31f8c4fe5d
This simplifies the 82571/2/3 family initialization a bit and removes an initialization table no longer needed. Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
1351 lines
36 KiB
C
1351 lines
36 KiB
C
/*******************************************************************************
|
|
|
|
Intel PRO/1000 Linux driver
|
|
Copyright(c) 1999 - 2007 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
Linux NICS <linux.nics@intel.com>
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
/*
|
|
* 82571EB Gigabit Ethernet Controller
|
|
* 82571EB Gigabit Ethernet Controller (Fiber)
|
|
* 82572EI Gigabit Ethernet Controller (Copper)
|
|
* 82572EI Gigabit Ethernet Controller (Fiber)
|
|
* 82572EI Gigabit Ethernet Controller
|
|
* 82573V Gigabit Ethernet Controller (Copper)
|
|
* 82573E Gigabit Ethernet Controller (Copper)
|
|
* 82573L Gigabit Ethernet Controller
|
|
*/
|
|
|
|
#include <linux/netdevice.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include "e1000.h"
|
|
|
|
#define ID_LED_RESERVED_F746 0xF746
|
|
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
|
|
(ID_LED_OFF1_ON2 << 8) | \
|
|
(ID_LED_DEF1_DEF2 << 4) | \
|
|
(ID_LED_DEF1_DEF2))
|
|
|
|
#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
|
|
|
|
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
|
|
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
|
|
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
|
|
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
|
|
u16 words, u16 *data);
|
|
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
|
|
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
|
|
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
|
|
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
|
|
|
|
/**
|
|
* e1000_init_phy_params_82571 - Init PHY func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This is a function pointer entry point called by the api module.
|
|
**/
|
|
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
|
|
if (hw->media_type != e1000_media_type_copper) {
|
|
phy->type = e1000_phy_none;
|
|
return 0;
|
|
}
|
|
|
|
phy->addr = 1;
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->reset_delay_us = 100;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
phy->type = e1000_phy_igp_2;
|
|
break;
|
|
case e1000_82573:
|
|
phy->type = e1000_phy_m88;
|
|
break;
|
|
default:
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
/* This can only be done after all function pointers are setup. */
|
|
ret_val = e1000_get_phy_id_82571(hw);
|
|
|
|
/* Verify phy id */
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
if (phy->id != IGP01E1000_I_PHY_ID)
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
case e1000_82573:
|
|
if (phy->id != M88E1111_I_PHY_ID)
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
default:
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_82571 - Init NVM func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This is a function pointer entry point called by the api module.
|
|
**/
|
|
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = er32(EECD);
|
|
u16 size;
|
|
|
|
nvm->opcode_bits = 8;
|
|
nvm->delay_usec = 1;
|
|
switch (nvm->override) {
|
|
case e1000_nvm_override_spi_large:
|
|
nvm->page_size = 32;
|
|
nvm->address_bits = 16;
|
|
break;
|
|
case e1000_nvm_override_spi_small:
|
|
nvm->page_size = 8;
|
|
nvm->address_bits = 8;
|
|
break;
|
|
default:
|
|
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
|
|
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
|
|
break;
|
|
}
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82573:
|
|
if (((eecd >> 15) & 0x3) == 0x3) {
|
|
nvm->type = e1000_nvm_flash_hw;
|
|
nvm->word_size = 2048;
|
|
/* Autonomous Flash update bit must be cleared due
|
|
* to Flash update issue.
|
|
*/
|
|
eecd &= ~E1000_EECD_AUPDEN;
|
|
ew32(EECD, eecd);
|
|
break;
|
|
}
|
|
/* Fall Through */
|
|
default:
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
|
/* Added to a constant, "size" becomes the left-shift value
|
|
* for setting word_size.
|
|
*/
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
nvm->word_size = 1 << size;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_82571 - Init MAC func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This is a function pointer entry point called by the api module.
