddr,
(u64)ascb->dma_scb.dma_handle,
le64_to_cpu(ascb->scb->header.next_scb),
le16_to_cpu(ascb->scb->header.index),
ascb->scb->header.opcode);
*/
escb->num_valid = ASD_EDBS_PER_SCB;
for (i = 0; i < ASD_EDBS_PER_SCB; i++)
escb->eb[i].flags = 0;
if (!list_empty(&ascb->list))
list_del_init(&ascb->list);
i = asd_post_escb_list(ascb->ha, ascb, 1);
if (i)
asd_printk("couldn't post escb, err:%d\n", i);
}
}
static void escb_tasklet_complete(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
u8 sb_opcode = dl->status_block[0];
int phy_id = sb_opcode & DL_PHY_MASK;
struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
struct asd_phy *phy = &asd_ha->phys[phy_id];
if (edb > 6 || edb < 0) {
ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
edb, dl->opcode);
ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
sb_opcode, phy_id);
ASD_DPRINTK("escb: vaddr: 0x%p, "
"dma_handle: 0x%llx, next: 0x%llx, "
"index:%d, opcode:0x%02x\n",
ascb->dma_scb.vaddr,
(unsigned long long)ascb->dma_scb.dma_handle,
(unsigned long long)
le64_to_cpu(ascb->scb->header.next_scb),
le16_to_cpu(ascb->scb->header.index),
ascb->scb->header.opcode);
}
/* Catch these before we mask off the sb_opcode bits */
switch (sb_opcode) {
case REQ_TASK_ABORT: {
struct asd_ascb *a, *b;
u16 tc_abort;
struct domain_device *failed_dev = NULL;
ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
__FUNCTION__, dl->status_block[3]);
/*
* Find the task that caused the abort and abort it first.
* The sequencer won't put anything on the done list until
* that happens.
*/
tc_abort = *((u16*)(&dl->status_block[1]));
tc_abort = le16_to_cpu(tc_abort);
list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
struct sas_task *task = ascb->uldd_task;
if (task && a->tc_index == tc_abort) {
failed_dev = task->dev;
sas_task_abort(task);
break;
}
}
if (!failed_dev) {
ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
__FUNCTION__, tc_abort);
goto out;
}
/*
* Now abort everything else for that device (hba?) so
* that the EH will wake up and do something.
*/
list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
struct sas_task *task = ascb->uldd_task;
if (task &&
task->dev == failed_dev &&
a->tc_index != tc_abort)
sas_task_abort(task);
}
goto out;
}
case REQ_DEVICE_RESET: {
struct asd_ascb *a;
u16 conn_handle;
unsigned long flags;
struct sas_task *last_dev_task = NULL;
conn_handle = *((u16*)(&dl->status_block[1]));
conn_handle = le16_to_cpu(conn_handle);
ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __FUNCTION__,
dl->status_block[3]);
/* Find the last pending task for the device... */
list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
u16 x;
struct domain_device *dev;
struct sas_task *task = a->uldd_task;
if (!task)
continue;
dev = task->dev;
x = (unsigned long)dev->lldd_dev;
if (x == conn_handle)
last_dev_task = task;
}
if (!last_dev_task) {
ASD_DPRINTK("%s: Device reset for idle device %d?\n",
__FUNCTION__, conn_handle);
goto out;
}
/* ...and set the reset flag */
spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
/* Kill all pending tasks for the device */
list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
u16 x;
struct domain_device *dev;
struct sas_task *task = a->uldd_task;
if (!task)
continue;
dev = task->dev;
x = (unsigned long)dev->lldd_dev;
if (x == conn_handle)
sas_task_abort(task);
}
goto out;
}
case SIGNAL_NCQ_ERROR:
ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __FUNCTION__);
goto out;
case CLEAR_NCQ_ERROR:
ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __FUNCTION__);
goto out;
}
sb_opcode &= ~DL_PHY_MASK;
switch (sb_opcode) {
case BYTES_DMAED:
ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __FUNCTION__, phy_id);
asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
break;
case PRIMITIVE_RECVD:
ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __FUNCTION__,
phy_id);
asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
break;
case PHY_EVENT:
ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __FUNCTION__, phy_id);
asd_phy_event_tasklet(ascb, dl);
break;
case LINK_RESET_ERROR:
ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __FUNCTION__,
phy_id);
asd_link_reset_err_tasklet(ascb, dl, phy_id);
break;
case TIMER_EVENT:
ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
__FUNCTION__, phy_id);
asd_turn_led(asd_ha, phy_id, 0);
/* the device is gone */
sas_phy_disconnected(sas_phy);
asd_deform_port(asd_ha, phy);
sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
break;
default:
ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __FUNCTION__,
phy_id, sb_opcode);
ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
edb, dl->opcode);
ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
sb_opcode, phy_id);
ASD_DPRINTK("escb: vaddr: 0x%p, "
"dma_handle: 0x%llx, next: 0x%llx, "
"index:%d, opcode:0x%02x\n",
ascb->dma_scb.vaddr,
(unsigned long long)ascb->dma_scb.dma_handle,
(unsigned long long)
le64_to_cpu(ascb->scb->header.next_scb),
le16_to_cpu(ascb->scb->header.index),
ascb->scb->header.opcode);
break;
}
out:
asd_invalidate_edb(ascb, edb);
}
int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
{
struct asd_seq_data *seq = &asd_ha->seq;
int i;
for (i = 0; i < seq->num_escbs; i++)
seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
ASD_DPRINTK("posting %d escbs\n", i);
return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
}
/* ---------- CONTROL PHY ---------- */
#define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
| CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
| CURRENT_OOB_ERROR)
/**
* control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
* @ascb: pointer to an ascb
* @dl: pointer to the done list entry
*
* This function completes a CONTROL PHY scb and frees the ascb.
