linux/arch/sparc64/kernel/prom.c
David S. Miller c73fcc846c [SPARC]: Fix serial console device detection.
The current scheme works on static interpretation of text names, which
is wrong.

The output-device setting, for example, must be resolved via an alias
or similar to a full path name to the console device.

Paths also contain an optional set of 'options', which starts with a
colon at the end of the path.  The option area is used to specify
which of two serial ports ('a' or 'b') the path refers to when a
device node drives multiple ports.  'a' is assumed if the option
specification is missing.

This was caught by the UltraSPARC-T1 simulator.  The 'output-device'
property was set to 'ttya' and we didn't pick upon the fact that this
is an OBP alias set to '/virtual-devices/console'.  Instead we saw it
as the first serial console device, instead of the hypervisor console.

The infrastructure is now there to take advantage of this to resolve
the console correctly even in multi-head situations in fbcon too.

Thanks to Greg Onufer for the bug report.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-07-20 16:59:26 -07:00

1723 lines
42 KiB
C

/*
* Procedures for creating, accessing and interpreting the device tree.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* Adapted for sparc64 by David S. Miller davem@davemloft.net
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <asm/prom.h>
#include <asm/of_device.h>
#include <asm/oplib.h>
#include <asm/irq.h>
#include <asm/asi.h>
#include <asm/upa.h>
#include <asm/smp.h>
extern struct device_node *allnodes; /* temporary while merging */
extern rwlock_t devtree_lock; /* temporary while merging */
struct device_node *of_find_node_by_phandle(phandle handle)
{
struct device_node *np;
for (np = allnodes; np != 0; np = np->allnext)
if (np->node == handle)
break;
return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);
int of_getintprop_default(struct device_node *np, const char *name, int def)
{
struct property *prop;
int len;
prop = of_find_property(np, name, &len);
if (!prop || len != 4)
return def;
return *(int *) prop->value;
}
EXPORT_SYMBOL(of_getintprop_default);
int of_set_property(struct device_node *dp, const char *name, void *val, int len)
{
struct property **prevp;
void *new_val;
int err;
new_val = kmalloc(len, GFP_KERNEL);
if (!new_val)
return -ENOMEM;
memcpy(new_val, val, len);
err = -ENODEV;
write_lock(&devtree_lock);
prevp = &dp->properties;
while (*prevp) {
struct property *prop = *prevp;
if (!strcasecmp(prop->name, name)) {
void *old_val = prop->value;
int ret;
ret = prom_setprop(dp->node, name, val, len);
err = -EINVAL;
if (ret >= 0) {
prop->value = new_val;
prop->length = len;
if (OF_IS_DYNAMIC(prop))
kfree(old_val);
OF_MARK_DYNAMIC(prop);
err = 0;
}
break;
}
prevp = &(*prevp)->next;
}
write_unlock(&devtree_lock);
/* XXX Upate procfs if necessary... */
return err;
}
EXPORT_SYMBOL(of_set_property);
static unsigned int prom_early_allocated;
static void * __init prom_early_alloc(unsigned long size)
{
void *ret;
ret = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
if (ret != NULL)
memset(ret, 0, size);
prom_early_allocated += size;
return ret;
}
#ifdef CONFIG_PCI
/* PSYCHO interrupt mapping support. */
#define PSYCHO_IMAP_A_SLOT0 0x0c00UL
#define PSYCHO_IMAP_B_SLOT0 0x0c20UL
static unsigned long psycho_pcislot_imap_offset(unsigned long ino)
{
unsigned int bus = (ino & 0x10) >> 4;
unsigned int slot = (ino & 0x0c) >> 2;
if (bus == 0)
return PSYCHO_IMAP_A_SLOT0 + (slot * 8);
else
return PSYCHO_IMAP_B_SLOT0 + (slot * 8);
}
#define PSYCHO_IMAP_SCSI 0x1000UL
#define PSYCHO_IMAP_ETH 0x1008UL
#define PSYCHO_IMAP_BPP 0x1010UL
#define PSYCHO_IMAP_AU_REC 0x1018UL
#define PSYCHO_IMAP_AU_PLAY 0x1020UL
#define PSYCHO_IMAP_PFAIL 0x1028UL
#define PSYCHO_IMAP_KMS 0x1030UL
#define PSYCHO_IMAP_FLPY 0x1038UL
#define PSYCHO_IMAP_SHW 0x1040UL
#define PSYCHO_IMAP_KBD 0x1048UL
#define PSYCHO_IMAP_MS 0x1050UL
#define PSYCHO_IMAP_SER 0x1058UL
#define PSYCHO_IMAP_TIM0 0x1060UL
#define PSYCHO_IMAP_TIM1 0x1068UL
#define PSYCHO_IMAP_UE 0x1070UL
#define PSYCHO_IMAP_CE 0x1078UL
#define PSYCHO_IMAP_A_ERR 0x1080UL
#define PSYCHO_IMAP_B_ERR 0x1088UL
#define PSYCHO_IMAP_PMGMT 0x1090UL
#define PSYCHO_IMAP_GFX 0x1098UL
#define PSYCHO_IMAP_EUPA 0x10a0UL
static unsigned long __psycho_onboard_imap_off[] = {
/*0x20*/ PSYCHO_IMAP_SCSI,
/*0x21*/ PSYCHO_IMAP_ETH,
/*0x22*/ PSYCHO_IMAP_BPP,
/*0x23*/ PSYCHO_IMAP_AU_REC,
/*0x24*/ PSYCHO_IMAP_AU_PLAY,
/*0x25*/ PSYCHO_IMAP_PFAIL,
/*0x26*/ PSYCHO_IMAP_KMS,
/*0x27*/ PSYCHO_IMAP_FLPY,
/*0x28*/ PSYCHO_IMAP_SHW,
/*0x29*/ PSYCHO_IMAP_KBD,
/*0x2a*/ PSYCHO_IMAP_MS,
/*0x2b*/ PSYCHO_IMAP_SER,
/*0x2c*/ PSYCHO_IMAP_TIM0,
/*0x2d*/ PSYCHO_IMAP_TIM1,
/*0x2e*/ PSYCHO_IMAP_UE,
/*0x2f*/ PSYCHO_IMAP_CE,
/*0x30*/ PSYCHO_IMAP_A_ERR,
/*0x31*/ PSYCHO_IMAP_B_ERR,
/*0x32*/ PSYCHO_IMAP_PMGMT,
/*0x33*/ PSYCHO_IMAP_GFX,
/*0x34*/ PSYCHO_IMAP_EUPA,
};
#define PSYCHO_ONBOARD_IRQ_BASE 0x20
#define PSYCHO_ONBOARD_IRQ_LAST 0x34
#define psycho_onboard_imap_offset(__ino) \