|
|
**/
|
|
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_mac_operations *func = &mac->ops;
|
|
|
|
/* Set media type */
|
|
switch (adapter->pdev->device) {
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
case E1000_DEV_ID_82572EI_FIBER:
|
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
|
hw->media_type = e1000_media_type_fiber;
|
|
break;
|
|
case E1000_DEV_ID_82571EB_SERDES:
|
|
case E1000_DEV_ID_82572EI_SERDES:
|
|
case E1000_DEV_ID_82571EB_SERDES_DUAL:
|
|
case E1000_DEV_ID_82571EB_SERDES_QUAD:
|
|
hw->media_type = e1000_media_type_internal_serdes;
|
|
break;
|
|
default:
|
|
hw->media_type = e1000_media_type_copper;
|
|
break;
|
|
}
|
|
|
|
/* Set mta register count */
|
|
mac->mta_reg_count = 128;
|
|
/* Set rar entry count */
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
|
/* Set if manageability features are enabled. */
|
|
mac->arc_subsystem_valid =
|
|
(er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
|
|
|
|
/* check for link */
|
|
switch (hw->media_type) {
|
|
case e1000_media_type_copper:
|
|
func->setup_physical_interface = e1000_setup_copper_link_82571;
|
|
func->check_for_link = e1000e_check_for_copper_link;
|
|
func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
|
|
break;
|
|
case e1000_media_type_fiber:
|
|
func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
|
|
func->check_for_link = e1000e_check_for_fiber_link;
|
|
func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
|
|
func->check_for_link = e1000e_check_for_serdes_link;
|
|
func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
|
|
break;
|
|
default:
|
|
return -E1000_ERR_CONFIG;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
static int global_quad_port_a; /* global port a indication */
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
u16 eeprom_data = 0;
|
|
int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
|
|
s32 rc;
|
|
|
|
rc = e1000_init_mac_params_82571(adapter);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = e1000_init_nvm_params_82571(hw);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = e1000_init_phy_params_82571(hw);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* tag quad port adapters first, it's used below */
|
|
switch (pdev->device) {
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
|
|
case E1000_DEV_ID_82571PT_QUAD_COPPER:
|
|
adapter->flags |= FLAG_IS_QUAD_PORT;
|
|
/* mark the first port */
|
|
if (global_quad_port_a == 0)
|
|
adapter->flags |= FLAG_IS_QUAD_PORT_A;
|
|
/* Reset for multiple quad port adapters */
|
|
global_quad_port_a++;
|
|
if (global_quad_port_a == 4)
|
|
global_quad_port_a = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82571:
|
|
/* these dual ports don't have WoL on port B at all */
|
|
if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
|
|
(pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
|
|
(pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
|
|
(is_port_b))
|
|
adapter->flags &= ~FLAG_HAS_WOL;
|
|
/* quad ports only support WoL on port A */
|
|
if (adapter->flags & FLAG_IS_QUAD_PORT &&
|
|
(!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
|
|
adapter->flags &= ~FLAG_HAS_WOL;
|
|
/* Does not support WoL on any port */
|
|
if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
|
|
adapter->flags &= ~FLAG_HAS_WOL;
|
|
break;
|
|
|
|
case e1000_82573:
|
|
if (pdev->device == E1000_DEV_ID_82573L) {
|
|
e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
|
|
&eeprom_data);
|
|
if (eeprom_data & NVM_WORD1A_ASPM_MASK)
|
|
adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reads the PHY registers and stores the PHY ID and possibly the PHY
|
|
* revision in the hardware structure.
|
|
**/
|
|
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
/* The 82571 firmware may still be configuring the PHY.
|
|
* In this case, we cannot access the PHY until the
|
|
* configuration is done. So we explicitly set the
|
|
* PHY ID. */
|
|
phy->id = IGP01E1000_I_PHY_ID;
|
|
break;
|
|
case e1000_82573:
|
|
return e1000e_get_phy_id(hw);
|
|
break;
|
|
default:
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the HW semaphore to access the PHY or NVM
|
|
**/
|
|
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
s32 timeout = hw->nvm.word_size + 1;
|
|
s32 i = 0;
|
|
|
|
/* Get the FW semaphore. */
|
|
for (i = 0; i < timeout; i++) {
|
|
swsm = er32(SWSM);
|
|
ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
|
|
|
|
/* Semaphore acquired if bit latched */
|
|
if (er32(SWSM) & E1000_SWSM_SWESMBI)
|
|
break;
|
|
|
|
udelay(50);
|
|
}
|
|
|
|
if (i == timeout) {
|
|
/* Release semaphores */
|
|
e1000e_put_hw_semaphore(hw);
|
|
hw_dbg(hw, "Driver can't access the NVM\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_put_hw_semaphore_82571 - Release hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Release hardware semaphore used to access the PHY or NVM
|
|
**/
|
|
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
|
|
swsm = er32(SWSM);
|
|
|
|
swsm &= ~E1000_SWSM_SWESMBI;
|
|
|
|
ew32(SWSM, swsm);
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_nvm_82571 - Request for access to the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* To gain access to the EEPROM, first we must obtain a hardware semaphore.
