cafe563591
Does writethrough and writeback caching, handles unclean shutdown, and has a bunch of other nifty features motivated by real world usage. See the wiki at http://bcache.evilpiepirate.org for more. Signed-off-by: Kent Overstreet <koverstreet@google.com>
391 lines
9.4 KiB
C
391 lines
9.4 KiB
C
/*
|
|
* Some low level IO code, and hacks for various block layer limitations
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "bset.h"
|
|
#include "debug.h"
|
|
|
|
static void bch_bi_idx_hack_endio(struct bio *bio, int error)
|
|
{
|
|
struct bio *p = bio->bi_private;
|
|
|
|
bio_endio(p, error);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void bch_generic_make_request_hack(struct bio *bio)
|
|
{
|
|
if (bio->bi_idx) {
|
|
struct bio *clone = bio_alloc(GFP_NOIO, bio_segments(bio));
|
|
|
|
memcpy(clone->bi_io_vec,
|
|
bio_iovec(bio),
|
|
bio_segments(bio) * sizeof(struct bio_vec));
|
|
|
|
clone->bi_sector = bio->bi_sector;
|
|
clone->bi_bdev = bio->bi_bdev;
|
|
clone->bi_rw = bio->bi_rw;
|
|
clone->bi_vcnt = bio_segments(bio);
|
|
clone->bi_size = bio->bi_size;
|
|
|
|
clone->bi_private = bio;
|
|
clone->bi_end_io = bch_bi_idx_hack_endio;
|
|
|
|
bio = clone;
|
|
}
|
|
|
|
generic_make_request(bio);
|
|
}
|
|
|
|
/**
|
|
* bch_bio_split - split a bio
|
|
* @bio: bio to split
|
|
* @sectors: number of sectors to split from the front of @bio
|
|
* @gfp: gfp mask
|
|
* @bs: bio set to allocate from
|
|
*
|
|
* Allocates and returns a new bio which represents @sectors from the start of
|
|
* @bio, and updates @bio to represent the remaining sectors.
|
|
*
|
|
* If bio_sectors(@bio) was less than or equal to @sectors, returns @bio
|
|
* unchanged.
|
|
*
|
|
* The newly allocated bio will point to @bio's bi_io_vec, if the split was on a
|
|
* bvec boundry; it is the caller's responsibility to ensure that @bio is not
|
|
* freed before the split.
|
|
*
|
|
* If bch_bio_split() is running under generic_make_request(), it's not safe to
|
|
* allocate more than one bio from the same bio set. Therefore, if it is running
|
|
* under generic_make_request() it masks out __GFP_WAIT when doing the
|
|
* allocation. The caller must check for failure if there's any possibility of
|
|
* it being called from under generic_make_request(); it is then the caller's
|
|
* responsibility to retry from a safe context (by e.g. punting to workqueue).
|
|
*/
|
|
struct bio *bch_bio_split(struct bio *bio, int sectors,
|
|
gfp_t gfp, struct bio_set *bs)
|
|
{
|
|
unsigned idx = bio->bi_idx, vcnt = 0, nbytes = sectors << 9;
|
|
struct bio_vec *bv;
|
|
struct bio *ret = NULL;
|
|
|
|
BUG_ON(sectors <= 0);
|
|
|
|
/*
|
|
* If we're being called from underneath generic_make_request() and we
|
|
* already allocated any bios from this bio set, we risk deadlock if we
|
|
* use the mempool. So instead, we possibly fail and let the caller punt
|
|
* to workqueue or somesuch and retry in a safe context.