__psycho_onboard_imap_off[(__ino) - PSYCHO_ONBOARD_IRQ_BASE]
#define PSYCHO_ICLR_A_SLOT0 0x1400UL
#define PSYCHO_ICLR_SCSI 0x1800UL
#define psycho_iclr_offset(ino) \
((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
(PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
static unsigned int psycho_irq_build(struct device_node *dp,
unsigned int ino,
void *_data)
{
unsigned long controller_regs = (unsigned long) _data;
unsigned long imap, iclr;
unsigned long imap_off, iclr_off;
int inofixup = 0;
ino &= 0x3f;
if (ino < PSYCHO_ONBOARD_IRQ_BASE) {
/* PCI slot */
imap_off = psycho_pcislot_imap_offset(ino);
} else {
/* Onboard device */
if (ino > PSYCHO_ONBOARD_IRQ_LAST) {
prom_printf("psycho_irq_build: Wacky INO [%x]\n", ino);
prom_halt();
}
imap_off = psycho_onboard_imap_offset(ino);
}
/* Now build the IRQ bucket. */
imap = controller_regs + imap_off;
iclr_off = psycho_iclr_offset(ino);
iclr = controller_regs + iclr_off;
if ((ino & 0x20) == 0)
inofixup = ino & 0x03;
return build_irq(inofixup, iclr, imap);
}
static void __init psycho_irq_trans_init(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = psycho_irq_build;
regs = of_get_property(dp, "reg", NULL);
dp->irq_trans->data = (void *) regs[2].phys_addr;
}
#define sabre_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
struct sabre_irq_data {
unsigned long controller_regs;
unsigned int pci_first_busno;
};
#define SABRE_CONFIGSPACE 0x001000000UL
#define SABRE_WRSYNC 0x1c20UL
#define SABRE_CONFIG_BASE(CONFIG_SPACE) \
(CONFIG_SPACE | (1UL << 24))
#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
(((unsigned long)(BUS) << 16) | \
((unsigned long)(DEVFN) << 8) | \
((unsigned long)(REG)))
/* When a device lives behind a bridge deeper in the PCI bus topology
* than APB, a special sequence must run to make sure all pending DMA
* transfers at the time of IRQ delivery are visible in the coherency
* domain by the cpu. This sequence is to perform a read on the far
* side of the non-APB bridge, then perform a read of Sabre's DMA
* write-sync register.
*/
static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
{
unsigned int phys_hi = (unsigned int) (unsigned long) _arg1;
struct sabre_irq_data *irq_data = _arg2;
unsigned long controller_regs = irq_data->controller_regs;
unsigned long sync_reg = controller_regs + SABRE_WRSYNC;
unsigned long config_space = controller_regs + SABRE_CONFIGSPACE;
unsigned int bus, devfn;
u16 _unused;
config_space = SABRE_CONFIG_BASE(config_space);
bus = (phys_hi >> 16) & 0xff;
devfn = (phys_hi >> 8) & 0xff;
config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00);
__asm__ __volatile__("membar #Sync\n\t"
"lduha [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (_unused)
: "r" ((u16 *) config_space),
"i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
sabre_read(sync_reg);
}
#define SABRE_IMAP_A_SLOT0 0x0c00UL
#define SABRE_IMAP_B_SLOT0 0x0c20UL
#define SABRE_IMAP_SCSI 0x1000UL
#define SABRE_IMAP_ETH 0x1008UL
#define SABRE_IMAP_BPP 0x1010UL
#define SABRE_IMAP_AU_REC 0x1018UL
#define SABRE_IMAP_AU_PLAY 0x1020UL
#define SABRE_IMAP_PFAIL 0x1028UL
#define SABRE_IMAP_KMS 0x1030UL
#define SABRE_IMAP_FLPY 0x1038UL
#define SABRE_IMAP_SHW 0x1040UL
#define SABRE_IMAP_KBD 0x1048UL
#define SABRE_IMAP_MS 0x1050UL
#define SABRE_IMAP_SER 0x1058UL
#define SABRE_IMAP_UE 0x1070UL
#define SABRE_IMAP_CE 0x1078UL
#define SABRE_IMAP_PCIERR 0x1080UL
#define SABRE_IMAP_GFX 0x1098UL
#define SABRE_IMAP_EUPA 0x10a0UL
#define SABRE_ICLR_A_SLOT0 0x1400UL
#define SABRE_ICLR_B_SLOT0 0x1480UL
#define SABRE_ICLR_SCSI 0x1800UL
#define SABRE_ICLR_ETH 0x1808UL
#define SABRE_ICLR_BPP 0x1810UL
#define SABRE_ICLR_AU_REC 0x1818UL
#define SABRE_ICLR_AU_PLAY 0x1820UL
#define SABRE_ICLR_PFAIL 0x1828UL
#define SABRE_ICLR_KMS 0x1830UL
#define SABRE_ICLR_FLPY 0x1838UL
#define SABRE_ICLR_SHW 0x1840UL
#define SABRE_ICLR_KBD 0x1848UL
#define SABRE_ICLR_MS 0x1850UL
#define SABRE_ICLR_SER 0x1858UL
#define SABRE_ICLR_UE 0x1870UL
#define SABRE_ICLR_CE 0x1878UL
#define SABRE_ICLR_PCIERR 0x1880UL
static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
{
unsigned int bus = (ino & 0x10) >> 4;
unsigned int slot = (ino & 0x0c) >> 2;
if (bus == 0)
return SABRE_IMAP_A_SLOT0 + (slot * 8);
else
return SABRE_IMAP_B_SLOT0 + (slot * 8);
}
static unsigned long __sabre_onboard_imap_off[] = {
/*0x20*/ SABRE_IMAP_SCSI,
/*0x21*/ SABRE_IMAP_ETH,
/*0x22*/ SABRE_IMAP_BPP,
/*0x23*/ SABRE_IMAP_AU_REC,
/*0x24*/ SABRE_IMAP_AU_PLAY,
/*0x25*/ SABRE_IMAP_PFAIL,
/*0x26*/ SABRE_IMAP_KMS,
/*0x27*/ SABRE_IMAP_FLPY,
/*0x28*/ SABRE_IMAP_SHW,
/*0x29*/ SABRE_IMAP_KBD,
/*0x2a*/ SABRE_IMAP_MS,
/*0x2b*/ SABRE_IMAP_SER,
/*0x2c*/ 0 /* reserved */,
/*0x2d*/ 0 /* reserved */,
/*0x2e*/ SABRE_IMAP_UE,
/*0x2f*/ SABRE_IMAP_CE,
/*0x30*/ SABRE_IMAP_PCIERR,
/*0x31*/ 0 /* reserved */,
/*0x32*/ 0 /* reserved */,
/*0x33*/ SABRE_IMAP_GFX,
/*0x34*/ SABRE_IMAP_EUPA,
};
#define SABRE_ONBOARD_IRQ_BASE 0x20
#define SABRE_ONBOARD_IRQ_LAST 0x30
#define sabre_onboard_imap_offset(__ino) \