|
|
* Then for non-82573 hardware, set the EEPROM access request bit and wait
|
|
* for EEPROM access grant bit. If the access grant bit is not set, release
|
|
* hardware semaphore.
|
|
**/
|
|
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
ret_val = e1000_get_hw_semaphore_82571(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (hw->mac.type != e1000_82573)
|
|
ret_val = e1000e_acquire_nvm(hw);
|
|
|
|
if (ret_val)
|
|
e1000_put_hw_semaphore_82571(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_nvm_82571 - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
|
|
**/
|
|
static void e1000_release_nvm_82571(struct e1000_hw *hw)
|
|
{
|
|
e1000e_release_nvm(hw);
|
|
e1000_put_hw_semaphore_82571(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
*
|
|
* For non-82573 silicon, write data to EEPROM at offset using SPI interface.
|
|
*
|
|
* If e1000e_update_nvm_checksum is not called after this function, the
|
|
* EEPROM will most likley contain an invalid checksum.
|
|
**/
|
|
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82573:
|
|
ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_NVM;
|
|
break;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_nvm_checksum_82571 - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM.
|
|
**/
|
|
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
s32 ret_val;
|
|
u16 i;
|
|
|
|
ret_val = e1000e_update_nvm_checksum_generic(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* If our nvm is an EEPROM, then we're done
|
|
* otherwise, commit the checksum to the flash NVM. */
|
|
if (hw->nvm.type != e1000_nvm_flash_hw)
|
|
return ret_val;
|
|
|
|
/* Check for pending operations. */
|
|
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
|
|
msleep(1);
|
|
if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == E1000_FLASH_UPDATES)
|
|
return -E1000_ERR_NVM;
|
|
|
|
/* Reset the firmware if using STM opcode. */
|
|
if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
|
|
/* The enabling of and the actual reset must be done
|
|
* in two write cycles.
|
|
*/
|
|
ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
|
|
e1e_flush();
|
|
ew32(HICR, E1000_HICR_FW_RESET);
|
|
}
|
|
|
|
/* Commit the write to flash */
|
|
eecd = er32(EECD) | E1000_EECD_FLUPD;
|
|
ew32(EECD, eecd);
|
|
|
|
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
|
|
msleep(1);
|
|
if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == E1000_FLASH_UPDATES)
|
|
return -E1000_ERR_NVM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
**/
|
|
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
|
|
{
|
|
if (hw->nvm.type == e1000_nvm_flash_hw)
|
|
e1000_fix_nvm_checksum_82571(hw);
|
|
|
|
return e1000e_validate_nvm_checksum_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
*
|
|
* After checking for invalid values, poll the EEPROM to ensure the previous
|
|
* command has completed before trying to write the next word. After write
|
|
* poll for completion.
|
|
*
|
|
* If e1000e_update_nvm_checksum is not called after this function, the
|
|
* EEPROM will most likley contain an invalid checksum.
|
|
**/
|
|
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
|
|
u16 words, u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i;
|
|
u32 eewr = 0;
|
|
s32 ret_val = 0;
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words. */
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
|
|
((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
|
|
E1000_NVM_RW_REG_START;
|
|
|
|
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
|
|
if (ret_val)
|
|
break;
|
|
|
|
ew32(EEWR, eewr);
|
|
|
|
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
|
|
if (ret_val)
|
|
break;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cfg_done_82571 - Poll for configuration done
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reads the management control register for the config done bit to be set.
|
|
**/
|
|
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
|
|
{
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
|
|
|
while (timeout) {
|
|
if (er32(EEMNGCTL) &
|
|
E1000_NVM_CFG_DONE_PORT_0)
|
|
break;
|
|
msleep(1);
|
|
timeout--;
|
|
}
|
|
if (!timeout) {
|
|
hw_dbg(hw, "MNG configuration cycle has not completed.\n");
|
|
return -E1000_ERR_RESET;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
|
|
* @hw: pointer to the HW structure
|
|
* @active: TRUE to enable LPLU, FALSE to disable
|
|
*
|
|
* Sets the LPLU D0 state according to the active flag. When activating LPLU
|
|
* this function also disables smart speed and vice versa. LPLU will not be
|
|
* activated unless the device autonegotiation advertisement meets standards
|
|
* of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
|
|
* pointer entry point only called by PHY setup routines.
