linux/sound/oss/btaudio.c

1139 lines
28 KiB
C

/*
btaudio - bt878 audio dma driver for linux 2.4.x
(c) 2000-2002 Gerd Knorr <kraxel@bytesex.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <linux/slab.h>
#include <linux/kdev_t.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/* mmio access */
#define btwrite(dat,adr) writel((dat), (bta->mmio+(adr)))
#define btread(adr) readl(bta->mmio+(adr))
#define btand(dat,adr) btwrite((dat) & btread(adr), adr)
#define btor(dat,adr) btwrite((dat) | btread(adr), adr)
#define btaor(dat,mask,adr) btwrite((dat) | ((mask) & btread(adr)), adr)
/* registers (shifted because bta->mmio is long) */
#define REG_INT_STAT (0x100 >> 2)
#define REG_INT_MASK (0x104 >> 2)
#define REG_GPIO_DMA_CTL (0x10c >> 2)
#define REG_PACKET_LEN (0x110 >> 2)
#define REG_RISC_STRT_ADD (0x114 >> 2)
#define REG_RISC_COUNT (0x120 >> 2)
/* IRQ bits - REG_INT_(STAT|MASK) */
#define IRQ_SCERR (1 << 19)
#define IRQ_OCERR (1 << 18)
#define IRQ_PABORT (1 << 17)
#define IRQ_RIPERR (1 << 16)
#define IRQ_PPERR (1 << 15)
#define IRQ_FDSR (1 << 14)
#define IRQ_FTRGT (1 << 13)
#define IRQ_FBUS (1 << 12)
#define IRQ_RISCI (1 << 11)
#define IRQ_OFLOW (1 << 3)
#define IRQ_BTAUDIO (IRQ_SCERR | IRQ_OCERR | IRQ_PABORT | IRQ_RIPERR |\
IRQ_PPERR | IRQ_FDSR | IRQ_FTRGT | IRQ_FBUS |\
IRQ_RISCI)
/* REG_GPIO_DMA_CTL bits */
#define DMA_CTL_A_PWRDN (1 << 26)
#define DMA_CTL_DA_SBR (1 << 14)
#define DMA_CTL_DA_ES2 (1 << 13)
#define DMA_CTL_ACAP_EN (1 << 4)
#define DMA_CTL_RISC_EN (1 << 1)
#define DMA_CTL_FIFO_EN (1 << 0)
/* RISC instructions */
#define RISC_WRITE (0x01 << 28)
#define RISC_JUMP (0x07 << 28)
#define RISC_SYNC (0x08 << 28)
/* RISC bits */
#define RISC_WR_SOL (1 << 27)
#define RISC_WR_EOL (1 << 26)
#define RISC_IRQ (1 << 24)
#define RISC_SYNC_RESYNC (1 << 15)
#define RISC_SYNC_FM1 0x06
#define RISC_SYNC_VRO 0x0c
#define HWBASE_AD (448000)
/* -------------------------------------------------------------- */
struct btaudio {
/* linked list */
struct btaudio *next;
/* device info */
int dsp_digital;
int dsp_analog;
int mixer_dev;
struct pci_dev *pci;
unsigned int irq;
unsigned long mem;
unsigned long __iomem *mmio;
/* locking */
int users;
struct mutex lock;
/* risc instructions */
unsigned int risc_size;
unsigned long *risc_cpu;
dma_addr_t risc_dma;
/* audio data */
unsigned int buf_size;
unsigned char *buf_cpu;
dma_addr_t buf_dma;
/* buffer setup */
int line_bytes;
int line_count;
int block_bytes;
int block_count;
/* read fifo management */
int recording;
int dma_block;
int read_offset;
int read_count;
wait_queue_head_t readq;
/* settings */
int gain[3];
int source;
int bits;
int decimation;
int mixcount;
int sampleshift;
int channels;
int analog;
int rate;
};
struct cardinfo {
char *name;
int rate;
};
static struct btaudio *btaudios;
static unsigned int debug;
static unsigned int irq_debug;
/* -------------------------------------------------------------- */
#define BUF_DEFAULT 128*1024
#define BUF_MIN 8192
static int alloc_buffer(struct btaudio *bta)
{
if (NULL == bta->buf_cpu) {
for (bta->buf_size = BUF_DEFAULT; bta->buf_size >= BUF_MIN;
