linux/drivers/usb/host/ehci.h

895 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2001-2002 by David Brownell
*/
#ifndef __LINUX_EHCI_HCD_H
#define __LINUX_EHCI_HCD_H
/* definitions used for the EHCI driver */
/*
* __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
* __leXX (normally) or __beXX (given EHCI_BIG_ENDIAN_DESC), depending on
* the host controller implementation.
*
* To facilitate the strongest possible byte-order checking from "sparse"
* and so on, we use __leXX unless that's not practical.
*/
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_DESC
typedef __u32 __bitwise __hc32;
typedef __u16 __bitwise __hc16;
#else
#define __hc32 __le32
#define __hc16 __le16
#endif
/* statistics can be kept for tuning/monitoring */
#ifdef CONFIG_DYNAMIC_DEBUG
#define EHCI_STATS
#endif
struct ehci_stats {
/* irq usage */
unsigned long normal;
unsigned long error;
unsigned long iaa;
unsigned long lost_iaa;
/* termination of urbs from core */
unsigned long complete;
unsigned long unlink;
};
/*
* Scheduling and budgeting information for periodic transfers, for both
* high-speed devices and full/low-speed devices lying behind a TT.
*/
struct ehci_per_sched {
struct usb_device *udev; /* access to the TT */
struct usb_host_endpoint *ep;
struct list_head ps_list; /* node on ehci_tt's ps_list */
u16 tt_usecs; /* time on the FS/LS bus */
u16 cs_mask; /* C-mask and S-mask bytes */
u16 period; /* actual period in frames */
u16 phase; /* actual phase, frame part */
u8 bw_phase; /* same, for bandwidth
reservation */
u8 phase_uf; /* uframe part of the phase */
u8 usecs, c_usecs; /* times on the HS bus */
u8 bw_uperiod; /* period in microframes, for
bandwidth reservation */
u8 bw_period; /* same, in frames */
};
#define NO_FRAME 29999 /* frame not assigned yet */
/* ehci_hcd->lock guards shared data against other CPUs:
* ehci_hcd: async, unlink, periodic (and shadow), ...
* usb_host_endpoint: hcpriv
* ehci_qh: qh_next, qtd_list
* ehci_qtd: qtd_list
*
* Also, hold this lock when talking to HC registers or
* when updating hw_* fields in shared qh/qtd/... structures.
*/
#define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
/*
* ehci_rh_state values of EHCI_RH_RUNNING or above mean that the
* controller may be doing DMA. Lower values mean there's no DMA.
*/
enum ehci_rh_state {
EHCI_RH_HALTED,
EHCI_RH_SUSPENDED,
EHCI_RH_RUNNING,
EHCI_RH_STOPPING
};
/*
* Timer events, ordered by increasing delay length.
* Always update event_delays_ns[] and event_handlers[] (defined in
* ehci-timer.c) in parallel with this list.
