linux/drivers/net/chelsio/cxgb2.c
Al Viro ac390c60a8 annotate chelsio
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-01-28 15:10:29 -08:00

1428 lines
38 KiB
C

/*****************************************************************************
* *
* File: cxgb2.c *
* $Revision: 1.25 $ *
* $Date: 2005/06/22 00:43:25 $ *
* Description: *
* Chelsio 10Gb Ethernet Driver. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License, version 2, as *
* published by the Free Software Foundation. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
* *
* http://www.chelsio.com *
* *
* Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
* All rights reserved. *
* *
* Maintainers: maintainers@chelsio.com *
* *
* Authors: Dimitrios Michailidis <dm@chelsio.com> *
* Tina Yang <tainay@chelsio.com> *
* Felix Marti <felix@chelsio.com> *
* Scott Bardone <sbardone@chelsio.com> *
* Kurt Ottaway <kottaway@chelsio.com> *
* Frank DiMambro <frank@chelsio.com> *
* *
* History: *
* *
****************************************************************************/
#include "common.h"
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/mii.h>
#include <linux/sockios.h>
#include <linux/dma-mapping.h>
#include <asm/uaccess.h>
#include "cpl5_cmd.h"
#include "regs.h"
#include "gmac.h"
#include "cphy.h"
#include "sge.h"
#include "tp.h"
#include "espi.h"
#include "elmer0.h"
#include <linux/workqueue.h>
static inline void schedule_mac_stats_update(struct adapter *ap, int secs)
{
schedule_delayed_work(&ap->stats_update_task, secs * HZ);
}
static inline void cancel_mac_stats_update(struct adapter *ap)
{
cancel_delayed_work(&ap->stats_update_task);
}
#define MAX_CMDQ_ENTRIES 16384
#define MAX_CMDQ1_ENTRIES 1024
#define MAX_RX_BUFFERS 16384
#define MAX_RX_JUMBO_BUFFERS 16384
#define MAX_TX_BUFFERS_HIGH 16384U
#define MAX_TX_BUFFERS_LOW 1536U
#define MAX_TX_BUFFERS 1460U
#define MIN_FL_ENTRIES 32
#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
/*
* The EEPROM is actually bigger but only the first few bytes are used so we
* only report those.
*/
#define EEPROM_SIZE 32
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("GPL");
static int dflt_msg_enable = DFLT_MSG_ENABLE;
module_param(dflt_msg_enable, int, 0);
MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap");
#define HCLOCK 0x0
#define LCLOCK 0x1
/* T1 cards powersave mode */
static int t1_clock(struct adapter *adapter, int mode);
static int t1powersave = 1; /* HW default is powersave mode. */
module_param(t1powersave, int, 0);
MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode");
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
static const char pci_speed[][4] = {
"33", "66", "100", "133"
};
/*
* Setup MAC to receive the types of packets we want.
*/
static void t1_set_rxmode(struct net_device *dev)
{
struct adapter *adapter = dev->priv;
struct cmac *mac = adapter->port[dev->if_port].mac;
struct t1_rx_mode rm;
rm.dev = dev;
rm.idx = 0;
rm.list = dev->mc_list;
mac->ops->set_rx_mode(mac, &rm);
}
static void link_report(struct port_info *p)
{
if (!netif_carrier_ok(p->dev))
printk(KERN_INFO "%s: link down\n", p->dev->name);
else {
const char *s = "10Mbps";
switch (p->link_config.speed) {
case SPEED_10000: s = "10Gbps"; break;
case SPEED_1000: s = "1000Mbps"; break;
case SPEED_100: s = "100Mbps"; break;
}
printk(KERN_INFO "%s: link up, %s, %s-duplex\n",
p->dev->name, s,
p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
}
}
void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat,
int speed, int duplex, int pause)
{
struct port_info *p = &adapter->port[port_id];
if (link_stat != netif_carrier_ok(p->dev)) {
if (link_stat)
netif_carrier_on(p->dev);
else
netif_carrier_off(p->dev);
link_report(p);
/* multi-ports: inform toe */
if ((speed > 0) && (adapter->params.nports > 1)) {
unsigned int sched_speed = 10;
switch (speed) {
case SPEED_1000:
sched_speed = 1000;
break;
case SPEED_100:
sched_speed = 100;
break;
case SPEED_10:
sched_speed = 10;
break;
}
t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed);
}
}
}
static void link_start(struct port_info *p)
{
struct cmac *mac = p->mac;
mac->ops->reset(mac);
if (mac->ops->macaddress_set)
mac->ops->macaddress_set(mac, p->dev->dev_addr);
t1_set_rxmode(p->dev);
t1_link_start(p->phy, mac, &p->link_config);
mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
}
static void enable_hw_csum(struct adapter *adapter)
{
if (adapter->flags & TSO_CAPABLE)
t1_tp_set_ip_checksum_offload(adapter->tp, 1); /* for TSO only */
if (adapter->flags & UDP_CSUM_CAPABLE)
t1_tp_set_udp_checksum_offload(adapter->tp, 1);
t1_tp_set_tcp_checksum_offload(adapter->tp, 1);
}
/*
* Things to do upon first use of a card.