__sabre_onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
#define sabre_iclr_offset(ino) \
((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
(SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
static int sabre_device_needs_wsync(struct device_node *dp)
{
struct device_node *parent = dp->parent;
const char *parent_model, *parent_compat;
/* This traversal up towards the root is meant to
* handle two cases:
*
* 1) non-PCI bus sitting under PCI, such as 'ebus'
* 2) the PCI controller interrupts themselves, which
* will use the sabre_irq_build but do not need
* the DMA synchronization handling
*/
while (parent) {
if (!strcmp(parent->type, "pci"))
break;
parent = parent->parent;
}
if (!parent)
return 0;
parent_model = of_get_property(parent,
"model", NULL);
if (parent_model &&
(!strcmp(parent_model, "SUNW,sabre") ||
!strcmp(parent_model, "SUNW,simba")))
return 0;
parent_compat = of_get_property(parent,
"compatible", NULL);
if (parent_compat &&
(!strcmp(parent_compat, "pci108e,a000") ||
!strcmp(parent_compat, "pci108e,a001")))
return 0;
return 1;
}
static unsigned int sabre_irq_build(struct device_node *dp,
unsigned int ino,
void *_data)
{
struct sabre_irq_data *irq_data = _data;
unsigned long controller_regs = irq_data->controller_regs;
const struct linux_prom_pci_registers *regs;
unsigned long imap, iclr;
unsigned long imap_off, iclr_off;
int inofixup = 0;
int virt_irq;
ino &= 0x3f;
if (ino < SABRE_ONBOARD_IRQ_BASE) {
/* PCI slot */
imap_off = sabre_pcislot_imap_offset(ino);
} else {
/* onboard device */
if (ino > SABRE_ONBOARD_IRQ_LAST) {
prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
prom_halt();
}
imap_off = sabre_onboard_imap_offset(ino);
}
/* Now build the IRQ bucket. */
imap = controller_regs + imap_off;
iclr_off = sabre_iclr_offset(ino);
iclr = controller_regs + iclr_off;
if ((ino & 0x20) == 0)
inofixup = ino & 0x03;
virt_irq = build_irq(inofixup, iclr, imap);
/* If the parent device is a PCI<->PCI bridge other than
* APB, we have to install a pre-handler to ensure that
* all pending DMA is drained before the interrupt handler
* is run.
*/
regs = of_get_property(dp, "reg", NULL);
if (regs && sabre_device_needs_wsync(dp)) {
irq_install_pre_handler(virt_irq,
sabre_wsync_handler,
(void *) (long) regs->phys_hi,
(void *) irq_data);
}
return virt_irq;
}
static void __init sabre_irq_trans_init(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
struct sabre_irq_data *irq_data;
const u32 *busrange;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = sabre_irq_build;
irq_data = prom_early_alloc(sizeof(struct sabre_irq_data));
regs = of_get_property(dp, "reg", NULL);
irq_data->controller_regs = regs[0].phys_addr;
busrange = of_get_property(dp, "bus-range", NULL);
irq_data->pci_first_busno = busrange[0];
dp->irq_trans->data = irq_data;
}
/* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the
* imap/iclr registers are per-PBM.
*/
#define SCHIZO_IMAP_BASE 0x1000UL
#define SCHIZO_ICLR_BASE 0x1400UL
static unsigned long schizo_imap_offset(unsigned long ino)
{
return SCHIZO_IMAP_BASE + (ino * 8UL);
}
static unsigned long schizo_iclr_offset(unsigned long ino)
{
return SCHIZO_ICLR_BASE + (ino * 8UL);
}
static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs,
unsigned int ino)
{
return pbm_regs + schizo_iclr_offset(ino);
}
static unsigned long schizo_ino_to_imap(unsigned long pbm_regs,
unsigned int ino)
{
return pbm_regs + schizo_imap_offset(ino);
}
#define schizo_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define schizo_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E) \
: "memory")
static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
{
unsigned long sync_reg = (unsigned long) _arg2;
u64 mask = 1UL << (ino & IMAP_INO);
u64 val;
int limit;
schizo_write(sync_reg, mask);
limit = 100000;
val = 0;
while (--limit) {
val = schizo_read(sync_reg);
if (!(val & mask))
break;
}
if (limit <= 0) {
printk("tomatillo_wsync_handler: DMA won't sync [%lx:%lx]\n",
val, mask);
}
if (_arg1) {
static unsigned char cacheline[64]
__attribute__ ((aligned (64)));
__asm__ __volatile__("rd %%fprs, %0\n\t"
"or %0, %4, %1\n\t"
"wr %1, 0x0, %%fprs\n\t"
"stda %%f0, [%5] %6\n\t"
"wr %0, 0x0, %%fprs\n\t"
"membar #Sync"
: "=&r" (mask), "=&r" (val)
: "0" (mask), "1" (val),
"i" (FPRS_FEF), "r" (&cacheline[0]),
"i" (ASI_BLK_COMMIT_P));
}
}
struct schizo_irq_data {
unsigned long pbm_regs;
unsigned long sync_reg;
u32 portid;
int chip_version;
};
static unsigned int schizo_irq_build(struct device_node *dp,
unsigned int ino,
void *_data)
{
struct schizo_irq_data *irq_data = _data;
unsigned long pbm_regs = irq_data->pbm_regs;
unsigned long imap, iclr;
int ign_fixup;
int virt_irq;
int is_tomatillo;
ino &= 0x3f;
/* Now build the IRQ bucket. */
imap = schizo_ino_to_imap(pbm_regs, ino);
iclr = schizo_ino_to_iclr(pbm_regs, ino);
/* On Schizo, no inofixup occurs. This is because each
* INO has it's own IMAP register. On Psycho and Sabre
* there is only one IMAP register for each PCI slot even
* though four different INOs can be generated by each
* PCI slot.