* A note on LEDs:
* - an LED blinks if there is IO though it,
* - if a device is connected to the LED, it is lit,
* - if no device is connected to the LED, is is dimmed (off).
*/
static void control_phy_tasklet_complete(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
struct asd_ha_struct *asd_ha = ascb->ha;
struct scb *scb = ascb->scb;
struct control_phy *control_phy = &scb->control_phy;
u8 phy_id = control_phy->phy_id;
struct asd_phy *phy = &ascb->ha->phys[phy_id];
u8 status = dl->status_block[0];
u8 oob_status = dl->status_block[1];
u8 oob_mode = dl->status_block[2];
/* u8 oob_signals= dl->status_block[3]; */
if (status != 0) {
ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
__FUNCTION__, phy_id, status);
goto out;
}
switch (control_phy->sub_func) {
case DISABLE_PHY:
asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
asd_turn_led(asd_ha, phy_id, 0);
asd_control_led(asd_ha, phy_id, 0);
ASD_DPRINTK("%s: disable phy%d\n", __FUNCTION__, phy_id);
break;
case ENABLE_PHY:
asd_control_led(asd_ha, phy_id, 1);
if (oob_status & CURRENT_OOB_DONE) {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
get_lrate_mode(phy, oob_mode);
asd_turn_led(asd_ha, phy_id, 1);
ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
__FUNCTION__, phy_id,phy->sas_phy.linkrate,
phy->sas_phy.iproto);
} else if (oob_status & CURRENT_SPINUP_HOLD) {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
asd_turn_led(asd_ha, phy_id, 1);
ASD_DPRINTK("%s: phy%d, spinup hold\n", __FUNCTION__,
phy_id);
} else if (oob_status & CURRENT_ERR_MASK) {
asd_turn_led(asd_ha, phy_id, 0);
ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
__FUNCTION__, phy_id, oob_status);
} else if (oob_status & (CURRENT_HOT_PLUG_CNCT
| CURRENT_DEVICE_PRESENT)) {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
asd_turn_led(asd_ha, phy_id, 1);
ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
__FUNCTION__, phy_id);
} else {
asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
asd_turn_led(asd_ha, phy_id, 0);
ASD_DPRINTK("%s: phy%d: no device present: "
"oob_status:0x%x\n",
__FUNCTION__, phy_id, oob_status);
}
break;
case RELEASE_SPINUP_HOLD:
case PHY_NO_OP:
case EXECUTE_HARD_RESET:
ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __FUNCTION__,
phy_id, control_phy->sub_func);
/* XXX finish */
break;
default:
ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __FUNCTION__,
phy_id, control_phy->sub_func);
break;
}
out:
asd_ascb_free(ascb);
}
static inline void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
{
/* disable all speeds, then enable defaults */
*speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
| SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
switch (pd->max_sas_lrate) {
case SAS_LINK_RATE_6_0_GBPS:
*speed_mask &= ~SAS_SPEED_60_DIS;
default:
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask &= ~SAS_SPEED_30_DIS;
case SAS_LINK_RATE_1_5_GBPS:
*speed_mask &= ~SAS_SPEED_15_DIS;
}
switch (pd->min_sas_lrate) {
case SAS_LINK_RATE_6_0_GBPS:
*speed_mask |= SAS_SPEED_30_DIS;
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask |= SAS_SPEED_15_DIS;
default:
case SAS_LINK_RATE_1_5_GBPS:
/* nothing to do */
;
}
switch (pd->max_sata_lrate) {
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask &= ~SATA_SPEED_30_DIS;
default:
case SAS_LINK_RATE_1_5_GBPS:
*speed_mask &= ~SATA_SPEED_15_DIS;
}
switch (pd->min_sata_lrate) {
case SAS_LINK_RATE_3_0_GBPS:
*speed_mask |= SATA_SPEED_15_DIS;
default:
case SAS_LINK_RATE_1_5_GBPS:
/* nothing to do */
;
}
}
/**
* asd_build_control_phy -- build a CONTROL PHY SCB
* @ascb: pointer to an ascb
* @phy_id: phy id to control, integer
* @subfunc: subfunction, what to actually to do the phy
*
* This function builds a CONTROL PHY scb. No allocation of any kind
* is performed. @ascb is allocated with the list function.