* This must run with the rtnl lock held.
*/
static int cxgb_up(struct adapter *adapter)
{
int err = 0;
if (!(adapter->flags & FULL_INIT_DONE)) {
err = t1_init_hw_modules(adapter);
if (err)
goto out_err;
enable_hw_csum(adapter);
adapter->flags |= FULL_INIT_DONE;
}
t1_interrupts_clear(adapter);
adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev);
err = request_irq(adapter->pdev->irq, t1_interrupt,
adapter->params.has_msi ? 0 : IRQF_SHARED,
adapter->name, adapter);
if (err) {
if (adapter->params.has_msi)
pci_disable_msi(adapter->pdev);
goto out_err;
}
t1_sge_start(adapter->sge);
t1_interrupts_enable(adapter);
out_err:
return err;
}
/*
* Release resources when all the ports have been stopped.
*/
static void cxgb_down(struct adapter *adapter)
{
t1_sge_stop(adapter->sge);
t1_interrupts_disable(adapter);
free_irq(adapter->pdev->irq, adapter);
if (adapter->params.has_msi)
pci_disable_msi(adapter->pdev);
}
static int cxgb_open(struct net_device *dev)
{
int err;
struct adapter *adapter = dev->priv;
int other_ports = adapter->open_device_map & PORT_MASK;
napi_enable(&adapter->napi);
if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) {
napi_disable(&adapter->napi);
return err;
}
__set_bit(dev->if_port, &adapter->open_device_map);
link_start(&adapter->port[dev->if_port]);
netif_start_queue(dev);
if (!other_ports && adapter->params.stats_update_period)
schedule_mac_stats_update(adapter,
adapter->params.stats_update_period);
return 0;
}
static int cxgb_close(struct net_device *dev)
{
struct adapter *adapter = dev->priv;
struct port_info *p = &adapter->port[dev->if_port];
struct cmac *mac = p->mac;
netif_stop_queue(dev);
napi_disable(&adapter->napi);
mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
netif_carrier_off(dev);
clear_bit(dev->if_port, &adapter->open_device_map);
if (adapter->params.stats_update_period &&
!(adapter->open_device_map & PORT_MASK)) {
/* Stop statistics accumulation. */
smp_mb__after_clear_bit();
spin_lock(&adapter->work_lock); /* sync with update task */
spin_unlock(&adapter->work_lock);
cancel_mac_stats_update(adapter);
}
if (!adapter->open_device_map)
cxgb_down(adapter);
return 0;
}
static struct net_device_stats *t1_get_stats(struct net_device *dev)
{
struct adapter *adapter = dev->priv;
struct port_info *p = &adapter->port[dev->if_port];
struct net_device_stats *ns = &p->netstats;
const struct cmac_statistics *pstats;
/* Do a full update of the MAC stats */
pstats = p->mac->ops->statistics_update(p->mac,
MAC_STATS_UPDATE_FULL);
ns->tx_packets = pstats->TxUnicastFramesOK +
pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK;
ns->rx_packets = pstats->RxUnicastFramesOK +
pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK;
ns->tx_bytes = pstats->TxOctetsOK;
ns->rx_bytes = pstats->RxOctetsOK;
ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors +
pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions;
ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors +
pstats->RxFCSErrors + pstats->RxAlignErrors +
pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors +
pstats->RxSymbolErrors + pstats->RxRuntErrors;
ns->multicast = pstats->RxMulticastFramesOK;
ns->collisions = pstats->TxTotalCollisions;
/* detailed rx_errors */
ns->rx_length_errors = pstats->RxFrameTooLongErrors +
pstats->RxJabberErrors;
ns->rx_over_errors = 0;
ns->rx_crc_errors = pstats->RxFCSErrors;
ns->rx_frame_errors = pstats->RxAlignErrors;
ns->rx_fifo_errors = 0;
ns->rx_missed_errors = 0;
/* detailed tx_errors */
ns->tx_aborted_errors = pstats->TxFramesAbortedDueToXSCollisions;
ns->tx_carrier_errors = 0;
ns->tx_fifo_errors = pstats->TxUnderrun;
ns->tx_heartbeat_errors = 0;
ns->tx_window_errors = pstats->TxLateCollisions;
return ns;
}
static u32 get_msglevel(struct net_device *dev)
{
struct adapter *adapter = dev->priv;
return adapter->msg_enable;
}