*/
enum ehci_hrtimer_event {
EHCI_HRTIMER_POLL_ASS, /* Poll for async schedule off */
EHCI_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */
EHCI_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */
EHCI_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */
EHCI_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */
EHCI_HRTIMER_ACTIVE_UNLINK, /* Wait while unlinking an active QH */
EHCI_HRTIMER_START_UNLINK_INTR, /* Unlink empty interrupt QHs */
EHCI_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */
EHCI_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */
EHCI_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */
EHCI_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */
EHCI_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */
EHCI_HRTIMER_NUM_EVENTS /* Must come last */
};
#define EHCI_HRTIMER_NO_EVENT 99
struct ehci_hcd { /* one per controller */
/* timing support */
enum ehci_hrtimer_event next_hrtimer_event;
unsigned enabled_hrtimer_events;
ktime_t hr_timeouts[EHCI_HRTIMER_NUM_EVENTS];
struct hrtimer hrtimer;
int PSS_poll_count;
int ASS_poll_count;
int died_poll_count;
/* glue to PCI and HCD framework */
struct ehci_caps __iomem *caps;
struct ehci_regs __iomem *regs;
struct ehci_dbg_port __iomem *debug;
__u32 hcs_params; /* cached register copy */
spinlock_t lock;
enum ehci_rh_state rh_state;
/* general schedule support */
bool scanning:1;
bool need_rescan:1;
bool intr_unlinking:1;
bool iaa_in_progress:1;
bool async_unlinking:1;
bool shutdown:1;
struct ehci_qh *qh_scan_next;
/* async schedule support */
struct ehci_qh *async;
struct ehci_qh *dummy; /* For AMD quirk use */
struct list_head async_unlink;
struct list_head async_idle;
unsigned async_unlink_cycle;
unsigned async_count; /* async activity count */
__hc32 old_current; /* Test for QH becoming */
__hc32 old_token; /* inactive during unlink */
/* periodic schedule support */
#define DEFAULT_I_TDPS 1024 /* some HCs can do less */
unsigned periodic_size;
__hc32 *periodic; /* hw periodic table */
dma_addr_t periodic_dma;
struct list_head intr_qh_list;
unsigned i_thresh; /* uframes HC might cache */
union ehci_shadow *pshadow; /* mirror hw periodic table */
struct list_head intr_unlink_wait;
struct list_head intr_unlink;
unsigned intr_unlink_wait_cycle;
unsigned intr_unlink_cycle;
unsigned now_frame; /* frame from HC hardware */
unsigned last_iso_frame; /* last frame scanned for iso */
unsigned intr_count; /* intr activity count */
unsigned isoc_count; /* isoc activity count */
unsigned periodic_count; /* periodic activity count */
unsigned uframe_periodic_max; /* max periodic time per uframe */
/* list of itds & sitds completed while now_frame was still active */
struct list_head cached_itd_list;
struct ehci_itd *last_itd_to_free;
struct list_head cached_sitd_list;
struct ehci_sitd *last_sitd_to_free;
/* per root hub port */
unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
/* bit vectors (one bit per port) */
unsigned long bus_suspended; /* which ports were
already suspended at the start of a bus suspend */
unsigned long companion_ports; /* which ports are
dedicated to the companion controller */
unsigned long owned_ports; /* which ports are
owned by the companion during a bus suspend */
unsigned long port_c_suspend; /* which ports have
the change-suspend feature turned on */
unsigned long suspended_ports; /* which ports are
suspended */
unsigned long resuming_ports; /* which ports have
started to resume */
/* per-HC memory pools (could be per-bus, but ...) */
struct dma_pool *qh_pool; /* qh per active urb */
struct dma_pool *qtd_pool; /* one or more per qh */
struct dma_pool *itd_pool; /* itd per iso urb */
struct dma_pool *sitd_pool; /* sitd per split iso urb */
unsigned random_frame;
unsigned long next_statechange;
ktime_t last_periodic_enable;
u32 command;
/* SILICON QUIRKS */
unsigned no_selective_suspend:1;
unsigned has_fsl_port_bug:1; /* FreeScale */
unsigned has_fsl_hs_errata:1; /* Freescale HS quirk */
unsigned has_fsl_susp_errata:1; /* NXP SUSP quirk */