* The caller can override the ascb->tasklet_complete to point
* to its own callback function. It must call asd_ascb_free()
* at its tasklet complete function.
* See the default implementation.
*/
void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
{
struct asd_phy *phy = &ascb->ha->phys[phy_id];
struct scb *scb = ascb->scb;
struct control_phy *control_phy = &scb->control_phy;
scb->header.opcode = CONTROL_PHY;
control_phy->phy_id = (u8) phy_id;
control_phy->sub_func = subfunc;
switch (subfunc) {
case EXECUTE_HARD_RESET: /* 0x81 */
case ENABLE_PHY: /* 0x01 */
/* decide hot plug delay */
control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
/* decide speed mask */
set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
/* initiator port settings are in the hi nibble */
if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
control_phy->port_type = SAS_PROTO_ALL << 4;
else if (phy->sas_phy.role == PHY_ROLE_TARGET)
control_phy->port_type = SAS_PROTO_ALL;
else
control_phy->port_type =
(SAS_PROTO_ALL << 4) | SAS_PROTO_ALL;
/* link reset retries, this should be nominal */
control_phy->link_reset_retries = 10;
case RELEASE_SPINUP_HOLD: /* 0x02 */
/* decide the func_mask */
control_phy->func_mask = FUNCTION_MASK_DEFAULT;
if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
control_phy->func_mask &= ~SPINUP_HOLD_DIS;
else
control_phy->func_mask |= SPINUP_HOLD_DIS;
}
control_phy->conn_handle = cpu_to_le16(0xFFFF);
ascb->tasklet_complete = control_phy_tasklet_complete;
}
/* ---------- INITIATE LINK ADM TASK ---------- */
static void link_adm_tasklet_complete(struct asd_ascb *ascb,
struct done_list_struct *dl)
{
u8 opcode = dl->opcode;
struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
u8 phy_id = link_adm->phy_id;
if (opcode != TC_NO_ERROR) {
asd_printk("phy%d: link adm task 0x%x completed with error "
"0x%x\n", phy_id, link_adm->sub_func, opcode);
}
ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
phy_id, link_adm->sub_func, opcode);
asd_ascb_free(ascb);
}
void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
u8 subfunc)
{
struct scb *scb = ascb->scb;
struct initiate_link_adm *link_adm = &scb->link_adm;
scb->header.opcode = INITIATE_LINK_ADM_TASK;
link_adm->phy_id = phy_id;
link_adm->sub_func = subfunc;
link_adm->conn_handle = cpu_to_le16(0xFFFF);
ascb->tasklet_complete = link_adm_tasklet_complete;
}
/* ---------- SCB timer ---------- */
/**
* asd_ascb_timedout -- called when a pending SCB's timer has expired
* @data: unsigned long, a pointer to the ascb in question
*
* This is the default timeout function which does the most necessary.
* Upper layers can implement their own timeout function, say to free
* resources they have with this SCB, and then call this one at the
* end of their timeout function. To do this, one should initialize
* the ascb->timer.{function, data, expires} prior to calling the post
* funcion. The timer is started by the post function.
*/
void asd_ascb_timedout(unsigned long data)
{
struct asd_ascb *ascb = (void *) data;
struct asd_seq_data *seq = &ascb->ha->seq;
unsigned long flags;
ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
spin_lock_irqsave(&seq->pend_q_lock, flags);
seq->pending--;
list_del_init(&ascb->list);
spin_unlock_irqrestore(&seq->pend_q_lock, flags);
asd_ascb_free(ascb);
}
/* ---------- CONTROL PHY ---------- */
/* Given the spec value, return a driver value. */
static const int phy_func_table[] = {
[PHY_FUNC_NOP] = PHY_NO_OP,
[PHY_FUNC_LINK_RESET] = ENABLE_PHY,
[PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
[PHY_FUNC_DISABLE] = DISABLE_PHY,
[PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
};
int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
{
struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
struct asd_ascb *ascb;
struct sas_phy_linkrates *rates;
int res = 1;
switch (func) {
case PHY_FUNC_CLEAR_ERROR_LOG:
return -ENOSYS;
case PHY_FUNC_SET_LINK_RATE:
rates = arg;
if (rates->minimum_linkrate) {
pd->min_sas_lrate = rates->minimum_linkrate;
pd->min_sata_lrate = rates->minimum_linkrate;
}
if (rates->maximum_linkrate) {
pd->max_sas_lrate = rates->maximum_linkrate;
pd->max_sata_lrate = rates->maximum_linkrate;
}
func = PHY_FUNC_LINK_RESET;
break;
default:
break;
}
ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
if (!ascb)
return -ENOMEM;
asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
res = asd_post_ascb_list(asd_ha, ascb , 1);
if (res)
asd_ascb_free(ascb);
return res;
}