static void set_msglevel(struct net_device *dev, u32 val)
{
struct adapter *adapter = dev->priv;
adapter->msg_enable = val;
}
static char stats_strings[][ETH_GSTRING_LEN] = {
"TxOctetsOK",
"TxOctetsBad",
"TxUnicastFramesOK",
"TxMulticastFramesOK",
"TxBroadcastFramesOK",
"TxPauseFrames",
"TxFramesWithDeferredXmissions",
"TxLateCollisions",
"TxTotalCollisions",
"TxFramesAbortedDueToXSCollisions",
"TxUnderrun",
"TxLengthErrors",
"TxInternalMACXmitError",
"TxFramesWithExcessiveDeferral",
"TxFCSErrors",
"TxJumboFramesOk",
"TxJumboOctetsOk",
"RxOctetsOK",
"RxOctetsBad",
"RxUnicastFramesOK",
"RxMulticastFramesOK",
"RxBroadcastFramesOK",
"RxPauseFrames",
"RxFCSErrors",
"RxAlignErrors",
"RxSymbolErrors",
"RxDataErrors",
"RxSequenceErrors",
"RxRuntErrors",
"RxJabberErrors",
"RxInternalMACRcvError",
"RxInRangeLengthErrors",
"RxOutOfRangeLengthField",
"RxFrameTooLongErrors",
"RxJumboFramesOk",
"RxJumboOctetsOk",
/* Port stats */
"RxCsumGood",
"TxCsumOffload",
"TxTso",
"RxVlan",
"TxVlan",
"TxNeedHeadroom",
/* Interrupt stats */
"rx drops",
"pure_rsps",
"unhandled irqs",
"respQ_empty",
"respQ_overflow",
"freelistQ_empty",
"pkt_too_big",
"pkt_mismatch",
"cmdQ_full0",
"cmdQ_full1",
"espi_DIP2ParityErr",
"espi_DIP4Err",
"espi_RxDrops",
"espi_TxDrops",
"espi_RxOvfl",
"espi_ParityErr"
};
#define T2_REGMAP_SIZE (3 * 1024)
static int get_regs_len(struct net_device *dev)
{
return T2_REGMAP_SIZE;
}
static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct adapter *adapter = dev->priv;
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, pci_name(adapter->pdev));
}
static int get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(stats_strings);
default:
return -EOPNOTSUPP;
}
}
static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
if (stringset == ETH_SS_STATS)
memcpy(data, stats_strings, sizeof(stats_strings));
}
static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
u64 *data)
{
struct adapter *adapter = dev->priv;
struct cmac *mac = adapter->port[dev->if_port].mac;
const struct cmac_statistics *s;
const struct sge_intr_counts *t;
struct sge_port_stats ss;
s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL);
t = t1_sge_get_intr_counts(adapter->sge);
t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss);
*data++ = s->TxOctetsOK;
*data++ = s->TxOctetsBad;
*data++ = s->TxUnicastFramesOK;
*data++ = s->TxMulticastFramesOK;
*data++ = s->TxBroadcastFramesOK;
*data++ = s->TxPauseFrames;
*data++ = s->TxFramesWithDeferredXmissions;
*data++ = s->TxLateCollisions;
*data++ = s->TxTotalCollisions;
*data++ = s->TxFramesAbortedDueToXSCollisions;
*data++ = s->TxUnderrun;
*data++ = s->TxLengthErrors;
*data++ = s->TxInternalMACXmitError;
*data++ = s->TxFramesWithExcessiveDeferral;
*data++ = s->TxFCSErrors;
*data++ = s->TxJumboFramesOK;
*data++ = s->TxJumboOctetsOK;
*data++ = s->RxOctetsOK;
*data++ = s->RxOctetsBad;
*data++ = s->RxUnicastFramesOK;
*data++ = s->RxMulticastFramesOK;
*data++ = s->RxBroadcastFramesOK;
*data++ = s->RxPauseFrames;
*data++ = s->RxFCSErrors;
*data++ = s->RxAlignErrors;
*data++ = s->RxSymbolErrors;
*data++ = s->RxDataErrors;
*data++ = s->RxSequenceErrors;
*data++ = s->RxRuntErrors;
*data++ = s->RxJabberErrors;
*data++ = s->RxInternalMACRcvError;
*data++ = s->RxInRangeLengthErrors;
*data++ = s->RxOutOfRangeLengthField;
*data++ = s->RxFrameTooLongErrors;
*data++ = s->RxJumboFramesOK;
*data++ = s->RxJumboOctetsOK;
*data++ = ss.rx_cso_good;
*data++ = ss.tx_cso;
*data++ = ss.tx_tso;
*data++ = ss.vlan_xtract;
*data++ = ss.vlan_insert;
*data++ = ss.tx_need_hdrroom;
*data++ = t->rx_drops;
*data++ = t->pure_rsps;
*data++ = t->unhandled_irqs;
*data++ = t->respQ_empty;
*data++ = t->respQ_overflow;
*data++ = t->freelistQ_empty;
*data++ = t->pkt_too_big;
*data++ = t->pkt_mismatch;
*data++ = t->cmdQ_full[0];
*data++ = t->cmdQ_full[1];
if (adapter->espi) {
const struct espi_intr_counts *e;