bta->buf_size = bta->buf_size >> 1) {
bta->buf_cpu = pci_alloc_consistent
(bta->pci, bta->buf_size, &bta->buf_dma);
if (NULL != bta->buf_cpu)
break;
}
if (NULL == bta->buf_cpu)
return -ENOMEM;
memset(bta->buf_cpu,0,bta->buf_size);
}
if (NULL == bta->risc_cpu) {
bta->risc_size = PAGE_SIZE;
bta->risc_cpu = pci_alloc_consistent
(bta->pci, bta->risc_size, &bta->risc_dma);
if (NULL == bta->risc_cpu) {
pci_free_consistent(bta->pci, bta->buf_size, bta->buf_cpu, bta->buf_dma);
bta->buf_cpu = NULL;
return -ENOMEM;
}
}
return 0;
}
static void free_buffer(struct btaudio *bta)
{
if (NULL != bta->buf_cpu) {
pci_free_consistent(bta->pci, bta->buf_size,
bta->buf_cpu, bta->buf_dma);
bta->buf_cpu = NULL;
}
if (NULL != bta->risc_cpu) {
pci_free_consistent(bta->pci, bta->risc_size,
bta->risc_cpu, bta->risc_dma);
bta->risc_cpu = NULL;
}
}
static int make_risc(struct btaudio *bta)
{
int rp, bp, line, block;
unsigned long risc;
bta->block_bytes = bta->buf_size >> 4;
bta->block_count = 1 << 4;
bta->line_bytes = bta->block_bytes;
bta->line_count = bta->block_count;
while (bta->line_bytes > 4095) {
bta->line_bytes >>= 1;
bta->line_count <<= 1;
}
if (bta->line_count > 255)
return -EINVAL;
if (debug)
printk(KERN_DEBUG
"btaudio: bufsize=%d - bs=%d bc=%d - ls=%d, lc=%d\n",
bta->buf_size,bta->block_bytes,bta->block_count,
bta->line_bytes,bta->line_count);
rp = 0; bp = 0;
block = 0;
bta->risc_cpu[rp++] = cpu_to_le32(RISC_SYNC|RISC_SYNC_FM1);
bta->risc_cpu[rp++] = cpu_to_le32(0);
for (line = 0; line < bta->line_count; line++) {
risc = RISC_WRITE | RISC_WR_SOL | RISC_WR_EOL;
risc |= bta->line_bytes;
if (0 == (bp & (bta->block_bytes-1))) {
risc |= RISC_IRQ;
risc |= (block & 0x0f) << 16;
risc |= (~block & 0x0f) << 20;
block++;
}
bta->risc_cpu[rp++] = cpu_to_le32(risc);
bta->risc_cpu[rp++] = cpu_to_le32(bta->buf_dma + bp);
bp += bta->line_bytes;
}
bta->risc_cpu[rp++] = cpu_to_le32(RISC_SYNC|RISC_SYNC_VRO);
bta->risc_cpu[rp++] = cpu_to_le32(0);
bta->risc_cpu[rp++] = cpu_to_le32(RISC_JUMP);
bta->risc_cpu[rp++] = cpu_to_le32(bta->risc_dma);
return 0;
}
static int start_recording(struct btaudio *bta)
{
int ret;
if (0 != (ret = alloc_buffer(bta)))
return ret;
if (0 != (ret = make_risc(bta)))
return ret;
btwrite(bta->risc_dma, REG_RISC_STRT_ADD);
btwrite((bta->line_count << 16) | bta->line_bytes,
REG_PACKET_LEN);
btwrite(IRQ_BTAUDIO, REG_INT_MASK);
if (bta->analog) {
btwrite(DMA_CTL_ACAP_EN |
DMA_CTL_RISC_EN |
DMA_CTL_FIFO_EN |
DMA_CTL_DA_ES2 |
((bta->bits == 8) ? DMA_CTL_DA_SBR : 0) |
(bta->gain[bta->source] << 28) |
(bta->source << 24) |
(bta->decimation << 8),
REG_GPIO_DMA_CTL);
} else {
btwrite(DMA_CTL_ACAP_EN |
DMA_CTL_RISC_EN |
DMA_CTL_FIFO_EN |
DMA_CTL_DA_ES2 |
DMA_CTL_A_PWRDN |
(1 << 6) |
((bta->bits == 8) ? DMA_CTL_DA_SBR : 0) |
(bta->gain[bta->source] << 28) |
(bta->source << 24) |
(bta->decimation << 8),
REG_GPIO_DMA_CTL);
}
bta->dma_block = 0;
bta->read_offset = 0;
bta->read_count = 0;
bta->recording = 1;
if (debug)
printk(KERN_DEBUG "btaudio: recording started\n");
return 0;
}
static void stop_recording(struct btaudio *bta)
{
btand(~15, REG_GPIO_DMA_CTL);