unsigned big_endian_mmio:1;
unsigned big_endian_desc:1;
unsigned big_endian_capbase:1;
unsigned has_amcc_usb23:1;
unsigned need_io_watchdog:1;
unsigned amd_pll_fix:1;
unsigned use_dummy_qh:1; /* AMD Frame List table quirk*/
unsigned has_synopsys_hc_bug:1; /* Synopsys HC */
unsigned frame_index_bug:1; /* MosChip (AKA NetMos) */
unsigned need_oc_pp_cycle:1; /* MPC834X port power */
unsigned imx28_write_fix:1; /* For Freescale i.MX28 */
/* required for usb32 quirk */
#define OHCI_CTRL_HCFS (3 << 6)
#define OHCI_USB_OPER (2 << 6)
#define OHCI_USB_SUSPEND (3 << 6)
#define OHCI_HCCTRL_OFFSET 0x4
#define OHCI_HCCTRL_LEN 0x4
__hc32 *ohci_hcctrl_reg;
unsigned has_hostpc:1;
unsigned has_tdi_phy_lpm:1;
unsigned has_ppcd:1; /* support per-port change bits */
u8 sbrn; /* packed release number */
/* irq statistics */
#ifdef EHCI_STATS
struct ehci_stats stats;
# define INCR(x) ((x)++)
#else
# define INCR(x) do {} while (0)
#endif
/* debug files */
#ifdef CONFIG_DYNAMIC_DEBUG
struct dentry *debug_dir;
#endif
/* bandwidth usage */
#define EHCI_BANDWIDTH_SIZE 64
#define EHCI_BANDWIDTH_FRAMES (EHCI_BANDWIDTH_SIZE >> 3)
u8 bandwidth[EHCI_BANDWIDTH_SIZE];
/* us allocated per uframe */
u8 tt_budget[EHCI_BANDWIDTH_SIZE];
/* us budgeted per uframe */
struct list_head tt_list;
/* platform-specific data -- must come last */
unsigned long priv[0] __aligned(sizeof(s64));
};
/* convert between an HCD pointer and the corresponding EHCI_HCD */
static inline struct ehci_hcd *hcd_to_ehci(struct usb_hcd *hcd)
{
return (struct ehci_hcd *) (hcd->hcd_priv);
}
static inline struct usb_hcd *ehci_to_hcd(struct ehci_hcd *ehci)
{
return container_of((void *) ehci, struct usb_hcd, hcd_priv);
}
/*-------------------------------------------------------------------------*/
#include <linux/usb/ehci_def.h>
/*-------------------------------------------------------------------------*/
#define QTD_NEXT(ehci, dma) cpu_to_hc32(ehci, (u32)dma)
/*
* EHCI Specification 0.95 Section 3.5
* QTD: describe data transfer components (buffer, direction, ...)
* See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
*
* These are associated only with "QH" (Queue Head) structures,
* used with control, bulk, and interrupt transfers.
*/
struct ehci_qtd {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.5.1 */
__hc32 hw_alt_next; /* see EHCI 3.5.2 */
__hc32 hw_token; /* see EHCI 3.5.3 */
#define QTD_TOGGLE (1 << 31) /* data toggle */
#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
#define QTD_IOC (1 << 15) /* interrupt on complete */
#define QTD_CERR(tok) (((tok)>>10) & 0x3)
#define QTD_PID(tok) (((tok)>>8) & 0x3)
#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
#define QTD_STS_HALT (1 << 6) /* halted on error */
#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
#define QTD_STS_STS (1 << 1) /* split transaction state */
#define QTD_STS_PING (1 << 0) /* issue PING? */
#define ACTIVE_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_ACTIVE)
#define HALT_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_HALT)
#define STATUS_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_STS)
__hc32 hw_buf[5]; /* see EHCI 3.5.4 */
__hc32 hw_buf_hi[5]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t qtd_dma; /* qtd address */
struct list_head qtd_list; /* sw qtd list */
struct urb *urb; /* qtd's urb */
size_t length; /* length of buffer */
} __aligned(32);
/* mask NakCnt+T in qh->hw_alt_next */
#define QTD_MASK(ehci) cpu_to_hc32(ehci, ~0x1f)
#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
/*-------------------------------------------------------------------------*/
/* type tag from {qh,itd,sitd,fstn}->hw_next */
#define Q_NEXT_TYPE(ehci, dma) ((dma) & cpu_to_hc32(ehci, 3 << 1))
/*
* Now the following defines are not converted using the
* cpu_to_le32() macro anymore, since we have to support
* "dynamic" switching between be and le support, so that the driver
* can be used on one system with SoC EHCI controller using big-endian
* descriptors as well as a normal little-endian PCI EHCI controller.