e = t1_espi_get_intr_counts(adapter->espi);
*data++ = e->DIP2_parity_err;
*data++ = e->DIP4_err;
*data++ = e->rx_drops;
*data++ = e->tx_drops;
*data++ = e->rx_ovflw;
*data++ = e->parity_err;
}
}
static inline void reg_block_dump(struct adapter *ap, void *buf,
unsigned int start, unsigned int end)
{
u32 *p = buf + start;
for ( ; start <= end; start += sizeof(u32))
*p++ = readl(ap->regs + start);
}
static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *buf)
{
struct adapter *ap = dev->priv;
/*
* Version scheme: bits 0..9: chip version, bits 10..15: chip revision
*/
regs->version = 2;
memset(buf, 0, T2_REGMAP_SIZE);
reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER);
reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE);
reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR);
reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT);
reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE);
reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE);
reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT);
reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL);
reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE);
reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD);
}
static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct adapter *adapter = dev->priv;
struct port_info *p = &adapter->port[dev->if_port];
cmd->supported = p->link_config.supported;
cmd->advertising = p->link_config.advertising;
if (netif_carrier_ok(dev)) {
cmd->speed = p->link_config.speed;
cmd->duplex = p->link_config.duplex;
} else {
cmd->speed = -1;
cmd->duplex = -1;
}
cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
cmd->phy_address = p->phy->addr;
cmd->transceiver = XCVR_EXTERNAL;
cmd->autoneg = p->link_config.autoneg;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 0;
return 0;
}
static int speed_duplex_to_caps(int speed, int duplex)
{
int cap = 0;
switch (speed) {
case SPEED_10:
if (duplex == DUPLEX_FULL)
cap = SUPPORTED_10baseT_Full;
else
cap = SUPPORTED_10baseT_Half;
break;
case SPEED_100:
if (duplex == DUPLEX_FULL)
cap = SUPPORTED_100baseT_Full;
else
cap = SUPPORTED_100baseT_Half;
break;
case SPEED_1000:
if (duplex == DUPLEX_FULL)
cap = SUPPORTED_1000baseT_Full;
else
cap = SUPPORTED_1000baseT_Half;
break;
case SPEED_10000:
if (duplex == DUPLEX_FULL)
cap = SUPPORTED_10000baseT_Full;
}
return cap;
}
#define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
ADVERTISED_10000baseT_Full)
static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct adapter *adapter = dev->priv;
struct port_info *p = &adapter->port[dev->if_port];
struct link_config *lc = &p->link_config;
if (!(lc->supported & SUPPORTED_Autoneg))
return -EOPNOTSUPP; /* can't change speed/duplex */
if (cmd->autoneg == AUTONEG_DISABLE) {
int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
return -EINVAL;
lc->requested_speed = cmd->speed;
lc->requested_duplex = cmd->duplex;
lc->advertising = 0;
} else {
cmd->advertising &= ADVERTISED_MASK;
if (cmd->advertising & (cmd->advertising - 1))
cmd->advertising = lc->supported;
cmd->advertising &= lc->supported;
if (!cmd->advertising)
return -EINVAL;
lc->requested_speed = SPEED_INVALID;
lc->requested_duplex = DUPLEX_INVALID;
lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
}
lc->autoneg = cmd->autoneg;
if (netif_running(dev))
t1_link_start(p->phy, p->mac, lc);
return 0;
}
static void get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct adapter *adapter = dev->priv;
struct port_info *p = &adapter->port[dev->if_port];
epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
}
static int set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *epause)
{
struct adapter *adapter = dev->priv;
struct port_info *p = &adapter->port[dev->if_port];
struct link_config *lc = &p->link_config;
if (epause->autoneg == AUTONEG_DISABLE)
lc->requested_fc = 0;