*
* But, for JBUS variants (essentially, Tomatillo), we have
* to fixup the lowest bit of the interrupt group number.
*/
ign_fixup = 0;
is_tomatillo = (irq_data->sync_reg != 0UL);
if (is_tomatillo) {
if (irq_data->portid & 1)
ign_fixup = (1 << 6);
}
virt_irq = build_irq(ign_fixup, iclr, imap);
if (is_tomatillo) {
irq_install_pre_handler(virt_irq,
tomatillo_wsync_handler,
((irq_data->chip_version <= 4) ?
(void *) 1 : (void *) 0),
(void *) irq_data->sync_reg);
}
return virt_irq;
}
static void __init __schizo_irq_trans_init(struct device_node *dp,
int is_tomatillo)
{
const struct linux_prom64_registers *regs;
struct schizo_irq_data *irq_data;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = schizo_irq_build;
irq_data = prom_early_alloc(sizeof(struct schizo_irq_data));
regs = of_get_property(dp, "reg", NULL);
dp->irq_trans->data = irq_data;
irq_data->pbm_regs = regs[0].phys_addr;
if (is_tomatillo)
irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL;
else
irq_data->sync_reg = 0UL;
irq_data->portid = of_getintprop_default(dp, "portid", 0);
irq_data->chip_version = of_getintprop_default(dp, "version#", 0);
}
static void __init schizo_irq_trans_init(struct device_node *dp)
{
__schizo_irq_trans_init(dp, 0);
}
static void __init tomatillo_irq_trans_init(struct device_node *dp)
{
__schizo_irq_trans_init(dp, 1);
}
static unsigned int pci_sun4v_irq_build(struct device_node *dp,
unsigned int devino,
void *_data)
{
u32 devhandle = (u32) (unsigned long) _data;
return sun4v_build_irq(devhandle, devino);
}
static void __init pci_sun4v_irq_trans_init(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = pci_sun4v_irq_build;
regs = of_get_property(dp, "reg", NULL);
dp->irq_trans->data = (void *) (unsigned long)
((regs->phys_addr >> 32UL) & 0x0fffffff);
}
struct fire_irq_data {
unsigned long pbm_regs;
u32 portid;
};
#define FIRE_IMAP_BASE 0x001000
#define FIRE_ICLR_BASE 0x001400
static unsigned long fire_imap_offset(unsigned long ino)
{
return FIRE_IMAP_BASE + (ino * 8UL);
}
static unsigned long fire_iclr_offset(unsigned long ino)
{
return FIRE_ICLR_BASE + (ino * 8UL);
}
static unsigned long fire_ino_to_iclr(unsigned long pbm_regs,
unsigned int ino)
{
return pbm_regs + fire_iclr_offset(ino);
}
static unsigned long fire_ino_to_imap(unsigned long pbm_regs,
unsigned int ino)
{
return pbm_regs + fire_imap_offset(ino);
}
static unsigned int fire_irq_build(struct device_node *dp,
unsigned int ino,
void *_data)
{
struct fire_irq_data *irq_data = _data;
unsigned long pbm_regs = irq_data->pbm_regs;
unsigned long imap, iclr;
unsigned long int_ctrlr;
ino &= 0x3f;
/* Now build the IRQ bucket. */
imap = fire_ino_to_imap(pbm_regs, ino);
iclr = fire_ino_to_iclr(pbm_regs, ino);
/* Set the interrupt controller number. */
int_ctrlr = 1 << 6;
upa_writeq(int_ctrlr, imap);
/* The interrupt map registers do not have an INO field
* like other chips do. They return zero in the INO
* field, and the interrupt controller number is controlled
* in bits 6 to 9. So in order for build_irq() to get
* the INO right we pass it in as part of the fixup
* which will get added to the map register zero value
* read by build_irq().
*/
ino |= (irq_data->portid << 6);
ino -= int_ctrlr;
return build_irq(ino, iclr, imap);
}
static void __init fire_irq_trans_init(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
struct fire_irq_data *irq_data;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = fire_irq_build;
irq_data = prom_early_alloc(sizeof(struct fire_irq_data));
regs = of_get_property(dp, "reg", NULL);
dp->irq_trans->data = irq_data;
irq_data->pbm_regs = regs[0].phys_addr;
irq_data->portid = of_getintprop_default(dp, "portid", 0);
}
#endif /* CONFIG_PCI */
#ifdef CONFIG_SBUS
/* INO number to IMAP register offset for SYSIO external IRQ's.
* This should conform to both Sunfire/Wildfire server and Fusion
* desktop designs.