*/
/* values for that type tag */
#define Q_TYPE_ITD (0 << 1)
#define Q_TYPE_QH (1 << 1)
#define Q_TYPE_SITD (2 << 1)
#define Q_TYPE_FSTN (3 << 1)
/* next async queue entry, or pointer to interrupt/periodic QH */
#define QH_NEXT(ehci, dma) \
(cpu_to_hc32(ehci, (((u32) dma) & ~0x01f) | Q_TYPE_QH))
/* for periodic/async schedules and qtd lists, mark end of list */
#define EHCI_LIST_END(ehci) cpu_to_hc32(ehci, 1) /* "null pointer" to hw */
/*
* Entries in periodic shadow table are pointers to one of four kinds
* of data structure. That's dictated by the hardware; a type tag is
* encoded in the low bits of the hardware's periodic schedule. Use
* Q_NEXT_TYPE to get the tag.
*
* For entries in the async schedule, the type tag always says "qh".
*/
union ehci_shadow {
struct ehci_qh *qh; /* Q_TYPE_QH */
struct ehci_itd *itd; /* Q_TYPE_ITD */
struct ehci_sitd *sitd; /* Q_TYPE_SITD */
struct ehci_fstn *fstn; /* Q_TYPE_FSTN */
__hc32 *hw_next; /* (all types) */
void *ptr;
};
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.6
* QH: describes control/bulk/interrupt endpoints
* See Fig 3-7 "Queue Head Structure Layout".
*
* These appear in both the async and (for interrupt) periodic schedules.
*/
/* first part defined by EHCI spec */
struct ehci_qh_hw {
__hc32 hw_next; /* see EHCI 3.6.1 */
__hc32 hw_info1; /* see EHCI 3.6.2 */
#define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */
#define QH_HEAD (1 << 15) /* Head of async reclamation list */
#define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */
#define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */
#define QH_LOW_SPEED (1 << 12)
#define QH_FULL_SPEED (0 << 12)
#define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */
__hc32 hw_info2; /* see EHCI 3.6.2 */
#define QH_SMASK 0x000000ff
#define QH_CMASK 0x0000ff00
#define QH_HUBADDR 0x007f0000
#define QH_HUBPORT 0x3f800000
#define QH_MULT 0xc0000000
__hc32 hw_current; /* qtd list - see EHCI 3.6.4 */
/* qtd overlay (hardware parts of a struct ehci_qtd) */
__hc32 hw_qtd_next;
__hc32 hw_alt_next;
__hc32 hw_token;
__hc32 hw_buf[5];
__hc32 hw_buf_hi[5];
} __aligned(32);
struct ehci_qh {
struct ehci_qh_hw *hw; /* Must come first */
/* the rest is HCD-private */
dma_addr_t qh_dma; /* address of qh */
union ehci_shadow qh_next; /* ptr to qh; or periodic */
struct list_head qtd_list; /* sw qtd list */
struct list_head intr_node; /* list of intr QHs */
struct ehci_qtd *dummy;
struct list_head unlink_node;
struct ehci_per_sched ps; /* scheduling info */
unsigned unlink_cycle;
u8 qh_state;
#define QH_STATE_LINKED 1 /* HC sees this */
#define QH_STATE_UNLINK 2 /* HC may still see this */
#define QH_STATE_IDLE 3 /* HC doesn't see this */
#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */
#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
u8 xacterrs; /* XactErr retry counter */
#define QH_XACTERR_MAX 32 /* XactErr retry limit */
u8 unlink_reason;
#define QH_UNLINK_HALTED 0x01 /* Halt flag is set */
#define QH_UNLINK_SHORT_READ 0x02 /* Recover from a short read */
#define QH_UNLINK_DUMMY_OVERLAY 0x04 /* QH overlayed the dummy TD */
#define QH_UNLINK_SHUTDOWN 0x08 /* The HC isn't running */
#define QH_UNLINK_QUEUE_EMPTY 0x10 /* Reached end of the queue */
#define QH_UNLINK_REQUESTED 0x20 /* Disable, reset, or dequeue */
u8 gap_uf; /* uframes split/csplit gap */
unsigned is_out:1; /* bulk or intr OUT */