bta->recording = 0;
if (debug)
printk(KERN_DEBUG "btaudio: recording stopped\n");
}
/* -------------------------------------------------------------- */
static int btaudio_mixer_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct btaudio *bta;
for (bta = btaudios; bta != NULL; bta = bta->next)
if (bta->mixer_dev == minor)
break;
if (NULL == bta)
return -ENODEV;
if (debug)
printk("btaudio: open mixer [%d]\n",minor);
file->private_data = bta;
return 0;
}
static int btaudio_mixer_release(struct inode *inode, struct file *file)
{
return 0;
}
static int btaudio_mixer_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct btaudio *bta = file->private_data;
int ret,val=0,i=0;
void __user *argp = (void __user *)arg;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info,0,sizeof(info));
strlcpy(info.id,"bt878",sizeof(info.id));
strlcpy(info.name,"Brooktree Bt878 audio",sizeof(info.name));
info.modify_counter = bta->mixcount;
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info,0,sizeof(info));
strlcpy(info.id,"bt878",sizeof(info.id)-1);
strlcpy(info.name,"Brooktree Bt878 audio",sizeof(info.name));
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int __user *)argp);
/* read */
if (_SIOC_DIR(cmd) & _SIOC_WRITE)
if (get_user(val, (int __user *)argp))
return -EFAULT;
switch (cmd) {
case MIXER_READ(SOUND_MIXER_CAPS):
ret = SOUND_CAP_EXCL_INPUT;
break;
case MIXER_READ(SOUND_MIXER_STEREODEVS):
ret = 0;
break;
case MIXER_READ(SOUND_MIXER_RECMASK):
case MIXER_READ(SOUND_MIXER_DEVMASK):
ret = SOUND_MASK_LINE1|SOUND_MASK_LINE2|SOUND_MASK_LINE3;
break;
case MIXER_WRITE(SOUND_MIXER_RECSRC):
if (val & SOUND_MASK_LINE1 && bta->source != 0)
bta->source = 0;
else if (val & SOUND_MASK_LINE2 && bta->source != 1)
bta->source = 1;
else if (val & SOUND_MASK_LINE3 && bta->source != 2)
bta->source = 2;
btaor((bta->gain[bta->source] << 28) |
(bta->source << 24),
0x0cffffff, REG_GPIO_DMA_CTL);
case MIXER_READ(SOUND_MIXER_RECSRC):
switch (bta->source) {
case 0: ret = SOUND_MASK_LINE1; break;
case 1: ret = SOUND_MASK_LINE2; break;
case 2: ret = SOUND_MASK_LINE3; break;
default: ret = 0;
}
break;
case MIXER_WRITE(SOUND_MIXER_LINE1):
case MIXER_WRITE(SOUND_MIXER_LINE2):
case MIXER_WRITE(SOUND_MIXER_LINE3):
if (MIXER_WRITE(SOUND_MIXER_LINE1) == cmd)
i = 0;
if (MIXER_WRITE(SOUND_MIXER_LINE2) == cmd)
i = 1;
if (MIXER_WRITE(SOUND_MIXER_LINE3) == cmd)
i = 2;
bta->gain[i] = (val & 0xff) * 15 / 100;
if (bta->gain[i] > 15) bta->gain[i] = 15;
if (bta->gain[i] < 0) bta->gain[i] = 0;
if (i == bta->source)
btaor((bta->gain[bta->source]<<28),
0x0fffffff, REG_GPIO_DMA_CTL);
ret = bta->gain[i] * 100 / 15;
ret |= ret << 8;
break;
case MIXER_READ(SOUND_MIXER_LINE1):
case MIXER_READ(SOUND_MIXER_LINE2):
case MIXER_READ(SOUND_MIXER_LINE3):
if (MIXER_READ(SOUND_MIXER_LINE1) == cmd)
i = 0;
if (MIXER_READ(SOUND_MIXER_LINE2) == cmd)
i = 1;
if (MIXER_READ(SOUND_MIXER_LINE3) == cmd)
i = 2;
ret = bta->gain[i] * 100 / 15;
ret |= ret << 8;
break;
default:
return -EINVAL;
}
if (put_user(ret, (int __user *)argp))
return -EFAULT;
return 0;
}