*/
#define SYSIO_IMAP_SLOT0 0x2c00UL
#define SYSIO_IMAP_SLOT1 0x2c08UL
#define SYSIO_IMAP_SLOT2 0x2c10UL
#define SYSIO_IMAP_SLOT3 0x2c18UL
#define SYSIO_IMAP_SCSI 0x3000UL
#define SYSIO_IMAP_ETH 0x3008UL
#define SYSIO_IMAP_BPP 0x3010UL
#define SYSIO_IMAP_AUDIO 0x3018UL
#define SYSIO_IMAP_PFAIL 0x3020UL
#define SYSIO_IMAP_KMS 0x3028UL
#define SYSIO_IMAP_FLPY 0x3030UL
#define SYSIO_IMAP_SHW 0x3038UL
#define SYSIO_IMAP_KBD 0x3040UL
#define SYSIO_IMAP_MS 0x3048UL
#define SYSIO_IMAP_SER 0x3050UL
#define SYSIO_IMAP_TIM0 0x3060UL
#define SYSIO_IMAP_TIM1 0x3068UL
#define SYSIO_IMAP_UE 0x3070UL
#define SYSIO_IMAP_CE 0x3078UL
#define SYSIO_IMAP_SBERR 0x3080UL
#define SYSIO_IMAP_PMGMT 0x3088UL
#define SYSIO_IMAP_GFX 0x3090UL
#define SYSIO_IMAP_EUPA 0x3098UL
#define bogon ((unsigned long) -1)
static unsigned long sysio_irq_offsets[] = {
/* SBUS Slot 0 --> 3, level 1 --> 7 */
SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
/* Onboard devices (not relevant/used on SunFire). */
SYSIO_IMAP_SCSI,
SYSIO_IMAP_ETH,
SYSIO_IMAP_BPP,
bogon,
SYSIO_IMAP_AUDIO,
SYSIO_IMAP_PFAIL,
bogon,
bogon,
SYSIO_IMAP_KMS,
SYSIO_IMAP_FLPY,
SYSIO_IMAP_SHW,
SYSIO_IMAP_KBD,
SYSIO_IMAP_MS,
SYSIO_IMAP_SER,
bogon,
bogon,
SYSIO_IMAP_TIM0,
SYSIO_IMAP_TIM1,
bogon,
bogon,
SYSIO_IMAP_UE,
SYSIO_IMAP_CE,
SYSIO_IMAP_SBERR,
SYSIO_IMAP_PMGMT,
SYSIO_IMAP_GFX,
SYSIO_IMAP_EUPA,
};
#undef bogon
#define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets)
/* Convert Interrupt Mapping register pointer to associated
* Interrupt Clear register pointer, SYSIO specific version.
*/
#define SYSIO_ICLR_UNUSED0 0x3400UL
#define SYSIO_ICLR_SLOT0 0x3408UL
#define SYSIO_ICLR_SLOT1 0x3448UL
#define SYSIO_ICLR_SLOT2 0x3488UL
#define SYSIO_ICLR_SLOT3 0x34c8UL
static unsigned long sysio_imap_to_iclr(unsigned long imap)
{
unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
return imap + diff;
}
static unsigned int sbus_of_build_irq(struct device_node *dp,
unsigned int ino,
void *_data)
{
unsigned long reg_base = (unsigned long) _data;
const struct linux_prom_registers *regs;
unsigned long imap, iclr;
int sbus_slot = 0;
int sbus_level = 0;
ino &= 0x3f;
regs = of_get_property(dp, "reg", NULL);
if (regs)
sbus_slot = regs->which_io;
if (ino < 0x20)
ino += (sbus_slot * 8);
imap = sysio_irq_offsets[ino];
if (imap == ((unsigned long)-1)) {
prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n",
ino);
prom_halt();
}
imap += reg_base;
/* SYSIO inconsistency. For external SLOTS, we have to select
* the right ICLR register based upon the lower SBUS irq level
* bits.
*/
if (ino >= 0x20) {
iclr = sysio_imap_to_iclr(imap);
} else {
sbus_level = ino & 0x7;
switch(sbus_slot) {
case 0:
iclr = reg_base + SYSIO_ICLR_SLOT0;
break;
case 1:
iclr = reg_base + SYSIO_ICLR_SLOT1;
break;
case 2:
iclr = reg_base + SYSIO_ICLR_SLOT2;
break;
default:
case 3:
iclr = reg_base + SYSIO_ICLR_SLOT3;
break;
};
iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
}
return build_irq(sbus_level, iclr, imap);
}
static void __init sbus_irq_trans_init(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = sbus_of_build_irq;
regs = of_get_property(dp, "reg", NULL);
dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr;
}
#endif /* CONFIG_SBUS */
static unsigned int central_build_irq(struct device_node *dp,
unsigned int ino,
void *_data)
{
struct device_node *central_dp = _data;
struct of_device *central_op = of_find_device_by_node(central_dp);
struct resource *res;
unsigned long imap, iclr;
u32 tmp;
if (!strcmp(dp->name, "eeprom")) {
res = &central_op->resource[5];
} else if (!strcmp(dp->name, "zs")) {
res = &central_op->resource[4];
} else if (!strcmp(dp->name, "clock-board")) {
res = &central_op->resource[3];
} else {
return ino;
}
imap = res->start + 0x00UL;
iclr = res->start + 0x10UL;
/* Set the INO state to idle, and disable. */
upa_writel(0, iclr);
upa_readl(iclr);
tmp = upa_readl(imap);
tmp &= ~0x80000000;
upa_writel(tmp, imap);
return build_irq(0, iclr, imap);
}
static void __init central_irq_trans_init(struct device_node *dp)
{
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = central_build_irq;
dp->irq_trans->data = dp;
}
struct irq_trans {
const char *name;
void (*init)(struct device_node *);
};
#ifdef CONFIG_PCI
static struct irq_trans __initdata pci_irq_trans_table[] = {
{ "SUNW,sabre", sabre_irq_trans_init },
{ "pci108e,a000", sabre_irq_trans_init },
{ "pci108e,a001", sabre_irq_trans_init },
{ "SUNW,psycho", psycho_irq_trans_init },
{ "pci108e,8000", psycho_irq_trans_init },
{ "SUNW,schizo", schizo_irq_trans_init },
{ "pci108e,8001", schizo_irq_trans_init },
{ "SUNW,schizo+", schizo_irq_trans_init },
{ "pci108e,8002", schizo_irq_trans_init },
{ "SUNW,tomatillo", tomatillo_irq_trans_init },
{ "pci108e,a801", tomatillo_irq_trans_init },
{ "SUNW,sun4v-pci", pci_sun4v_irq_trans_init },
{ "pciex108e,80f0", fire_irq_trans_init },
};
#endif
static unsigned int sun4v_vdev_irq_build(struct device_node *dp,
unsigned int devino,
void *_data)
{
u32 devhandle = (u32) (unsigned long) _data;
return sun4v_build_irq(devhandle, devino);
}
static void __init sun4v_vdev_irq_trans_init(struct device_node *dp)
{
const struct linux_prom64_registers *regs;
dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
dp->irq_trans->irq_build = sun4v_vdev_irq_build;
regs = of_get_property(dp, "reg", NULL);
dp->irq_trans->data = (void *) (unsigned long)
((regs->phys_addr >> 32UL) & 0x0fffffff);
}
static void __init irq_trans_init(struct device_node *dp)
{
#ifdef CONFIG_PCI
const char *model;
int i;
#endif
#ifdef CONFIG_PCI
model = of_get_property(dp, "model", NULL);
if (!model)
model = of_get_property(dp, "compatible", NULL);
if (model) {
for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) {
struct irq_trans *t = &pci_irq_trans_table[i];
if (!strcmp(model, t->name))
return t->init(dp);
}
}
#endif
#ifdef CONFIG_SBUS
if (!strcmp(dp->name, "sbus") ||
!strcmp(dp->name, "sbi"))
return sbus_irq_trans_init(dp);
#endif
if (!strcmp(dp->name, "fhc") &&
!strcmp(dp->parent->name, "central"))
return central_irq_trans_init(dp);
if (!strcmp(dp->name, "virtual-devices"))
return sun4v_vdev_irq_trans_init(dp);
}
static int is_root_node(const struct device_node *dp)
{
if (!dp)
return 0;
return (dp->parent == NULL);
}
/* The following routines deal with the black magic of fully naming a
* node.