unsigned clearing_tt:1; /* Clear-TT-Buf in progress */
unsigned dequeue_during_giveback:1;
unsigned should_be_inactive:1;
};
/*-------------------------------------------------------------------------*/
/* description of one iso transaction (up to 3 KB data if highspeed) */
struct ehci_iso_packet {
/* These will be copied to iTD when scheduling */
u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */
__hc32 transaction; /* itd->hw_transaction[i] |= */
u8 cross; /* buf crosses pages */
/* for full speed OUT splits */
u32 buf1;
};
/* temporary schedule data for packets from iso urbs (both speeds)
* each packet is one logical usb transaction to the device (not TT),
* beginning at stream->next_uframe
*/
struct ehci_iso_sched {
struct list_head td_list;
unsigned span;
unsigned first_packet;
struct ehci_iso_packet packet[0];
};
/*
* ehci_iso_stream - groups all (s)itds for this endpoint.
* acts like a qh would, if EHCI had them for ISO.
*/
struct ehci_iso_stream {
/* first field matches ehci_hq, but is NULL */
struct ehci_qh_hw *hw;
u8 bEndpointAddress;
u8 highspeed;
struct list_head td_list; /* queued itds/sitds */
struct list_head free_list; /* list of unused itds/sitds */
/* output of (re)scheduling */
struct ehci_per_sched ps; /* scheduling info */
unsigned next_uframe;
__hc32 splits;
/* the rest is derived from the endpoint descriptor,
* including the extra info for hw_bufp[0..2]
*/
u16 uperiod; /* period in uframes */
u16 maxp;
unsigned bandwidth;
/* This is used to initialize iTD's hw_bufp fields */
__hc32 buf0;
__hc32 buf1;
__hc32 buf2;
/* this is used to initialize sITD's tt info */
__hc32 address;
};
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.3
* Fig 3-4 "Isochronous Transaction Descriptor (iTD)"
*
* Schedule records for high speed iso xfers
*/
struct ehci_itd {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.3.1 */
__hc32 hw_transaction[8]; /* see EHCI 3.3.2 */
#define EHCI_ISOC_ACTIVE (1<<31) /* activate transfer this slot */
#define EHCI_ISOC_BUF_ERR (1<<30) /* Data buffer error */
#define EHCI_ISOC_BABBLE (1<<29) /* babble detected */
#define EHCI_ISOC_XACTERR (1<<28) /* XactErr - transaction error */
#define EHCI_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff)
#define EHCI_ITD_IOC (1 << 15) /* interrupt on complete */
#define ITD_ACTIVE(ehci) cpu_to_hc32(ehci, EHCI_ISOC_ACTIVE)
__hc32 hw_bufp[7]; /* see EHCI 3.3.3 */
__hc32 hw_bufp_hi[7]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t itd_dma; /* for this itd */
union ehci_shadow itd_next; /* ptr to periodic q entry */
struct urb *urb;
struct ehci_iso_stream *stream; /* endpoint's queue */
struct list_head itd_list; /* list of stream's itds */
/* any/all hw_transactions here may be used by that urb */
unsigned frame; /* where scheduled */
unsigned pg;
unsigned index[8]; /* in urb->iso_frame_desc */
} __aligned(32);
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.4
* siTD, aka split-transaction isochronous Transfer Descriptor
* ... describe full speed iso xfers through TT in hubs
* see Figure 3-5 "Split-transaction Isochronous Transaction Descriptor (siTD)
*/
struct ehci_sitd {
/* first part defined by EHCI spec */
__hc32 hw_next;
/* uses bit field macros above - see EHCI 0.95 Table 3-8 */
__hc32 hw_fullspeed_ep; /* EHCI table 3-9 */
__hc32 hw_uframe; /* EHCI table 3-10 */
__hc32 hw_results; /* EHCI table 3-11 */
#define SITD_IOC (1 << 31) /* interrupt on completion */