else if (lc->supported & SUPPORTED_Autoneg)
lc->requested_fc = PAUSE_AUTONEG;
else
return -EINVAL;
if (epause->rx_pause)
lc->requested_fc |= PAUSE_RX;
if (epause->tx_pause)
lc->requested_fc |= PAUSE_TX;
if (lc->autoneg == AUTONEG_ENABLE) {
if (netif_running(dev))
t1_link_start(p->phy, p->mac, lc);
} else {
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
if (netif_running(dev))
p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1,
lc->fc);
}
return 0;
}
static u32 get_rx_csum(struct net_device *dev)
{
struct adapter *adapter = dev->priv;
return (adapter->flags & RX_CSUM_ENABLED) != 0;
}
static int set_rx_csum(struct net_device *dev, u32 data)
{
struct adapter *adapter = dev->priv;
if (data)
adapter->flags |= RX_CSUM_ENABLED;
else
adapter->flags &= ~RX_CSUM_ENABLED;
return 0;
}
static int set_tso(struct net_device *dev, u32 value)
{
struct adapter *adapter = dev->priv;
if (!(adapter->flags & TSO_CAPABLE))
return value ? -EOPNOTSUPP : 0;
return ethtool_op_set_tso(dev, value);
}
static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
struct adapter *adapter = dev->priv;
int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
e->rx_max_pending = MAX_RX_BUFFERS;
e->rx_mini_max_pending = 0;
e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
e->tx_max_pending = MAX_CMDQ_ENTRIES;
e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl];
e->rx_mini_pending = 0;
e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl];
e->tx_pending = adapter->params.sge.cmdQ_size[0];
}
static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
struct adapter *adapter = dev->priv;
int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending ||
e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
e->tx_pending > MAX_CMDQ_ENTRIES ||
e->rx_pending < MIN_FL_ENTRIES ||
e->rx_jumbo_pending < MIN_FL_ENTRIES ||
e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1))
return -EINVAL;
if (adapter->flags & FULL_INIT_DONE)
return -EBUSY;
adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending;
adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending;
adapter->params.sge.cmdQ_size[0] = e->tx_pending;
adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ?
MAX_CMDQ1_ENTRIES : e->tx_pending;
return 0;
}
static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
struct adapter *adapter = dev->priv;
adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs;
adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce;
adapter->params.sge.sample_interval_usecs = c->rate_sample_interval;
t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge);
return 0;
}
static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
struct adapter *adapter = dev->priv;
c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs;
c->rate_sample_interval = adapter->params.sge.sample_interval_usecs;
c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable;
return 0;
}
static int get_eeprom_len(struct net_device *dev)
{
struct adapter *adapter = dev->priv;
return t1_is_asic(adapter) ? EEPROM_SIZE : 0;
}
#define EEPROM_MAGIC(ap) \
(PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16))
static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
u8 *data)
{
int i;
u8 buf[EEPROM_SIZE] __attribute__((aligned(4)));
struct adapter *adapter = dev->priv;
e->magic = EEPROM_MAGIC(adapter);
for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32))
t1_seeprom_read(adapter, i, (__le32 *)&buf[i]);
memcpy(data, buf + e->offset, e->len);
return 0;
}
static const struct ethtool_ops t1_ethtool_ops = {
.get_settings = get_settings,
.set_settings = set_settings,
.get_drvinfo = get_drvinfo,
.get_msglevel = get_msglevel,
.set_msglevel = set_msglevel,
.get_ringparam = get_sge_param,
.set_ringparam = set_sge_param,
.get_coalesce = get_coalesce,
.set_coalesce = set_coalesce,
.get_eeprom_len = get_eeprom_len,
.get_eeprom = get_eeprom,