*
* Certain well known named nodes are just the simple name string.
*
* Actual devices have an address specifier appended to the base name
* string, like this "foo@addr". The "addr" can be in any number of
* formats, and the platform plus the type of the node determine the
* format and how it is constructed.
*
* For children of the ROOT node, the naming convention is fixed and
* determined by whether this is a sun4u or sun4v system.
*
* For children of other nodes, it is bus type specific. So
* we walk up the tree until we discover a "device_type" property
* we recognize and we go from there.
*
* As an example, the boot device on my workstation has a full path:
*
* /pci@1e,600000/ide@d/disk@0,0:c
*/
static void __init sun4v_path_component(struct device_node *dp, char *tmp_buf)
{
struct linux_prom64_registers *regs;
struct property *rprop;
u32 high_bits, low_bits, type;
rprop = of_find_property(dp, "reg", NULL);
if (!rprop)
return;
regs = rprop->value;
if (!is_root_node(dp->parent)) {
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
(unsigned int) (regs->phys_addr >> 32UL),
(unsigned int) (regs->phys_addr & 0xffffffffUL));
return;
}
type = regs->phys_addr >> 60UL;
high_bits = (regs->phys_addr >> 32UL) & 0x0fffffffUL;
low_bits = (regs->phys_addr & 0xffffffffUL);
if (type == 0 || type == 8) {
const char *prefix = (type == 0) ? "m" : "i";
if (low_bits)
sprintf(tmp_buf, "%s@%s%x,%x",
dp->name, prefix,
high_bits, low_bits);
else
sprintf(tmp_buf, "%s@%s%x",
dp->name,
prefix,
high_bits);
} else if (type == 12) {
sprintf(tmp_buf, "%s@%x",
dp->name, high_bits);
}
}
static void __init sun4u_path_component(struct device_node *dp, char *tmp_buf)
{
struct linux_prom64_registers *regs;
struct property *prop;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
if (!is_root_node(dp->parent)) {
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
(unsigned int) (regs->phys_addr >> 32UL),
(unsigned int) (regs->phys_addr & 0xffffffffUL));
return;
}
prop = of_find_property(dp, "upa-portid", NULL);
if (!prop)
prop = of_find_property(dp, "portid", NULL);
if (prop) {
unsigned long mask = 0xffffffffUL;
if (tlb_type >= cheetah)
mask = 0x7fffff;
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
*(u32 *)prop->value,
(unsigned int) (regs->phys_addr & mask));
}
}
/* "name@slot,offset" */
static void __init sbus_path_component(struct device_node *dp, char *tmp_buf)
{
struct linux_prom_registers *regs;
struct property *prop;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
regs->which_io,
regs->phys_addr);
}
/* "name@devnum[,func]" */
static void __init pci_path_component(struct device_node *dp, char *tmp_buf)
{
struct linux_prom_pci_registers *regs;
struct property *prop;
unsigned int devfn;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
devfn = (regs->phys_hi >> 8) & 0xff;
if (devfn & 0x07) {
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
devfn >> 3,
devfn & 0x07);
} else {
sprintf(tmp_buf, "%s@%x",
dp->name,
devfn >> 3);
}
}
/* "name@UPA_PORTID,offset" */
static void __init upa_path_component(struct device_node *dp, char *tmp_buf)
{
struct linux_prom64_registers *regs;
struct property *prop;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
prop = of_find_property(dp, "upa-portid", NULL);
if (!prop)
return;
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
*(u32 *) prop->value,
(unsigned int) (regs->phys_addr & 0xffffffffUL));
}
/* "name@reg" */
static void __init vdev_path_component(struct device_node *dp, char *tmp_buf)
{
struct property *prop;
u32 *regs;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
sprintf(tmp_buf, "%s@%x", dp->name, *regs);
}
/* "name@addrhi,addrlo" */
static void __init ebus_path_component(struct device_node *dp, char *tmp_buf)
{
struct linux_prom64_registers *regs;
struct property *prop;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
sprintf(tmp_buf, "%s@%x,%x",
dp->name,
(unsigned int) (regs->phys_addr >> 32UL),
(unsigned int) (regs->phys_addr & 0xffffffffUL));
}
/* "name@bus,addr" */
static void __init i2c_path_component(struct device_node *dp, char *tmp_buf)
{
struct property *prop;
u32 *regs;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
/* This actually isn't right... should look at the #address-cells
* property of the i2c bus node etc. etc.