static struct file_operations btaudio_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = btaudio_mixer_open,
.release = btaudio_mixer_release,
.ioctl = btaudio_mixer_ioctl,
};
/* -------------------------------------------------------------- */
static int btaudio_dsp_open(struct inode *inode, struct file *file,
struct btaudio *bta, int analog)
{
mutex_lock(&bta->lock);
if (bta->users)
goto busy;
bta->users++;
file->private_data = bta;
bta->analog = analog;
bta->dma_block = 0;
bta->read_offset = 0;
bta->read_count = 0;
bta->sampleshift = 0;
mutex_unlock(&bta->lock);
return 0;
busy:
mutex_unlock(&bta->lock);
return -EBUSY;
}
static int btaudio_dsp_open_digital(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct btaudio *bta;
for (bta = btaudios; bta != NULL; bta = bta->next)
if (bta->dsp_digital == minor)
break;
if (NULL == bta)
return -ENODEV;
if (debug)
printk("btaudio: open digital dsp [%d]\n",minor);
return btaudio_dsp_open(inode,file,bta,0);
}
static int btaudio_dsp_open_analog(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct btaudio *bta;
for (bta = btaudios; bta != NULL; bta = bta->next)
if (bta->dsp_analog == minor)
break;
if (NULL == bta)
return -ENODEV;
if (debug)
printk("btaudio: open analog dsp [%d]\n",minor);
return btaudio_dsp_open(inode,file,bta,1);
}
static int btaudio_dsp_release(struct inode *inode, struct file *file)
{
struct btaudio *bta = file->private_data;
mutex_lock(&bta->lock);
if (bta->recording)
stop_recording(bta);
bta->users--;
mutex_unlock(&bta->lock);
return 0;
}
static ssize_t btaudio_dsp_read(struct file *file, char __user *buffer,
size_t swcount, loff_t *ppos)
{
struct btaudio *bta = file->private_data;
int hwcount = swcount << bta->sampleshift;
int nsrc, ndst, err, ret = 0;
DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&bta->readq, &wait);
mutex_lock(&bta->lock);
while (swcount > 0) {
if (0 == bta->read_count) {
if (!bta->recording) {
if (0 != (err = start_recording(bta))) {
if (0 == ret)
ret = err;
break;
}
}
if (file->f_flags & O_NONBLOCK) {
if (0 == ret)
ret = -EAGAIN;
break;
}
mutex_unlock(&bta->lock);
current->state = TASK_INTERRUPTIBLE;
schedule();
mutex_lock(&bta->lock);
if(signal_pending(current)) {
if (0 == ret)
ret = -EINTR;
break;
}
}
nsrc = (bta->read_count < hwcount) ? bta->read_count : hwcount;
if (nsrc > bta->buf_size - bta->read_offset)
nsrc = bta->buf_size - bta->read_offset;
ndst = nsrc >> bta->sampleshift;
if ((bta->analog && 0 == bta->sampleshift) ||
(!bta->analog && 2 == bta->channels)) {
/* just copy */
if (copy_to_user(buffer + ret, bta->buf_cpu + bta->read_offset, nsrc)) {
if (0 == ret)
ret = -EFAULT;
break;
}
} else if (!bta->analog) {
/* stereo => mono (digital audio) */
__s16 *src = (__s16*)(bta->buf_cpu + bta->read_offset);
__s16 __user *dst = (__s16 __user *)(buffer + ret);
__s16 avg;
int n = ndst>>1;
if (!access_ok(VERIFY_WRITE, dst, ndst)) {
if (0 == ret)
ret = -EFAULT;
break;
}
for (; n; n--, dst++) {
avg = (__s16)le16_to_cpu(*src) / 2; src++;
avg += (__s16)le16_to_cpu(*src) / 2; src++;
__put_user(cpu_to_le16(avg),dst);
}
} else if (8 == bta->bits) {
/* copy + byte downsampling (audio A/D) */