.get_pauseparam = get_pauseparam,
.set_pauseparam = set_pauseparam,
.get_rx_csum = get_rx_csum,
.set_rx_csum = set_rx_csum,
.set_tx_csum = ethtool_op_set_tx_csum,
.set_sg = ethtool_op_set_sg,
.get_link = ethtool_op_get_link,
.get_strings = get_strings,
.get_sset_count = get_sset_count,
.get_ethtool_stats = get_stats,
.get_regs_len = get_regs_len,
.get_regs = get_regs,
.set_tso = set_tso,
};
static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct adapter *adapter = dev->priv;
struct mii_ioctl_data *data = if_mii(req);
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->port[dev->if_port].phy->addr;
/* FALLTHRU */
case SIOCGMIIREG: {
struct cphy *phy = adapter->port[dev->if_port].phy;
u32 val;
if (!phy->mdio_read)
return -EOPNOTSUPP;
phy->mdio_read(adapter, data->phy_id, 0, data->reg_num & 0x1f,
&val);
data->val_out = val;
break;
}
case SIOCSMIIREG: {
struct cphy *phy = adapter->port[dev->if_port].phy;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!phy->mdio_write)
return -EOPNOTSUPP;
phy->mdio_write(adapter, data->phy_id, 0, data->reg_num & 0x1f,
data->val_in);
break;
}
default:
return -EOPNOTSUPP;
}
return 0;
}
static int t1_change_mtu(struct net_device *dev, int new_mtu)
{
int ret;
struct adapter *adapter = dev->priv;
struct cmac *mac = adapter->port[dev->if_port].mac;
if (!mac->ops->set_mtu)
return -EOPNOTSUPP;
if (new_mtu < 68)
return -EINVAL;
if ((ret = mac->ops->set_mtu(mac, new_mtu)))
return ret;
dev->mtu = new_mtu;
return 0;
}
static int t1_set_mac_addr(struct net_device *dev, void *p)
{
struct adapter *adapter = dev->priv;
struct cmac *mac = adapter->port[dev->if_port].mac;
struct sockaddr *addr = p;
if (!mac->ops->macaddress_set)
return -EOPNOTSUPP;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
mac->ops->macaddress_set(mac, dev->dev_addr);
return 0;
}
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
static void vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct adapter *adapter = dev->priv;
spin_lock_irq(&adapter->async_lock);
adapter->vlan_grp = grp;
t1_set_vlan_accel(adapter, grp != NULL);
spin_unlock_irq(&adapter->async_lock);
}
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
static void t1_netpoll(struct net_device *dev)
{
unsigned long flags;
struct adapter *adapter = dev->priv;
local_irq_save(flags);
t1_interrupt(adapter->pdev->irq, adapter);
local_irq_restore(flags);
}
#endif
/*
* Periodic accumulation of MAC statistics. This is used only if the MAC
* does not have any other way to prevent stats counter overflow.
*/
static void mac_stats_task(struct work_struct *work)
{
int i;
struct adapter *adapter =
container_of(work, struct adapter, stats_update_task.work);
for_each_port(adapter, i) {
struct port_info *p = &adapter->port[i];
if (netif_running(p->dev))
p->mac->ops->statistics_update(p->mac,
MAC_STATS_UPDATE_FAST);
}
/* Schedule the next statistics update if any port is active. */
spin_lock(&adapter->work_lock);
if (adapter->open_device_map & PORT_MASK)
schedule_mac_stats_update(adapter,
adapter->params.stats_update_period);
spin_unlock(&adapter->work_lock);
}
/*
* Processes elmer0 external interrupts in process context.
*/
static void ext_intr_task(struct work_struct *work)
{
struct adapter *adapter =
container_of(work, struct adapter, ext_intr_handler_task);
t1_elmer0_ext_intr_handler(adapter);
/* Now reenable external interrupts */
spin_lock_irq(&adapter->async_lock);
adapter->slow_intr_mask |= F_PL_INTR_EXT;
writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
adapter->regs + A_PL_ENABLE);
spin_unlock_irq(&adapter->async_lock);
}
/*
* Interrupt-context handler for elmer0 external interrupts.
*/
void t1_elmer0_ext_intr(struct adapter *adapter)
{
/*
* Schedule a task to handle external interrupts as we require
* a process context. We disable EXT interrupts in the interim
* and let the task reenable them when it's done.