|
|
*/
|
|
if (current->bio_list)
|
|
gfp &= ~__GFP_WAIT;
|
|
|
|
if (sectors >= bio_sectors(bio))
|
|
return bio;
|
|
|
|
if (bio->bi_rw & REQ_DISCARD) {
|
|
ret = bio_alloc_bioset(gfp, 1, bs);
|
|
idx = 0;
|
|
goto out;
|
|
}
|
|
|
|
bio_for_each_segment(bv, bio, idx) {
|
|
vcnt = idx - bio->bi_idx;
|
|
|
|
if (!nbytes) {
|
|
ret = bio_alloc_bioset(gfp, vcnt, bs);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
memcpy(ret->bi_io_vec, bio_iovec(bio),
|
|
sizeof(struct bio_vec) * vcnt);
|
|
|
|
break;
|
|
} else if (nbytes < bv->bv_len) {
|
|
ret = bio_alloc_bioset(gfp, ++vcnt, bs);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
memcpy(ret->bi_io_vec, bio_iovec(bio),
|
|
sizeof(struct bio_vec) * vcnt);
|
|
|
|
ret->bi_io_vec[vcnt - 1].bv_len = nbytes;
|
|
bv->bv_offset += nbytes;
|
|
bv->bv_len -= nbytes;
|
|
break;
|
|
}
|
|
|
|
nbytes -= bv->bv_len;
|
|
}
|
|
out:
|
|
ret->bi_bdev = bio->bi_bdev;
|
|
ret->bi_sector = bio->bi_sector;
|
|
ret->bi_size = sectors << 9;
|
|
ret->bi_rw = bio->bi_rw;
|
|
ret->bi_vcnt = vcnt;
|
|
ret->bi_max_vecs = vcnt;
|
|
|
|
bio->bi_sector += sectors;
|
|
bio->bi_size -= sectors << 9;
|
|
bio->bi_idx = idx;
|
|
|
|
if (bio_integrity(bio)) {
|
|
if (bio_integrity_clone(ret, bio, gfp)) {
|
|
bio_put(ret);
|
|
return NULL;
|
|
}
|
|
|
|
bio_integrity_trim(ret, 0, bio_sectors(ret));
|
|
bio_integrity_trim(bio, bio_sectors(ret), bio_sectors(bio));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned bch_bio_max_sectors(struct bio *bio)
|
|
{
|
|
unsigned ret = bio_sectors(bio);
|
|
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
|
|
struct bio_vec *bv, *end = bio_iovec(bio) +
|
|
min_t(int, bio_segments(bio), queue_max_segments(q));
|
|
|
|
struct bvec_merge_data bvm = {
|
|
.bi_bdev = bio->bi_bdev,
|
|
.bi_sector = bio->bi_sector,
|
|
.bi_size = 0,
|
|
.bi_rw = bio->bi_rw,
|
|
};
|
|
|
|
if (bio->bi_rw & REQ_DISCARD)
|
|
return min(ret, q->limits.max_discard_sectors);
|
|
|
|
if (bio_segments(bio) > queue_max_segments(q) ||
|
|
q->merge_bvec_fn) {
|
|
ret = 0;
|
|
|
|
for (bv = bio_iovec(bio); bv < end; bv++) {
|
|
if (q->merge_bvec_fn &&
|
|
q->merge_bvec_fn(q, &bvm, bv) < (int) bv->bv_len)
|
|
break;
|
|
|
|
ret += bv->bv_len >> 9;
|
|
bvm.bi_size += bv->bv_len;
|
|
}
|
|
|
|
if (ret >= (BIO_MAX_PAGES * PAGE_SIZE) >> 9)
|
|
return (BIO_MAX_PAGES * PAGE_SIZE) >> 9;
|
|
}
|
|
|
|
ret = min(ret, queue_max_sectors(q));
|
|
|
|
WARN_ON(!ret);
|
|
ret = max_t(int, ret, bio_iovec(bio)->bv_len >> 9);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bch_bio_submit_split_done(struct closure *cl)
|
|
{
|
|
struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl);
|
|
|
|
s->bio->bi_end_io = s->bi_end_io;
|
|
s->bio->bi_private = s->bi_private;
|
|
bio_endio(s->bio, 0);
|
|
|
|
closure_debug_destroy(&s->cl);
|
|
mempool_free(s, s->p->bio_split_hook);
|
|
}
|
|
|
|
static void bch_bio_submit_split_endio(struct bio *bio, int error)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl);
|
|
|
|
if (error)
|
|
clear_bit(BIO_UPTODATE, &s->bio->bi_flags);
|
|
|
|
bio_put(bio);
|
|
closure_put(cl);
|
|
}
|
|
|
|
static void __bch_bio_submit_split(struct closure *cl)
|
|
{
|
|
struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl);
|
|
struct bio *bio = s->bio, *n;
|
|
|
|
do {
|
|
n = bch_bio_split(bio, bch_bio_max_sectors(bio),
|
|
GFP_NOIO, s->p->bio_split);
|
|
if (!n)
|
|
continue_at(cl, __bch_bio_submit_split, system_wq);
|
|
|
|
n->bi_end_io = bch_bio_submit_split_endio;
|
|
n->bi_private = cl;
|
|
|
|
closure_get(cl);
|
|
bch_generic_make_request_hack(n);
|
|
} while (n != bio);
|
|
|
|
continue_at(cl, bch_bio_submit_split_done, NULL);
|
|
}
|
|
|
|
void bch_generic_make_request(struct bio *bio, struct bio_split_pool *p)
|
|
{
|
|
struct bio_split_hook *s;
|
|
|
|
if (!bio_has_data(bio) && !(bio->bi_rw & REQ_DISCARD))
|
|
goto submit;
|
|
|
|
