0b61f8a407
Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
290 lines
7.3 KiB
C
290 lines
7.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* Copyright (c) 2013 Red Hat, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_qm.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_trace.h"
|
|
|
|
int
|
|
xfs_calc_dquots_per_chunk(
|
|
unsigned int nbblks) /* basic block units */
|
|
{
|
|
ASSERT(nbblks > 0);
|
|
return BBTOB(nbblks) / sizeof(xfs_dqblk_t);
|
|
}
|
|
|
|
/*
|
|
* Do some primitive error checking on ondisk dquot data structures.
|
|
*
|
|
* The xfs_dqblk structure /contains/ the xfs_disk_dquot structure;
|
|
* we verify them separately because at some points we have only the
|
|
* smaller xfs_disk_dquot structure available.
|
|
*/
|
|
|
|
xfs_failaddr_t
|
|
xfs_dquot_verify(
|
|
struct xfs_mount *mp,
|
|
xfs_disk_dquot_t *ddq,
|
|
xfs_dqid_t id,
|
|
uint type) /* used only during quotacheck */
|
|
{
|
|
/*
|
|
* We can encounter an uninitialized dquot buffer for 2 reasons:
|
|
* 1. If we crash while deleting the quotainode(s), and those blks got
|
|
* used for user data. This is because we take the path of regular
|
|
* file deletion; however, the size field of quotainodes is never
|
|
* updated, so all the tricks that we play in itruncate_finish
|
|
* don't quite matter.
|
|
*
|
|
* 2. We don't play the quota buffers when there's a quotaoff logitem.
|
|
* But the allocation will be replayed so we'll end up with an
|
|
* uninitialized quota block.
|
|
*
|
|
* This is all fine; things are still consistent, and we haven't lost
|
|
* any quota information. Just don't complain about bad dquot blks.
|
|
*/
|
|
if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC))
|
|
return __this_address;
|
|
if (ddq->d_version != XFS_DQUOT_VERSION)
|
|
return __this_address;
|
|
|
|
if (type && ddq->d_flags != type)
|
|
return __this_address;
|
|
if (ddq->d_flags != XFS_DQ_USER &&
|
|
ddq->d_flags != XFS_DQ_PROJ &&
|
|
ddq->d_flags != XFS_DQ_GROUP)
|
|
return __this_address;
|
|
|
|
if (id != -1 && id != be32_to_cpu(ddq->d_id))
|
|
return __this_address;
|
|
|
|
if (!ddq->d_id)
|
|
return NULL;
|
|
|
|
if (ddq->d_blk_softlimit &&
|
|
be64_to_cpu(ddq->d_bcount) > be64_to_cpu(ddq->d_blk_softlimit) &&
|
|
!ddq->d_btimer)
|
|
return __this_address;
|
|
|
|
if (ddq->d_ino_softlimit &&
|
|
be64_to_cpu(ddq->d_icount) > be64_to_cpu(ddq->d_ino_softlimit) &&
|
|
!ddq->d_itimer)
|
|
return __this_address;
|
|
|
|
if (ddq->d_rtb_softlimit &&
|
|
be64_to_cpu(ddq->d_rtbcount) > be64_to_cpu(ddq->d_rtb_softlimit) &&
|
|
!ddq->d_rtbtimer)
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
xfs_failaddr_t
|
|
xfs_dqblk_verify(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dqblk *dqb,
|
|
xfs_dqid_t id,
|
|
uint type) /* used only during quotacheck */
|
|
{
|
|
if (xfs_sb_version_hascrc(&mp->m_sb) &&
|
|
!uuid_equal(&dqb->dd_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
|
|
return xfs_dquot_verify(mp, &dqb->dd_diskdq, id, type);
|
|
}
|
|
|
|
/*
|
|
* Do some primitive error checking on ondisk dquot data structures.
|
|
*/
|
|
int
|
|
xfs_dqblk_repair(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dqblk *dqb,
|
|
xfs_dqid_t id,
|
|
uint type)
|
|
{
|
|
/*
|
|
* Typically, a repair is only requested by quotacheck.
|
|
*/
|
|
ASSERT(id != -1);
|
|
memset(dqb, 0, sizeof(xfs_dqblk_t));
|
|
|
|
dqb->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
|
|
dqb->dd_diskdq.d_version = XFS_DQUOT_VERSION;
|
|
dqb->dd_diskdq.d_flags = type;
|
|
dqb->dd_diskdq.d_id = cpu_to_be32(id);
|
|
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
uuid_copy(&dqb->dd_uuid, &mp->m_sb.sb_meta_uuid);
|
|
xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_dquot_buf_verify_crc(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
bool readahead)
|
|
{
|
|
struct xfs_dqblk *d = (struct xfs_dqblk *)bp->b_addr;
|
|
int ndquots;
|
|
int i;
|
|
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
return true;
|
|
|
|
/*
|
|
* if we are in log recovery, the quota subsystem has not been
|
|
* initialised so we have no quotainfo structure. In that case, we need
|
|
* to manually calculate the number of dquots in the buffer.