*/
adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
adapter->regs + A_PL_ENABLE);
schedule_work(&adapter->ext_intr_handler_task);
}
void t1_fatal_err(struct adapter *adapter)
{
if (adapter->flags & FULL_INIT_DONE) {
t1_sge_stop(adapter->sge);
t1_interrupts_disable(adapter);
}
CH_ALERT("%s: encountered fatal error, operation suspended\n",
adapter->name);
}
static int __devinit init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int version_printed;
int i, err, pci_using_dac = 0;
unsigned long mmio_start, mmio_len;
const struct board_info *bi;
struct adapter *adapter = NULL;
struct port_info *pi;
if (!version_printed) {
printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION,
DRV_VERSION);
++version_printed;
}
err = pci_enable_device(pdev);
if (err)
return err;
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
CH_ERR("%s: cannot find PCI device memory base address\n",
pci_name(pdev));
err = -ENODEV;
goto out_disable_pdev;
}
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
pci_using_dac = 1;
if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
CH_ERR("%s: unable to obtain 64-bit DMA for "
"consistent allocations\n", pci_name(pdev));
err = -ENODEV;
goto out_disable_pdev;
}
} else if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
CH_ERR("%s: no usable DMA configuration\n", pci_name(pdev));
goto out_disable_pdev;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
CH_ERR("%s: cannot obtain PCI resources\n", pci_name(pdev));
goto out_disable_pdev;
}
pci_set_master(pdev);
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
bi = t1_get_board_info(ent->driver_data);
for (i = 0; i < bi->port_number; ++i) {
struct net_device *netdev;
netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter));
if (!netdev) {
err = -ENOMEM;
goto out_free_dev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
if (!adapter) {
adapter = netdev->priv;
adapter->pdev = pdev;
adapter->port[0].dev = netdev; /* so we don't leak it */
adapter->regs = ioremap(mmio_start, mmio_len);
if (!adapter->regs) {
CH_ERR("%s: cannot map device registers\n",
pci_name(pdev));
err = -ENOMEM;
goto out_free_dev;
}
if (t1_get_board_rev(adapter, bi, &adapter->params)) {
err = -ENODEV; /* Can't handle this chip rev */
goto out_free_dev;
}
adapter->name = pci_name(pdev);
adapter->msg_enable = dflt_msg_enable;
adapter->mmio_len = mmio_len;
spin_lock_init(&adapter->tpi_lock);
spin_lock_init(&adapter->work_lock);
spin_lock_init(&adapter->async_lock);
spin_lock_init(&adapter->mac_lock);
INIT_WORK(&adapter->ext_intr_handler_task,
ext_intr_task);
INIT_DELAYED_WORK(&adapter->stats_update_task,
mac_stats_task);
pci_set_drvdata(pdev, netdev);
}
pi = &adapter->port[i];
pi->dev = netdev;
netif_carrier_off(netdev);
netdev->irq = pdev->irq;
netdev->if_port = i;
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len - 1;
netdev->priv = adapter;
netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
netdev->features |= NETIF_F_LLTX;
adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE;
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
if (vlan_tso_capable(adapter)) {
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
adapter->flags |= VLAN_ACCEL_CAPABLE;
netdev->features |=
NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
netdev->vlan_rx_register = vlan_rx_register;
#endif
/* T204: disable TSO */
if (!(is_T2(adapter)) || bi->port_number != 4) {
adapter->flags |= TSO_CAPABLE;
netdev->features |= NETIF_F_TSO;
}
}
netdev->open = cxgb_open;
netdev->stop = cxgb_close;
netdev->hard_start_xmit = t1_start_xmit;
netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ?
sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt);
netdev->get_stats = t1_get_stats;
netdev->set_multicast_list = t1_set_rxmode;
netdev->do_ioctl = t1_ioctl;
netdev->change_mtu = t1_change_mtu;
netdev->set_mac_address = t1_set_mac_addr;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = t1_netpoll;
#endif
#ifdef CONFIG_CHELSIO_T1_NAPI
netif_napi_add(netdev, &adapter->napi, t1_poll, 64);
#endif
SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops);
}
if (t1_init_sw_modules(adapter, bi) < 0) {
err = -ENODEV;
goto out_free_dev;
}
/*
* The card is now ready to go. If any errors occur during device
* registration we do not fail the whole card but rather proceed only
* with the ports we manage to register successfully. However we must
* register at least one net device.
*/
for (i = 0; i < bi->port_number; ++i) {
err = register_netdev(adapter->port[i].dev);
if (err)
CH_WARN("%s: cannot register net device %s, skipping\n",
pci_name(pdev), adapter->port[i].dev->name);
else {
/*
* Change the name we use for messages to the name of
* the first successfully registered interface.
*/
if (!adapter->registered_device_map)
adapter->name = adapter->port[i].dev->name;
__set_bit(i, &adapter->registered_device_map);
}
}
if (!adapter->registered_device_map) {
CH_ERR("%s: could not register any net devices\n",
pci_name(pdev));
goto out_release_adapter_res;
}
printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name,
bi->desc, adapter->params.chip_revision,
adapter->params.pci.is_pcix ? "PCIX" : "PCI",
adapter->params.pci.speed, adapter->params.pci.width);
/*
* Set the T1B ASIC and memory clocks.