*/
sprintf(tmp_buf, "%s@%x,%x",
dp->name, regs[0], regs[1]);
}
/* "name@reg0[,reg1]" */
static void __init usb_path_component(struct device_node *dp, char *tmp_buf)
{
struct property *prop;
u32 *regs;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
if (prop->length == sizeof(u32) || regs[1] == 1) {
sprintf(tmp_buf, "%s@%x",
dp->name, regs[0]);
} else {
sprintf(tmp_buf, "%s@%x,%x",
dp->name, regs[0], regs[1]);
}
}
/* "name@reg0reg1[,reg2reg3]" */
static void __init ieee1394_path_component(struct device_node *dp, char *tmp_buf)
{
struct property *prop;
u32 *regs;
prop = of_find_property(dp, "reg", NULL);
if (!prop)
return;
regs = prop->value;
if (regs[2] || regs[3]) {
sprintf(tmp_buf, "%s@%08x%08x,%04x%08x",
dp->name, regs[0], regs[1], regs[2], regs[3]);
} else {
sprintf(tmp_buf, "%s@%08x%08x",
dp->name, regs[0], regs[1]);
}
}
static void __init __build_path_component(struct device_node *dp, char *tmp_buf)
{
struct device_node *parent = dp->parent;
if (parent != NULL) {
if (!strcmp(parent->type, "pci") ||
!strcmp(parent->type, "pciex"))
return pci_path_component(dp, tmp_buf);
if (!strcmp(parent->type, "sbus"))
return sbus_path_component(dp, tmp_buf);
if (!strcmp(parent->type, "upa"))
return upa_path_component(dp, tmp_buf);
if (!strcmp(parent->type, "ebus"))
return ebus_path_component(dp, tmp_buf);
if (!strcmp(parent->name, "usb") ||
!strcmp(parent->name, "hub"))
return usb_path_component(dp, tmp_buf);
if (!strcmp(parent->type, "i2c"))
return i2c_path_component(dp, tmp_buf);
if (!strcmp(parent->type, "firewire"))
return ieee1394_path_component(dp, tmp_buf);
if (!strcmp(parent->type, "virtual-devices"))
return vdev_path_component(dp, tmp_buf);
/* "isa" is handled with platform naming */
}
/* Use platform naming convention. */
if (tlb_type == hypervisor)
return sun4v_path_component(dp, tmp_buf);
else
return sun4u_path_component(dp, tmp_buf);
}
static char * __init build_path_component(struct device_node *dp)
{
char tmp_buf[64], *n;
tmp_buf[0] = '\0';
__build_path_component(dp, tmp_buf);
if (tmp_buf[0] == '\0')
strcpy(tmp_buf, dp->name);
n = prom_early_alloc(strlen(tmp_buf) + 1);
strcpy(n, tmp_buf);
return n;
}
static char * __init build_full_name(struct device_node *dp)
{
int len, ourlen, plen;
char *n;
plen = strlen(dp->parent->full_name);
ourlen = strlen(dp->path_component_name);
len = ourlen + plen + 2;
n = prom_early_alloc(len);
strcpy(n, dp->parent->full_name);
if (!is_root_node(dp->parent)) {
strcpy(n + plen, "/");
plen++;
}
strcpy(n + plen, dp->path_component_name);
return n;
}
static unsigned int unique_id;
static struct property * __init build_one_prop(phandle node, char *prev, char *special_name, void *special_val, int special_len)
{
static struct property *tmp = NULL;
struct property *p;
if (tmp) {
p = tmp;
memset(p, 0, sizeof(*p) + 32);
tmp = NULL;
} else {
p = prom_early_alloc(sizeof(struct property) + 32);
p->unique_id = unique_id++;
}
p->name = (char *) (p + 1);
if (special_name) {
strcpy(p->name, special_name);
p->length = special_len;
p->value = prom_early_alloc(special_len);
memcpy(p->value, special_val, special_len);
} else {
if (prev == NULL) {
prom_firstprop(node, p->name);
} else {
prom_nextprop(node, prev, p->name);
}
if (strlen(p->name) == 0) {
tmp = p;
return NULL;
}
p->length = prom_getproplen(node, p->name);
if (p->length <= 0) {
p->length = 0;
} else {
p->value = prom_early_alloc(p->length + 1);
prom_getproperty(node, p->name, p->value, p->length);
((unsigned char *)p->value)[p->length] = '\0';
}
}
return p;
}
static struct property * __init build_prop_list(phandle node)
{
struct property *head, *tail;
head = tail = build_one_prop(node, NULL,
".node", &node, sizeof(node));
tail->next = build_one_prop(node, NULL, NULL, NULL, 0);
tail = tail->next;
while(tail) {
tail->next = build_one_prop(node, tail->name,
NULL, NULL, 0);
tail = tail->next;
}
return head;
}
static char * __init get_one_property(phandle node, const char *name)
{
char *buf = "<NULL>";
int len;
len = prom_getproplen(node, name);
if (len > 0) {
buf = prom_early_alloc(len);
prom_getproperty(node, name, buf, len);
}
return buf;
}
static struct device_node * __init create_node(phandle node, struct device_node *parent)
{
struct device_node *dp;
if (!node)
return NULL;
dp = prom_early_alloc(sizeof(*dp));
dp->unique_id = unique_id++;
dp->parent = parent;
kref_init(&dp->kref);
dp->name = get_one_property(node, "name");
dp->type = get_one_property(node, "device_type");
dp->node = node;
dp->properties = build_prop_list(node);
irq_trans_init(dp);
return dp;
}
static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp)
{
struct device_node *ret = NULL, *prev_sibling = NULL;
struct device_node *dp;
while (1) {
dp = create_node(node, parent);
if (!dp)
break;
if (prev_sibling)
prev_sibling->sibling = dp;
if (!ret)
ret = dp;
prev_sibling = dp;
*(*nextp) = dp;
*nextp = &dp->allnext;
dp->path_component_name = build_path_component(dp);
dp->full_name = build_full_name(dp);
dp->child = build_tree(dp, prom_getchild(node), nextp);
node = prom_getsibling(node);
}
return ret;
}
static const char *get_mid_prop(void)
{
return (tlb_type == spitfire ? "upa-portid" : "portid");
}
struct device_node *of_find_node_by_cpuid(int cpuid)
{
struct device_node *dp;
const char *mid_prop = get_mid_prop();
for_each_node_by_type(dp, "cpu") {
int id = of_getintprop_default(dp, mid_prop, -1);
const char *this_mid_prop = mid_prop;
if (id < 0) {
this_mid_prop = "cpuid";
id = of_getintprop_default(dp, this_mid_prop, -1);
}
if (id < 0) {
prom_printf("OF: Serious problem, cpu lacks "
"%s property", this_mid_prop);
prom_halt();
}
if (cpuid == id)
return dp;
}
return NULL;
}
static void __init of_fill_in_cpu_data(void)
{
struct device_node *dp;
const char *mid_prop = get_mid_prop();
ncpus_probed = 0;
for_each_node_by_type(dp, "cpu") {
int cpuid = of_getintprop_default(dp, mid_prop, -1);
const char *this_mid_prop = mid_prop;
struct device_node *portid_parent;
int portid = -1;
portid_parent = NULL;
if (cpuid < 0) {
this_mid_prop = "cpuid";
cpuid = of_getintprop_default(dp, this_mid_prop, -1);
if (cpuid >= 0) {
int limit = 2;
portid_parent = dp;
while (limit--) {
portid_parent = portid_parent->parent;
if (!portid_parent)
break;
portid = of_getintprop_default(portid_parent,
"portid", -1);
if (portid >= 0)
break;
}
}
}
if (cpuid < 0) {
prom_printf("OF: Serious problem, cpu lacks "
"%s property", this_mid_prop);
prom_halt();
}
ncpus_probed++;
#ifdef CONFIG_SMP
if (cpuid >= NR_CPUS)
continue;
#else
/* On uniprocessor we only want the values for the
* real physical cpu the kernel booted onto, however
* cpu_data() only has one entry at index 0.