#define SITD_PAGE (1 << 30) /* buffer 0/1 */
#define SITD_LENGTH(x) (((x) >> 16) & 0x3ff)
#define SITD_STS_ACTIVE (1 << 7) /* HC may execute this */
#define SITD_STS_ERR (1 << 6) /* error from TT */
#define SITD_STS_DBE (1 << 5) /* data buffer error (in HC) */
#define SITD_STS_BABBLE (1 << 4) /* device was babbling */
#define SITD_STS_XACT (1 << 3) /* illegal IN response */
#define SITD_STS_MMF (1 << 2) /* incomplete split transaction */
#define SITD_STS_STS (1 << 1) /* split transaction state */
#define SITD_ACTIVE(ehci) cpu_to_hc32(ehci, SITD_STS_ACTIVE)
__hc32 hw_buf[2]; /* EHCI table 3-12 */
__hc32 hw_backpointer; /* EHCI table 3-13 */
__hc32 hw_buf_hi[2]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t sitd_dma;
union ehci_shadow sitd_next; /* ptr to periodic q entry */
struct urb *urb;
struct ehci_iso_stream *stream; /* endpoint's queue */
struct list_head sitd_list; /* list of stream's sitds */
unsigned frame;
unsigned index;
} __aligned(32);
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.96 Section 3.7
* Periodic Frame Span Traversal Node (FSTN)
*
* Manages split interrupt transactions (using TT) that span frame boundaries
* into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN
* makes the HC jump (back) to a QH to scan for fs/ls QH completions until
* it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work.
*/
struct ehci_fstn {
__hc32 hw_next; /* any periodic q entry */
__hc32 hw_prev; /* qh or EHCI_LIST_END */
/* the rest is HCD-private */
dma_addr_t fstn_dma;
union ehci_shadow fstn_next; /* ptr to periodic q entry */
} __aligned(32);
/*-------------------------------------------------------------------------*/
/*
* USB-2.0 Specification Sections 11.14 and 11.18
* Scheduling and budgeting split transactions using TTs
*
* A hub can have a single TT for all its ports, or multiple TTs (one for each
* port). The bandwidth and budgeting information for the full/low-speed bus
* below each TT is self-contained and independent of the other TTs or the
* high-speed bus.
*
* "Bandwidth" refers to the number of microseconds on the FS/LS bus allocated
* to an interrupt or isochronous endpoint for each frame. "Budget" refers to
* the best-case estimate of the number of full-speed bytes allocated to an
* endpoint for each microframe within an allocated frame.
*
* Removal of an endpoint invalidates a TT's budget. Instead of trying to
* keep an up-to-date record, we recompute the budget when it is needed.
*/
struct ehci_tt {
u16 bandwidth[EHCI_BANDWIDTH_FRAMES];
struct list_head tt_list; /* List of all ehci_tt's */
struct list_head ps_list; /* Items using this TT */
struct usb_tt *usb_tt;
int tt_port; /* TT port number */
};
/*-------------------------------------------------------------------------*/
/* Prepare the PORTSC wakeup flags during controller suspend/resume */
#define ehci_prepare_ports_for_controller_suspend(ehci, do_wakeup) \
ehci_adjust_port_wakeup_flags(ehci, true, do_wakeup)
#define ehci_prepare_ports_for_controller_resume(ehci) \
ehci_adjust_port_wakeup_flags(ehci, false, false)
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_EHCI_ROOT_HUB_TT
/*
* Some EHCI controllers have a Transaction Translator built into the
* root hub. This is a non-standard feature. Each controller will need
* to add code to the following inline functions, and call them as
* needed (mostly in root hub code).