*/
if (t1powersave)
adapter->t1powersave = LCLOCK; /* HW default is powersave mode. */
else
adapter->t1powersave = HCLOCK;
if (t1_is_T1B(adapter))
t1_clock(adapter, t1powersave);
return 0;
out_release_adapter_res:
t1_free_sw_modules(adapter);
out_free_dev:
if (adapter) {
if (adapter->regs)
iounmap(adapter->regs);
for (i = bi->port_number - 1; i >= 0; --i)
if (adapter->port[i].dev)
free_netdev(adapter->port[i].dev);
}
pci_release_regions(pdev);
out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void bit_bang(struct adapter *adapter, int bitdata, int nbits)
{
int data;
int i;
u32 val;
enum {
S_CLOCK = 1 << 3,
S_DATA = 1 << 4
};
for (i = (nbits - 1); i > -1; i--) {
udelay(50);
data = ((bitdata >> i) & 0x1);
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
if (data)
val |= S_DATA;
else
val &= ~S_DATA;
udelay(50);
/* Set SCLOCK low */
val &= ~S_CLOCK;
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
/* Write SCLOCK high */
val |= S_CLOCK;
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
}
}
static int t1_clock(struct adapter *adapter, int mode)
{
u32 val;
int M_CORE_VAL;
int M_MEM_VAL;
enum {
M_CORE_BITS = 9,
T_CORE_VAL = 0,
T_CORE_BITS = 2,
N_CORE_VAL = 0,
N_CORE_BITS = 2,
M_MEM_BITS = 9,
T_MEM_VAL = 0,
T_MEM_BITS = 2,
N_MEM_VAL = 0,
N_MEM_BITS = 2,
NP_LOAD = 1 << 17,
S_LOAD_MEM = 1 << 5,
S_LOAD_CORE = 1 << 6,
S_CLOCK = 1 << 3
};
if (!t1_is_T1B(adapter))
return -ENODEV; /* Can't re-clock this chip. */
if (mode & 2)
return 0; /* show current mode. */
if ((adapter->t1powersave & 1) == (mode & 1))
return -EALREADY; /* ASIC already running in mode. */
if ((mode & 1) == HCLOCK) {
M_CORE_VAL = 0x14;
M_MEM_VAL = 0x18;
adapter->t1powersave = HCLOCK; /* overclock */
} else {
M_CORE_VAL = 0xe;
M_MEM_VAL = 0x10;
adapter->t1powersave = LCLOCK; /* underclock */
}
/* Don't interrupt this serial stream! */
spin_lock(&adapter->tpi_lock);
/* Initialize for ASIC core */
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val |= NP_LOAD;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~S_LOAD_CORE;
val &= ~S_CLOCK;
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
/* Serial program the ASIC clock synthesizer */
bit_bang(adapter, T_CORE_VAL, T_CORE_BITS);
bit_bang(adapter, N_CORE_VAL, N_CORE_BITS);
bit_bang(adapter, M_CORE_VAL, M_CORE_BITS);
udelay(50);
/* Finish ASIC core */
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val |= S_LOAD_CORE;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~S_LOAD_CORE;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
/* Initialize for memory */
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val |= NP_LOAD;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~S_LOAD_MEM;
val &= ~S_CLOCK;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
/* Serial program the memory clock synthesizer */
bit_bang(adapter, T_MEM_VAL, T_MEM_BITS);
bit_bang(adapter, N_MEM_VAL, N_MEM_BITS);
bit_bang(adapter, M_MEM_VAL, M_MEM_BITS);
udelay(50);
/* Finish memory */
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val |= S_LOAD_MEM;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(50);
__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~S_LOAD_MEM;
udelay(50);
__t1_tpi_write(adapter, A_ELMER0_GPO, val);
spin_unlock(&adapter->tpi_lock);
return 0;
}
static inline void t1_sw_reset(struct pci_dev *pdev)
{
pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3);
pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0);
}
static void __devexit remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct adapter *adapter = dev->priv;
int i;
for_each_port(adapter, i) {
if (test_bit(i, &adapter->registered_device_map))
unregister_netdev(adapter->port[i].dev);
}
t1_free_sw_modules(adapter);
iounmap(adapter->regs);
while (--i >= 0) {
if (adapter->port[i].dev)
free_netdev(adapter->port[i].dev);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
t1_sw_reset(pdev);
}
static struct pci_driver driver = {
.name = DRV_NAME,
.id_table = t1_pci_tbl,
.probe = init_one,
.remove = __devexit_p(remove_one),
};
static int __init t1_init_module(void)
{
return pci_register_driver(&driver);
}
static void __exit t1_cleanup_module(void)
{
pci_unregister_driver(&driver);
}
module_init(t1_init_module);
module_exit(t1_cleanup_module);