|
|
*/
|
|
if (mp->m_quotainfo)
|
|
ndquots = mp->m_quotainfo->qi_dqperchunk;
|
|
else
|
|
ndquots = xfs_calc_dquots_per_chunk(bp->b_length);
|
|
|
|
for (i = 0; i < ndquots; i++, d++) {
|
|
if (!xfs_verify_cksum((char *)d, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF)) {
|
|
if (!readahead)
|
|
xfs_buf_verifier_error(bp, -EFSBADCRC, __func__,
|
|
d, sizeof(*d), __this_address);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
STATIC xfs_failaddr_t
|
|
xfs_dquot_buf_verify(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
bool readahead)
|
|
{
|
|
struct xfs_dqblk *dqb = bp->b_addr;
|
|
xfs_failaddr_t fa;
|
|
xfs_dqid_t id = 0;
|
|
int ndquots;
|
|
int i;
|
|
|
|
/*
|
|
* if we are in log recovery, the quota subsystem has not been
|
|
* initialised so we have no quotainfo structure. In that case, we need
|
|
* to manually calculate the number of dquots in the buffer.
|
|
*/
|
|
if (mp->m_quotainfo)
|
|
ndquots = mp->m_quotainfo->qi_dqperchunk;
|
|
else
|
|
ndquots = xfs_calc_dquots_per_chunk(bp->b_length);
|
|
|
|
/*
|
|
* On the first read of the buffer, verify that each dquot is valid.
|
|
* We don't know what the id of the dquot is supposed to be, just that
|
|
* they should be increasing monotonically within the buffer. If the
|
|
* first id is corrupt, then it will fail on the second dquot in the
|
|
* buffer so corruptions could point to the wrong dquot in this case.
|
|
*/
|
|
for (i = 0; i < ndquots; i++) {
|
|
struct xfs_disk_dquot *ddq;
|
|
|
|
ddq = &dqb[i].dd_diskdq;
|
|
|
|
if (i == 0)
|
|
id = be32_to_cpu(ddq->d_id);
|
|
|
|
fa = xfs_dqblk_verify(mp, &dqb[i], id + i, 0);
|
|
if (fa) {
|
|
if (!readahead)
|
|
xfs_buf_verifier_error(bp, -EFSCORRUPTED,
|
|
__func__, &dqb[i],
|
|
sizeof(struct xfs_dqblk), fa);
|
|
return fa;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static xfs_failaddr_t
|
|
xfs_dquot_buf_verify_struct(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
return xfs_dquot_buf_verify(mp, bp, false);
|
|
}
|
|
|
|
static void
|
|
xfs_dquot_buf_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
if (!xfs_dquot_buf_verify_crc(mp, bp, false))
|
|
return;
|
|
xfs_dquot_buf_verify(mp, bp, false);
|
|
}
|
|
|
|
/*
|
|
* readahead errors are silent and simply leave the buffer as !done so a real
|
|
* read will then be run with the xfs_dquot_buf_ops verifier. See
|
|
* xfs_inode_buf_verify() for why we use EIO and ~XBF_DONE here rather than
|
|
* reporting the failure.
|
|
*/
|
|
static void
|
|
xfs_dquot_buf_readahead_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
if (!xfs_dquot_buf_verify_crc(mp, bp, true) ||
|
|
xfs_dquot_buf_verify(mp, bp, true) != NULL) {
|
|
xfs_buf_ioerror(bp, -EIO);
|
|
bp->b_flags &= ~XBF_DONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* we don't calculate the CRC here as that is done when the dquot is flushed to
|
|
* the buffer after the update is done. This ensures that the dquot in the
|
|
* buffer always has an up-to-date CRC value.
|
|
*/
|
|
static void
|
|
xfs_dquot_buf_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
xfs_dquot_buf_verify(mp, bp, false);
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_dquot_buf_ops = {
|
|
.name = "xfs_dquot",
|
|
.verify_read = xfs_dquot_buf_read_verify,
|
|
.verify_write = xfs_dquot_buf_write_verify,
|
|
.verify_struct = xfs_dquot_buf_verify_struct,
|
|
};
|
|
|
|
const struct xfs_buf_ops xfs_dquot_buf_ra_ops = {
|
|
.name = "xfs_dquot_ra",
|
|
.verify_read = xfs_dquot_buf_readahead_verify,
|
|
.verify_write = xfs_dquot_buf_write_verify,
|
|
};
|