__u8 *src = bta->buf_cpu + bta->read_offset;
__u8 __user *dst = buffer + ret;
int n = ndst;
if (!access_ok(VERIFY_WRITE, dst, ndst)) {
if (0 == ret)
ret = -EFAULT;
break;
}
for (; n; n--, src += (1 << bta->sampleshift), dst++)
__put_user(*src, dst);
} else {
/* copy + word downsampling (audio A/D) */
__u16 *src = (__u16*)(bta->buf_cpu + bta->read_offset);
__u16 __user *dst = (__u16 __user *)(buffer + ret);
int n = ndst>>1;
if (!access_ok(VERIFY_WRITE,dst,ndst)) {
if (0 == ret)
ret = -EFAULT;
break;
}
for (; n; n--, src += (1 << bta->sampleshift), dst++)
__put_user(*src, dst);
}
ret += ndst;
swcount -= ndst;
hwcount -= nsrc;
bta->read_count -= nsrc;
bta->read_offset += nsrc;
if (bta->read_offset == bta->buf_size)
bta->read_offset = 0;
}
mutex_unlock(&bta->lock);
remove_wait_queue(&bta->readq, &wait);
current->state = TASK_RUNNING;
return ret;
}
static ssize_t btaudio_dsp_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
return -EINVAL;
}
static int btaudio_dsp_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct btaudio *bta = file->private_data;
int s, i, ret, val = 0;
void __user *argp = (void __user *)arg;
int __user *p = argp;
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_GETCAPS:
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, p))
return -EFAULT;
if (bta->analog) {
for (s = 0; s < 16; s++)
if (val << s >= HWBASE_AD*4/15)
break;
for (i = 15; i >= 5; i--)
if (val << s <= HWBASE_AD*4/i)
break;
bta->sampleshift = s;
bta->decimation = i;
if (debug)
printk(KERN_DEBUG "btaudio: rate: req=%d "
"dec=%d shift=%d hwrate=%d swrate=%d\n",
val,i,s,(HWBASE_AD*4/i),(HWBASE_AD*4/i)>>s);
} else {
bta->sampleshift = (bta->channels == 2) ? 0 : 1;
bta->decimation = 0;
}
if (bta->recording) {
mutex_lock(&bta->lock);
stop_recording(bta);
start_recording(bta);
mutex_unlock(&bta->lock);
}
/* fall through */
case SOUND_PCM_READ_RATE:
if (bta->analog) {
return put_user(HWBASE_AD*4/bta->decimation>>bta->sampleshift, p);
} else {
return put_user(bta->rate, p);
}
case SNDCTL_DSP_STEREO:
if (!bta->analog) {
if (get_user(val, p))
return -EFAULT;
bta->channels = (val > 0) ? 2 : 1;
bta->sampleshift = (bta->channels == 2) ? 0 : 1;
if (debug)
printk(KERN_INFO
"btaudio: stereo=%d channels=%d\n",
val,bta->channels);
} else {
if (val == 1)
return -EFAULT;
else {
bta->channels = 1;
if (debug)
printk(KERN_INFO
"btaudio: stereo=0 channels=1\n");
}
}
return put_user((bta->channels)-1, p);
case SNDCTL_DSP_CHANNELS:
if (!bta->analog) {
if (get_user(val, p))
return -EFAULT;
bta->channels = (val > 1) ? 2 : 1;
bta->sampleshift = (bta->channels == 2) ? 0 : 1;
if (debug)
printk(KERN_DEBUG
"btaudio: val=%d channels=%d\n",
val,bta->channels);
}
/* fall through */
case SOUND_PCM_READ_CHANNELS:
return put_user(bta->channels, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
if (bta->analog)
return put_user(AFMT_S16_LE|AFMT_S8, p);
else
return put_user(AFMT_S16_LE, p);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, p))
return -EFAULT;
if (val != AFMT_QUERY) {
if (bta->analog)
bta->bits = (val == AFMT_S8) ? 8 : 16;
else
bta->bits = 16;