|
|
**/
|
|
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (active) {
|
|
data |= IGP02E1000_PM_D0_LPLU;
|
|
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
data &= ~IGP02E1000_PM_D0_LPLU;
|
|
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained. */
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_82571 - Reset hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets the hardware into a known state. This is a
|
|
* function pointer entry point called by the api module.
|
|
**/
|
|
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
u32 extcnf_ctrl;
|
|
u32 ctrl_ext;
|
|
u32 icr;
|
|
s32 ret_val;
|
|
u16 i = 0;
|
|
|
|
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000e_disable_pcie_master(hw);
|
|
if (ret_val)
|
|
hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
|
|
|
|
hw_dbg(hw, "Masking off all interrupts\n");
|
|
ew32(IMC, 0xffffffff);
|
|
|
|
ew32(RCTL, 0);
|
|
ew32(TCTL, E1000_TCTL_PSP);
|
|
e1e_flush();
|
|
|
|
msleep(10);
|
|
|
|
/* Must acquire the MDIO ownership before MAC reset.
|
|
* Ownership defaults to firmware after a reset. */
|
|
if (hw->mac.type == e1000_82573) {
|
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
|
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
|
|
|
|
do {
|
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
|
|
|
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
|
|
break;
|
|
|
|
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
|
|
|
|
msleep(2);
|
|
i++;
|
|
} while (i < MDIO_OWNERSHIP_TIMEOUT);
|
|
}
|
|
|
|
ctrl = er32(CTRL);
|
|
|
|
hw_dbg(hw, "Issuing a global reset to MAC\n");
|
|
ew32(CTRL, ctrl | E1000_CTRL_RST);
|
|
|
|
if (hw->nvm.type == e1000_nvm_flash_hw) {
|
|
udelay(10);
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
ew32(CTRL_EXT, ctrl_ext);
|
|
e1e_flush();
|
|
}
|
|
|
|
ret_val = e1000e_get_auto_rd_done(hw);
|
|
if (ret_val)
|
|
/* We don't want to continue accessing MAC registers. */
|
|
return ret_val;
|
|
|
|
/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
|
|
* Need to wait for Phy configuration completion before accessing
|
|
* NVM and Phy.
|
|
*/
|
|
if (hw->mac.type == e1000_82573)
|
|
msleep(25);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
ew32(IMC, 0xffffffff);
|
|
icr = er32(ICR);
|
|
|
|
if (hw->mac.type == e1000_82571 &&
|
|
hw->dev_spec.e82571.alt_mac_addr_is_present)
|
|
e1000e_set_laa_state_82571(hw, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_82571 - Initialize hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This inits the hardware readying it for operation.
|
|
**/
|
|
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 reg_data;
|
|
s32 ret_val;
|
|
u16 i;
|
|
u16 rar_count = mac->rar_entry_count;
|
|
|
|
e1000_initialize_hw_bits_82571(hw);
|
|
|
|
/* Initialize identification LED */
|
|
ret_val = e1000e_id_led_init(hw);
|
|
if (ret_val) {
|
|
hw_dbg(hw, "Error initializing identification LED\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* Disabling VLAN filtering */
|
|
hw_dbg(hw, "Initializing the IEEE VLAN\n");
|
|
e1000e_clear_vfta(hw);
|
|
|
|
/* Setup the receive address. */
|
|
/* If, however, a locally administered address was assigned to the
|
|
* 82571, we must reserve a RAR for it to work around an issue where
|
|
* resetting one port will reload the MAC on the other port.