if (bio_sectors(bio) <= bch_bio_max_sectors(bio))
|
|
goto submit;
|
|
|
|
s = mempool_alloc(p->bio_split_hook, GFP_NOIO);
|
|
|
|
s->bio = bio;
|
|
s->p = p;
|
|
s->bi_end_io = bio->bi_end_io;
|
|
s->bi_private = bio->bi_private;
|
|
bio_get(bio);
|
|
|
|
closure_call(&s->cl, __bch_bio_submit_split, NULL, NULL);
|
|
return;
|
|
submit:
|
|
bch_generic_make_request_hack(bio);
|
|
}
|
|
|
|
/* Bios with headers */
|
|
|
|
void bch_bbio_free(struct bio *bio, struct cache_set *c)
|
|
{
|
|
struct bbio *b = container_of(bio, struct bbio, bio);
|
|
mempool_free(b, c->bio_meta);
|
|
}
|
|
|
|
struct bio *bch_bbio_alloc(struct cache_set *c)
|
|
{
|
|
struct bbio *b = mempool_alloc(c->bio_meta, GFP_NOIO);
|
|
struct bio *bio = &b->bio;
|
|
|
|
bio_init(bio);
|
|
bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
|
|
bio->bi_max_vecs = bucket_pages(c);
|
|
bio->bi_io_vec = bio->bi_inline_vecs;
|
|
|
|
return bio;
|
|
}
|
|
|
|
void __bch_submit_bbio(struct bio *bio, struct cache_set *c)
|
|
{
|
|
struct bbio *b = container_of(bio, struct bbio, bio);
|
|
|
|
bio->bi_sector = PTR_OFFSET(&b->key, 0);
|
|
bio->bi_bdev = PTR_CACHE(c, &b->key, 0)->bdev;
|
|
|
|
b->submit_time_us = local_clock_us();
|
|
closure_bio_submit(bio, bio->bi_private, PTR_CACHE(c, &b->key, 0));
|
|
}
|
|
|
|
void bch_submit_bbio(struct bio *bio, struct cache_set *c,
|
|
struct bkey *k, unsigned ptr)
|
|
{
|
|
struct bbio *b = container_of(bio, struct bbio, bio);
|
|
bch_bkey_copy_single_ptr(&b->key, k, ptr);
|
|
__bch_submit_bbio(bio, c);
|
|
}
|
|
|
|
/* IO errors */
|
|
|
|
void bch_count_io_errors(struct cache *ca, int error, const char *m)
|
|
{
|
|
/*
|
|
* The halflife of an error is:
|
|
* log2(1/2)/log2(127/128) * refresh ~= 88 * refresh
|
|
*/
|
|
|
|
if (ca->set->error_decay) {
|
|
unsigned count = atomic_inc_return(&ca->io_count);
|
|
|
|
while (count > ca->set->error_decay) {
|
|
unsigned errors;
|
|
unsigned old = count;
|
|
unsigned new = count - ca->set->error_decay;
|
|
|
|
/*
|
|
* First we subtract refresh from count; each time we
|
|
* succesfully do so, we rescale the errors once:
|
|
*/
|
|
|
|
count = atomic_cmpxchg(&ca->io_count, old, new);
|
|
|
|
if (count == old) {
|
|
count = new;
|
|
|
|
errors = atomic_read(&ca->io_errors);
|
|
do {
|
|
old = errors;
|
|
new = ((uint64_t) errors * 127) / 128;
|
|
errors = atomic_cmpxchg(&ca->io_errors,
|
|
old, new);
|
|
} while (old != errors);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (error) {
|
|
char buf[BDEVNAME_SIZE];
|
|
unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT,
|
|
&ca->io_errors);
|
|
errors >>= IO_ERROR_SHIFT;
|
|
|
|
if (errors < ca->set->error_limit)
|
|
pr_err("%s: IO error on %s, recovering",
|
|
bdevname(ca->bdev, buf), m);
|
|
else
|
|
bch_cache_set_error(ca->set,
|
|
"%s: too many IO errors %s",
|
|
bdevname(ca->bdev, buf), m);
|
|
}
|
|
}
|
|
|
|
void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
|
|
int error, const char *m)
|
|
{
|
|
struct bbio *b = container_of(bio, struct bbio, bio);
|
|
struct cache *ca = PTR_CACHE(c, &b->key, 0);
|
|
|
|
unsigned threshold = bio->bi_rw & REQ_WRITE
|
|
? c->congested_write_threshold_us
|
|
: c->congested_read_threshold_us;
|
|
|
|
if (threshold) {
|
|
unsigned t = local_clock_us();
|
|
|
|
int us = t - b->submit_time_us;
|
|
int congested = atomic_read(&c->congested);
|
|
|
|
if (us > (int) threshold) {
|
|
int ms = us / 1024;
|
|
c->congested_last_us = t;
|
|
|
|
ms = min(ms, CONGESTED_MAX + congested);
|
|
atomic_sub(ms, &c->congested);
|
|
} else if (congested < 0)
|
|
atomic_inc(&c->congested);
|
|
}
|
|
|
|
bch_count_io_errors(ca, error, m);
|
|
}
|
|
|
|
void bch_bbio_endio(struct cache_set *c, struct bio *bio,
|
|
int error, const char *m)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
|
|
bch_bbio_count_io_errors(c, bio, error, m);
|
|
bio_put(bio);
|
|
closure_put(cl);
|
|
}
|