if (bta->recording) {
mutex_lock(&bta->lock);
stop_recording(bta);
start_recording(bta);
mutex_unlock(&bta->lock);
}
}
if (debug)
printk(KERN_DEBUG "btaudio: fmt: bits=%d\n",bta->bits);
return put_user((bta->bits==16) ? AFMT_S16_LE : AFMT_S8,
p);
break;
case SOUND_PCM_READ_BITS:
return put_user(bta->bits, p);
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_RESET:
if (bta->recording) {
mutex_lock(&bta->lock);
stop_recording(bta);
mutex_unlock(&bta->lock);
}
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (!bta->recording) {
if (0 != (ret = alloc_buffer(bta)))
return ret;
if (0 != (ret = make_risc(bta)))
return ret;
}
return put_user(bta->block_bytes>>bta->sampleshift,p);
case SNDCTL_DSP_SYNC:
/* NOP */
return 0;
case SNDCTL_DSP_GETISPACE:
{
audio_buf_info info;
if (!bta->recording)
return -EINVAL;
info.fragsize = bta->block_bytes>>bta->sampleshift;
info.fragstotal = bta->block_count;
info.bytes = bta->read_count;
info.fragments = info.bytes / info.fragsize;
if (debug)
printk(KERN_DEBUG "btaudio: SNDCTL_DSP_GETISPACE "
"returns %d/%d/%d/%d\n",
info.fragsize, info.fragstotal,
info.bytes, info.fragments);
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
#if 0 /* TODO */
case SNDCTL_DSP_GETTRIGGER:
case SNDCTL_DSP_SETTRIGGER:
case SNDCTL_DSP_SETFRAGMENT:
#endif
default:
return -EINVAL;
}
}
static unsigned int btaudio_dsp_poll(struct file *file, struct poll_table_struct *wait)
{
struct btaudio *bta = file->private_data;
unsigned int mask = 0;
poll_wait(file, &bta->readq, wait);
if (0 != bta->read_count)
mask |= (POLLIN | POLLRDNORM);
return mask;
}
static struct file_operations btaudio_digital_dsp_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = btaudio_dsp_open_digital,
.release = btaudio_dsp_release,
.read = btaudio_dsp_read,
.write = btaudio_dsp_write,
.ioctl = btaudio_dsp_ioctl,
.poll = btaudio_dsp_poll,
};
static struct file_operations btaudio_analog_dsp_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.open = btaudio_dsp_open_analog,
.release = btaudio_dsp_release,
.read = btaudio_dsp_read,
.write = btaudio_dsp_write,
.ioctl = btaudio_dsp_ioctl,
.poll = btaudio_dsp_poll,
};
/* -------------------------------------------------------------- */
static char *irq_name[] = { "", "", "", "OFLOW", "", "", "", "", "", "", "",
"RISCI", "FBUS", "FTRGT", "FDSR", "PPERR",
"RIPERR", "PABORT", "OCERR", "SCERR" };
static irqreturn_t btaudio_irq(int irq, void *dev_id)
{
int count = 0;
u32 stat,astat;
struct btaudio *bta = dev_id;
int handled = 0;
for (;;) {
count++;
stat = btread(REG_INT_STAT);
astat = stat & btread(REG_INT_MASK);
if (!astat)
return IRQ_RETVAL(handled);
handled = 1;
btwrite(astat,REG_INT_STAT);
if (irq_debug) {
int i;
printk(KERN_DEBUG "btaudio: irq loop=%d risc=%x, bits:",
count, stat>>28);
for (i = 0; i < (sizeof(irq_name)/sizeof(char*)); i++) {
if (stat & (1 << i))
printk(" %s",irq_name[i]);
if (astat & (1 << i))
printk("*");
}
printk("\n");
}
if (stat & IRQ_RISCI) {
int blocks;
blocks = (stat >> 28) - bta->dma_block;
if (blocks < 0)
blocks += bta->block_count;
bta->dma_block = stat >> 28;