*/
if (cpuid != real_hard_smp_processor_id())
continue;
cpuid = 0;
#endif
cpu_data(cpuid).clock_tick =
of_getintprop_default(dp, "clock-frequency", 0);
if (portid_parent) {
cpu_data(cpuid).dcache_size =
of_getintprop_default(dp, "l1-dcache-size",
16 * 1024);
cpu_data(cpuid).dcache_line_size =
of_getintprop_default(dp, "l1-dcache-line-size",
32);
cpu_data(cpuid).icache_size =
of_getintprop_default(dp, "l1-icache-size",
8 * 1024);
cpu_data(cpuid).icache_line_size =
of_getintprop_default(dp, "l1-icache-line-size",
32);
cpu_data(cpuid).ecache_size =
of_getintprop_default(dp, "l2-cache-size", 0);
cpu_data(cpuid).ecache_line_size =
of_getintprop_default(dp, "l2-cache-line-size", 0);
if (!cpu_data(cpuid).ecache_size ||
!cpu_data(cpuid).ecache_line_size) {
cpu_data(cpuid).ecache_size =
of_getintprop_default(portid_parent,
"l2-cache-size",
(4 * 1024 * 1024));
cpu_data(cpuid).ecache_line_size =
of_getintprop_default(portid_parent,
"l2-cache-line-size", 64);
}
cpu_data(cpuid).core_id = portid + 1;
cpu_data(cpuid).proc_id = portid;
#ifdef CONFIG_SMP
sparc64_multi_core = 1;
#endif
} else {
cpu_data(cpuid).dcache_size =
of_getintprop_default(dp, "dcache-size", 16 * 1024);
cpu_data(cpuid).dcache_line_size =
of_getintprop_default(dp, "dcache-line-size", 32);
cpu_data(cpuid).icache_size =
of_getintprop_default(dp, "icache-size", 16 * 1024);
cpu_data(cpuid).icache_line_size =
of_getintprop_default(dp, "icache-line-size", 32);
cpu_data(cpuid).ecache_size =
of_getintprop_default(dp, "ecache-size",
(4 * 1024 * 1024));
cpu_data(cpuid).ecache_line_size =
of_getintprop_default(dp, "ecache-line-size", 64);
cpu_data(cpuid).core_id = 0;
cpu_data(cpuid).proc_id = -1;
}
#ifdef CONFIG_SMP
cpu_set(cpuid, cpu_present_map);
cpu_set(cpuid, cpu_possible_map);
#endif
}
smp_fill_in_sib_core_maps();
}
struct device_node *of_console_device;
EXPORT_SYMBOL(of_console_device);
char *of_console_path;
EXPORT_SYMBOL(of_console_path);
char *of_console_options;
EXPORT_SYMBOL(of_console_options);
static void __init of_console_init(void)
{
char *msg = "OF stdout device is: %s\n";
struct device_node *dp;
const char *type;
phandle node;
of_console_path = prom_early_alloc(256);
if (prom_ihandle2path(prom_stdout, of_console_path, 256) < 0) {
prom_printf("Cannot obtain path of stdout.\n");
prom_halt();
}
of_console_options = strrchr(of_console_path, ':');
if (of_console_options) {
of_console_options++;
if (*of_console_options == '\0')
of_console_options = NULL;
}
node = prom_inst2pkg(prom_stdout);
if (!node) {
prom_printf("Cannot resolve stdout node from "
"instance %08x.\n", prom_stdout);
prom_halt();
}
dp = of_find_node_by_phandle(node);
type = of_get_property(dp, "device_type", NULL);
if (!type) {
prom_printf("Console stdout lacks device_type property.\n");
prom_halt();
}
if (strcmp(type, "display") && strcmp(type, "serial")) {
prom_printf("Console device_type is neither display "
"nor serial.\n");
prom_halt();
}
of_console_device = dp;
prom_printf(msg, of_console_path);
printk(msg, of_console_path);
}
void __init prom_build_devicetree(void)
{
struct device_node **nextp;
allnodes = create_node(prom_root_node, NULL);
allnodes->path_component_name = "";
allnodes->full_name = "/";
nextp = &allnodes->allnext;
allnodes->child = build_tree(allnodes,
prom_getchild(allnodes->node),
&nextp);
of_console_init();
printk("PROM: Built device tree with %u bytes of memory.\n",
prom_early_allocated);
if (tlb_type != hypervisor)
of_fill_in_cpu_data();
}