|
|
*/
|
|
if (e1000e_get_laa_state_82571(hw))
|
|
rar_count--;
|
|
e1000e_init_rx_addrs(hw, rar_count);
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
hw_dbg(hw, "Zeroing the MTA\n");
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
|
|
/* Setup link and flow control */
|
|
ret_val = e1000_setup_link_82571(hw);
|
|
|
|
/* Set the transmit descriptor write-back policy */
|
|
reg_data = er32(TXDCTL);
|
|
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB |
|
|
E1000_TXDCTL_COUNT_DESC;
|
|
ew32(TXDCTL, reg_data);
|
|
|
|
/* ...for both queues. */
|
|
if (mac->type != e1000_82573) {
|
|
reg_data = er32(TXDCTL1);
|
|
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB |
|
|
E1000_TXDCTL_COUNT_DESC;
|
|
ew32(TXDCTL1, reg_data);
|
|
} else {
|
|
e1000e_enable_tx_pkt_filtering(hw);
|
|
reg_data = er32(GCR);
|
|
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
|
|
ew32(GCR, reg_data);
|
|
}
|
|
|
|
/* Clear all of the statistics registers (clear on read). It is
|
|
* important that we do this after we have tried to establish link
|
|
* because the symbol error count will increment wildly if there
|
|
* is no link.
|
|
*/
|
|
e1000_clear_hw_cntrs_82571(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initializes required hardware-dependent bits needed for normal operation.
|
|
**/
|
|
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
/* Transmit Descriptor Control 0 */
|
|
reg = er32(TXDCTL);
|
|
reg |= (1 << 22);
|
|
ew32(TXDCTL, reg);
|
|
|
|
/* Transmit Descriptor Control 1 */
|
|
reg = er32(TXDCTL1);
|
|
reg |= (1 << 22);
|
|
ew32(TXDCTL1, reg);
|
|
|
|
/* Transmit Arbitration Control 0 */
|
|
reg = er32(TARC0);
|
|
reg &= ~(0xF << 27); /* 30:27 */
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ew32(TARC0, reg);
|
|
|
|
/* Transmit Arbitration Control 1 */
|
|
reg = er32(TARC1);
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
reg &= ~((1 << 29) | (1 << 30));
|
|
reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
|
|
if (er32(TCTL) & E1000_TCTL_MULR)
|
|
reg &= ~(1 << 28);
|
|
else
|
|
reg |= (1 << 28);
|
|
ew32(TARC1, reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Device Control */
|
|
if (hw->mac.type == e1000_82573) {
|
|
reg = er32(CTRL);
|
|
reg &= ~(1 << 29);
|
|
ew32(CTRL, reg);
|
|
}
|
|
|
|
/* Extended Device Control */
|
|
if (hw->mac.type == e1000_82573) {
|
|
reg = er32(CTRL_EXT);
|
|
reg &= ~(1 << 23);
|
|
reg |= (1 << 22);
|
|
ew32(CTRL_EXT, reg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000e_clear_vfta - Clear VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the register array which contains the VLAN filter table by
|
|
* setting all the values to 0.
|
|
**/
|
|
void e1000e_clear_vfta(struct e1000_hw *hw)
|
|
{
|
|
u32 offset;
|
|
u32 vfta_value = 0;
|
|
u32 vfta_offset = 0;
|
|
u32 vfta_bit_in_reg = 0;
|
|
|
|
if (hw->mac.type == e1000_82573) {
|
|
if (hw->mng_cookie.vlan_id != 0) {
|
|
/* The VFTA is a 4096b bit-field, each identifying
|
|
* a single VLAN ID. The following operations
|
|
* determine which 32b entry (i.e. offset) into the
|
|
* array we want to set the VLAN ID (i.e. bit) of
|
|
* the manageability unit.
|
|
*/
|
|
vfta_offset = (hw->mng_cookie.vlan_id >>
|
|
E1000_VFTA_ENTRY_SHIFT) &
|
|
E1000_VFTA_ENTRY_MASK;
|
|
vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
|
|
E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
|
|
}
|
|
}
|
|
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
|
/* If the offset we want to clear is the same offset of the
|
|
* manageability VLAN ID, then clear all bits except that of
|
|
* the manageability unit.
|
|
*/
|
|
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
|
|
e1e_flush();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_mc_addr_list_update_82571 - Update Multicast addresses
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr_list: array of multicast addresses to program
|
|
* @mc_addr_count: number of multicast addresses to program
|
|
* @rar_used_count: the first RAR register free to program
|
|
* @rar_count: total number of supported Receive Address Registers
|
|
*
|
|
* Updates the Receive Address Registers and Multicast Table Array.
|
|
* The caller must have a packed mc_addr_list of multicast addresses.