if (bta->read_count + 2*bta->block_bytes > bta->buf_size) {
stop_recording(bta);
printk(KERN_INFO "btaudio: buffer overrun\n");
}
if (blocks > 0) {
bta->read_count += blocks * bta->block_bytes;
wake_up_interruptible(&bta->readq);
}
}
if (count > 10) {
printk(KERN_WARNING
"btaudio: Oops - irq mask cleared\n");
btwrite(0, REG_INT_MASK);
}
}
return IRQ_NONE;
}
/* -------------------------------------------------------------- */
static unsigned int dsp1 = -1;
static unsigned int dsp2 = -1;
static unsigned int mixer = -1;
static int latency = -1;
static int digital = 1;
static int analog = 1;
static int rate;
#define BTA_OSPREY200 1
static struct cardinfo cards[] = {
[0] = {
.name = "default",
.rate = 32000,
},
[BTA_OSPREY200] = {
.name = "Osprey 200",
.rate = 44100,
},
};
static int __devinit btaudio_probe(struct pci_dev *pci_dev,
const struct pci_device_id *pci_id)
{
struct btaudio *bta;
struct cardinfo *card = &cards[pci_id->driver_data];
unsigned char revision,lat;
int rc = -EBUSY;
if (pci_enable_device(pci_dev))
return -EIO;
if (!request_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0),
"btaudio")) {
return -EBUSY;
}
bta = kmalloc(sizeof(*bta),GFP_ATOMIC);
if (!bta) {
rc = -ENOMEM;
goto fail0;
}
memset(bta,0,sizeof(*bta));
bta->pci = pci_dev;
bta->irq = pci_dev->irq;
bta->mem = pci_resource_start(pci_dev,0);
bta->mmio = ioremap(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
bta->source = 1;
bta->bits = 8;
bta->channels = 1;
if (bta->analog) {
bta->decimation = 15;
} else {
bta->decimation = 0;
bta->sampleshift = 1;
}
/* sample rate */
bta->rate = card->rate;
if (rate)
bta->rate = rate;
mutex_init(&bta->lock);
init_waitqueue_head(&bta->readq);
if (-1 != latency) {
printk(KERN_INFO "btaudio: setting pci latency timer to %d\n",
latency);
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
}
pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &revision);
pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
printk(KERN_INFO "btaudio: Bt%x (rev %d) at %02x:%02x.%x, ",
pci_dev->device,revision,pci_dev->bus->number,
PCI_SLOT(pci_dev->devfn),PCI_FUNC(pci_dev->devfn));
printk("irq: %d, latency: %d, mmio: 0x%lx\n",
bta->irq, lat, bta->mem);
printk("btaudio: using card config \"%s\"\n", card->name);
/* init hw */
btwrite(0, REG_GPIO_DMA_CTL);
btwrite(0, REG_INT_MASK);
btwrite(~0U, REG_INT_STAT);
pci_set_master(pci_dev);
if ((rc = request_irq(bta->irq, btaudio_irq, IRQF_SHARED|IRQF_DISABLED,
"btaudio",(void *)bta)) < 0) {
printk(KERN_WARNING
"btaudio: can't request irq (rc=%d)\n",rc);
goto fail1;
}
/* register devices */
if (digital) {
rc = bta->dsp_digital =
register_sound_dsp(&btaudio_digital_dsp_fops,dsp1);
if (rc < 0) {
printk(KERN_WARNING
"btaudio: can't register digital dsp (rc=%d)\n",rc);
goto fail2;
}
printk(KERN_INFO "btaudio: registered device dsp%d [digital]\n",
bta->dsp_digital >> 4);
}
if (analog) {
rc = bta->dsp_analog =
register_sound_dsp(&btaudio_analog_dsp_fops,dsp2);
if (rc < 0) {
printk(KERN_WARNING
"btaudio: can't register analog dsp (rc=%d)\n",rc);
goto fail3;
}
printk(KERN_INFO "btaudio: registered device dsp%d [analog]\n",
bta->dsp_analog >> 4);
rc = bta->mixer_dev = register_sound_mixer(&btaudio_mixer_fops,mixer);
if (rc < 0) {
printk(KERN_WARNING
"btaudio: can't register mixer (rc=%d)\n",rc);
goto fail4;
}
printk(KERN_INFO "btaudio: registered device mixer%d\n",
bta->mixer_dev >> 4);
}
/* hook into linked list */
bta->next = btaudios;
btaudios = bta;
pci_set_drvdata(pci_dev,bta);
return 0;
fail4:
unregister_sound_dsp(bta->dsp_analog);
fail3:
if (digital)
unregister_sound_dsp(bta->dsp_digital);
fail2:
free_irq(bta->irq,bta);
fail1:
kfree(bta);
fail0:
release_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
return rc;
}
static void __devexit btaudio_remove(struct pci_dev *pci_dev)
{
struct btaudio *bta = pci_get_drvdata(pci_dev);
struct btaudio *walk;
/* turn off all DMA / IRQs */
btand(~15, REG_GPIO_DMA_CTL);
btwrite(0, REG_INT_MASK);
btwrite(~0U, REG_INT_STAT);
/* unregister devices */
if (digital) {
unregister_sound_dsp(bta->dsp_digital);
}
if (analog) {
unregister_sound_dsp(bta->dsp_analog);
unregister_sound_mixer(bta->mixer_dev);
}
/* free resources */
free_buffer(bta);
free_irq(bta->irq,bta);
release_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
/* remove from linked list */
if (bta == btaudios) {
btaudios = NULL;
} else {
for (walk = btaudios; walk->next != bta; walk = walk->next)
; /* if (NULL == walk->next) BUG(); */
walk->next = bta->next;
}
pci_set_drvdata(pci_dev, NULL);
kfree(bta);
return;
}
/* -------------------------------------------------------------- */
static struct pci_device_id btaudio_pci_tbl[] = {
{
.vendor = PCI_VENDOR_ID_BROOKTREE,
.device = 0x0878,
.subvendor = 0x0070,
.subdevice = 0xff01,
.driver_data = BTA_OSPREY200,
},{
.vendor = PCI_VENDOR_ID_BROOKTREE,
.device = 0x0878,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},{
.vendor = PCI_VENDOR_ID_BROOKTREE,
.device = 0x0878,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},{
/* --- end of list --- */
}
};
static struct pci_driver btaudio_pci_driver = {
.name = "btaudio",
.id_table = btaudio_pci_tbl,
.probe = btaudio_probe,
.remove = __devexit_p(btaudio_remove),
};
static int btaudio_init_module(void)
{
printk(KERN_INFO "btaudio: driver version 0.7 loaded [%s%s%s]\n",
digital ? "digital" : "",
analog && digital ? "+" : "",
analog ? "analog" : "");
return pci_register_driver(&btaudio_pci_driver);
}
static void btaudio_cleanup_module(void)
{
pci_unregister_driver(&btaudio_pci_driver);
return;
}
module_init(btaudio_init_module);
module_exit(btaudio_cleanup_module);
module_param(dsp1, int, S_IRUGO);
module_param(dsp2, int, S_IRUGO);
module_param(mixer, int, S_IRUGO);
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(irq_debug, int, S_IRUGO | S_IWUSR);
module_param(digital, int, S_IRUGO);
module_param(analog, int, S_IRUGO);
module_param(rate, int, S_IRUGO);
module_param(latency, int, S_IRUGO);
MODULE_PARM_DESC(latency,"pci latency timer");
MODULE_DEVICE_TABLE(pci, btaudio_pci_tbl);
MODULE_DESCRIPTION("bt878 audio dma driver");
MODULE_AUTHOR("Gerd Knorr");
MODULE_LICENSE("GPL");
/*
* Local variables:
* c-basic-offset: 8
* End:
*/