|
|
* The parameter rar_count will usually be hw->mac.rar_entry_count
|
|
* unless there are workarounds that change this.
|
|
**/
|
|
static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
|
|
u8 *mc_addr_list,
|
|
u32 mc_addr_count,
|
|
u32 rar_used_count,
|
|
u32 rar_count)
|
|
{
|
|
if (e1000e_get_laa_state_82571(hw))
|
|
rar_count--;
|
|
|
|
e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
|
|
rar_used_count, rar_count);
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_link_82571 - Setup flow control and link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines which flow control settings to use, then configures flow
|
|
* control. Calls the appropriate media-specific link configuration
|
|
* function. Assuming the adapter has a valid link partner, a valid link
|
|
* should be established. Assumes the hardware has previously been reset
|
|
* and the transmitter and receiver are not enabled.
|
|
**/
|
|
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
|
|
{
|
|
/* 82573 does not have a word in the NVM to determine
|
|
* the default flow control setting, so we explicitly
|
|
* set it to full.
|
|
*/
|
|
if (hw->mac.type == e1000_82573)
|
|
hw->mac.fc = e1000_fc_full;
|
|
|
|
return e1000e_setup_link(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_copper_link_82571 - Configure copper link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the link for auto-neg or forced speed and duplex. Then we check
|
|
* for link, once link is established calls to configure collision distance
|
|
* and flow control are called.
|
|
**/
|
|
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
u32 led_ctrl;
|
|
s32 ret_val;
|
|
|
|
ctrl = er32(CTRL);
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
ew32(CTRL, ctrl);
|
|
|
|
switch (hw->phy.type) {
|
|
case e1000_phy_m88:
|
|
ret_val = e1000e_copper_link_setup_m88(hw);
|
|
break;
|
|
case e1000_phy_igp_2:
|
|
ret_val = e1000e_copper_link_setup_igp(hw);
|
|
/* Setup activity LED */
|
|
led_ctrl = er32(LEDCTL);
|
|
led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
ew32(LEDCTL, led_ctrl);
|
|
break;
|
|
default:
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000e_setup_copper_link(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures collision distance and flow control for fiber and serdes links.
|
|
* Upon successful setup, poll for link.
|
|
**/
|
|
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
|
|
{
|
|
switch (hw->mac.type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
/* If SerDes loopback mode is entered, there is no form
|
|
* of reset to take the adapter out of that mode. So we
|
|
* have to explicitly take the adapter out of loopback
|
|
* mode. This prevents drivers from twidling their thumbs
|
|
* if another tool failed to take it out of loopback mode.
|
|
*/
|
|
ew32(SCTL,
|
|
E1000_SCTL_DISABLE_SERDES_LOOPBACK);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return e1000e_setup_fiber_serdes_link(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_valid_led_default_82571 - Verify a valid default LED config
|
|
* @hw: pointer to the HW structure
|
|
* @data: pointer to the NVM (EEPROM)
|
|
*
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
**/
|
|
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
hw_dbg(hw, "NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (hw->mac.type == e1000_82573 &&
|
|
*data == ID_LED_RESERVED_F746)
|
|
*data = ID_LED_DEFAULT_82573;
|
|
else if (*data == ID_LED_RESERVED_0000 ||
|
|
*data == ID_LED_RESERVED_FFFF)
|
|
*data = ID_LED_DEFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000e_get_laa_state_82571 - Get locally administered address state
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Retrieve and return the current locally administed address state.
|
|
**/
|
|
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
|
|
{
|
|
if (hw->mac.type != e1000_82571)
|
|
return 0;
|
|
|
|
return hw->dev_spec.e82571.laa_is_present;
|
|
}
|
|
|
|
/**
|
|
* e1000e_set_laa_state_82571 - Set locally administered address state
|
|
* @hw: pointer to the HW structure
|
|
* @state: enable/disable locally administered address
|
|
*
|
|
* Enable/Disable the current locally administed address state.
|
|
**/
|
|
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
|
|
{
|
|
if (hw->mac.type != e1000_82571)
|
|
return;
|
|
|
|
hw->dev_spec.e82571.laa_is_present = state;
|
|
|
|
/* If workaround is activated... */
|
|
if (state)
|
|
/* Hold a copy of the LAA in RAR[14] This is done so that
|
|
* between the time RAR[0] gets clobbered and the time it
|
|
* gets fixed, the actual LAA is in one of the RARs and no
|
|
* incoming packets directed to this port are dropped.
|
|
* Eventually the LAA will be in RAR[0] and RAR[14].
|
|
*/
|
|
e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
|
|
}
|
|
|
|
/**
|
|
* e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Verifies that the EEPROM has completed the update. After updating the
|
|
* EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
|
|
* the checksum fix is not implemented, we need to set the bit and update
|
|
* the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
|
|
* we need to return bad checksum.
|
|
**/
|
|
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
if (nvm->type != e1000_nvm_flash_hw)
|
|
return 0;
|
|
|
|
/* Check bit 4 of word 10h. If it is 0, firmware is done updating
|
|
* 10h-12h. Checksum may need to be fixed.
|
|
*/
|
|
ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!(data & 0x10)) {
|
|
/* Read 0x23 and check bit 15. This bit is a 1
|
|
* when the checksum has already been fixed. If
|
|
* the checksum is still wrong and this bit is a
|
|
* 1, we need to return bad checksum. Otherwise,
|
|
* we need to set this bit to a 1 and update the
|
|
* checksum.
|
|
*/
|
|
ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!(data & 0x8000)) {
|
|
data |= 0x8000;
|
|
ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000e_update_nvm_checksum(hw);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the hardware counters by reading the counter registers.
|
|
**/
|
|
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
|
|
{
|
|
u32 temp;
|
|
|
|
e1000e_clear_hw_cntrs_base(hw);
|
|
|
|
temp = er32(PRC64);
|
|
temp = er32(PRC127);
|
|
temp = er32(PRC255);
|
|
temp = er32(PRC511);
|
|
temp = er32(PRC1023);
|
|
temp = er32(PRC1522);
|
|
temp = er32(PTC64);
|
|
temp = er32(PTC127);
|
|
temp = er32(PTC255);
|
|
temp = er32(PTC511);
|
|
temp = er32(PTC1023);
|
|
temp = er32(PTC1522);
|
|
|
|
temp = er32(ALGNERRC);
|
|
temp = er32(RXERRC);
|
|
temp = er32(TNCRS);
|
|
temp = er32(CEXTERR);
|
|
temp = er32(TSCTC);
|
|
temp = er32(TSCTFC);
|
|
|
|
temp = er32(MGTPRC);
|
|
temp = er32(MGTPDC);
|
|
temp = er32(MGTPTC);
|
|
|
|
temp = er32(IAC);
|
|
temp = er32(ICRXOC);
|
|
|
|
temp = er32(ICRXPTC);
|
|
temp = er32(ICRXATC);
|
|
temp = er32(ICTXPTC);
|
|
temp = er32(ICTXATC);
|
|
temp = er32(ICTXQEC);
|
|
temp = er32(ICTXQMTC);
|
|
temp = er32(ICRXDMTC);
|
|
}
|
|
|
|
static struct e1000_mac_operations e82571_mac_ops = {
|
|
.mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
|
|
/* .check_for_link: media type dependent */
|
|
.cleanup_led = e1000e_cleanup_led_generic,
|
|
.clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
|
|
.get_bus_info = e1000e_get_bus_info_pcie,
|
|
/* .get_link_up_info: media type dependent */
|
|
.led_on = e1000e_led_on_generic,
|
|
.led_off = e1000e_led_off_generic,
|
|
.mc_addr_list_update = e1000_mc_addr_list_update_82571,
|
|
.reset_hw = e1000_reset_hw_82571,
|
|
.init_hw = e1000_init_hw_82571,
|
|
.setup_link = e1000_setup_link_82571,
|
|
/* .setup_physical_interface: media type dependent */
|
|
};
|
|
|
|
static struct e1000_phy_operations e82_phy_ops_igp = {
|
|
.acquire_phy = e1000_get_hw_semaphore_82571,
|
|
.check_reset_block = e1000e_check_reset_block_generic,
|
|
.commit_phy = NULL,
|
|
.force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
|
|
.get_cfg_done = e1000_get_cfg_done_82571,
|
|
.get_cable_length = e1000e_get_cable_length_igp_2,
|
|
.get_phy_info = e1000e_get_phy_info_igp,
|
|
.read_phy_reg = e1000e_read_phy_reg_igp,
|
|
.release_phy = e1000_put_hw_semaphore_82571,
|
|
.reset_phy = e1000e_phy_hw_reset_generic,
|
|
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
|
|
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
|
|
.write_phy_reg = e1000e_write_phy_reg_igp,
|
|
};
|
|
|
|
static struct e1000_phy_operations e82_phy_ops_m88 = {
|
|
.acquire_phy = e1000_get_hw_semaphore_82571,
|
|
.check_reset_block = e1000e_check_reset_block_generic,
|
|
.commit_phy = e1000e_phy_sw_reset,
|
|
.force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
|
|
.get_cfg_done = e1000e_get_cfg_done,
|
|
.get_cable_length = e1000e_get_cable_length_m88,
|
|
.get_phy_info = e1000e_get_phy_info_m88,
|
|
.read_phy_reg = e1000e_read_phy_reg_m88,
|
|
.release_phy = e1000_put_hw_semaphore_82571,
|
|
.reset_phy = e1000e_phy_hw_reset_generic,
|
|
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
|
|
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
|
|
.write_phy_reg = e1000e_write_phy_reg_m88,
|
|
};
|
|
|
|
static struct e1000_nvm_operations e82571_nvm_ops = {
|
|
.acquire_nvm = e1000_acquire_nvm_82571,
|
|
.read_nvm = e1000e_read_nvm_eerd,
|
|
.release_nvm = e1000_release_nvm_82571,
|
|
.update_nvm = e1000_update_nvm_checksum_82571,
|
|
.valid_led_default = e1000_valid_led_default_82571,
|
|
.validate_nvm = e1000_validate_nvm_checksum_82571,
|
|
.write_nvm = e1000_write_nvm_82571,
|
|
};
|
|
|
|
struct e1000_info e1000_82571_info = {
|
|
.mac = e1000_82571,
|
|
.flags = FLAG_HAS_HW_VLAN_FILTER
|
|
| FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_HAS_STATS_PTC_PRC
|
|
| FLAG_HAS_WOL
|
|
| FLAG_APME_IN_CTRL3
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_STATS_ICR_ICT
|
|
| FLAG_HAS_SMART_POWER_DOWN
|
|
| FLAG_RESET_OVERWRITES_LAA /* errata */
|
|
| FLAG_TARC_SPEED_MODE_BIT /* errata */
|
|
| FLAG_APME_CHECK_PORT_B,
|
|
.pba = 38,
|
|
.get_invariants = e1000_get_invariants_82571,
|
|
.mac_ops = &e82571_mac_ops,
|
|
.phy_ops = &e82_phy_ops_igp,
|
|
.nvm_ops = &e82571_nvm_ops,
|
|
};
|
|
|
|
struct e1000_info e1000_82572_info = {
|
|
.mac = e1000_82572,
|
|
.flags = FLAG_HAS_HW_VLAN_FILTER
|
|
| FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_HAS_STATS_PTC_PRC
|
|
| FLAG_HAS_WOL
|
|
| FLAG_APME_IN_CTRL3
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_STATS_ICR_ICT
|
|
| FLAG_TARC_SPEED_MODE_BIT, /* errata */
|
|
.pba = 38,
|
|
.get_invariants = e1000_get_invariants_82571,
|
|
.mac_ops = &e82571_mac_ops,
|
|
.phy_ops = &e82_phy_ops_igp,
|
|
.nvm_ops = &e82571_nvm_ops,
|
|
};
|
|
|
|
struct e1000_info e1000_82573_info = {
|
|
.mac = e1000_82573,
|
|
.flags = FLAG_HAS_HW_VLAN_FILTER
|
|
| FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_HAS_STATS_PTC_PRC
|
|
| FLAG_HAS_WOL
|
|
| FLAG_APME_IN_CTRL3
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_STATS_ICR_ICT
|
|
| FLAG_HAS_SMART_POWER_DOWN
|
|
| FLAG_HAS_AMT
|
|
| FLAG_HAS_ERT
|
|
| FLAG_HAS_SWSM_ON_LOAD,
|
|
.pba = 20,
|
|
.get_invariants = e1000_get_invariants_82571,
|
|
.mac_ops = &e82571_mac_ops,
|
|
.phy_ops = &e82_phy_ops_m88,
|
|
.nvm_ops = &e82571_nvm_ops,
|
|
};
|
|
|