*/
#define ehci_is_TDI(e) (ehci_to_hcd(e)->has_tt)
/* Returns the speed of a device attached to a port on the root hub. */
static inline unsigned int
ehci_port_speed(struct ehci_hcd *ehci, unsigned int portsc)
{
if (ehci_is_TDI(ehci)) {
switch ((portsc >> (ehci->has_hostpc ? 25 : 26)) & 3) {
case 0:
return 0;
case 1:
return USB_PORT_STAT_LOW_SPEED;
case 2:
default:
return USB_PORT_STAT_HIGH_SPEED;
}
}
return USB_PORT_STAT_HIGH_SPEED;
}
#else
#define ehci_is_TDI(e) (0)
#define ehci_port_speed(ehci, portsc) USB_PORT_STAT_HIGH_SPEED
#endif
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_PPC_83xx
/* Some Freescale processors have an erratum in which the TT
* port number in the queue head was 0..N-1 instead of 1..N.
*/
#define ehci_has_fsl_portno_bug(e) ((e)->has_fsl_port_bug)
#else
#define ehci_has_fsl_portno_bug(e) (0)
#endif
#define PORTSC_FSL_PFSC 24 /* Port Force Full-Speed Connect */
#if defined(CONFIG_PPC_85xx)
/* Some Freescale processors have an erratum (USB A-005275) in which
* incoming packets get corrupted in HS mode
*/
#define ehci_has_fsl_hs_errata(e) ((e)->has_fsl_hs_errata)
#else
#define ehci_has_fsl_hs_errata(e) (0)
#endif
/*
* Some Freescale/NXP processors have an erratum (USB A-005697)
* in which we need to wait for 10ms for bus to enter suspend mode
* after setting SUSP bit.
*/
#define ehci_has_fsl_susp_errata(e) ((e)->has_fsl_susp_errata)
/*
* While most USB host controllers implement their registers in
* little-endian format, a minority (celleb companion chip) implement
* them in big endian format.
*
* This attempts to support either format at compile time without a
* runtime penalty, or both formats with the additional overhead
* of checking a flag bit.
*
* ehci_big_endian_capbase is a special quirk for controllers that
* implement the HC capability registers as separate registers and not
* as fields of a 32-bit register.
*/
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO
#define ehci_big_endian_mmio(e) ((e)->big_endian_mmio)
#define ehci_big_endian_capbase(e) ((e)->big_endian_capbase)
#else
#define ehci_big_endian_mmio(e) 0
#define ehci_big_endian_capbase(e) 0
#endif
/*
* Big-endian read/write functions are arch-specific.
* Other arches can be added if/when they're needed.
*/
#if defined(CONFIG_ARM) && defined(CONFIG_ARCH_IXP4XX)
#define readl_be(addr) __raw_readl((__force unsigned *)addr)
#define writel_be(val, addr) __raw_writel(val, (__force unsigned *)addr)
#endif
static inline unsigned int ehci_readl(const struct ehci_hcd *ehci,
__u32 __iomem *regs)
{
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO
return ehci_big_endian_mmio(ehci) ?
readl_be(regs) :
readl(regs);
#else
return readl(regs);
#endif
}
#ifdef CONFIG_SOC_IMX28
static inline void imx28_ehci_writel(const unsigned int val,
volatile __u32 __iomem *addr)
{
__asm__ ("swp %0, %0, [%1]" : : "r"(val), "r"(addr));
}
#else
static inline void imx28_ehci_writel(const unsigned int val,
volatile __u32 __iomem *addr)
{
}
#endif
static inline void ehci_writel(const struct ehci_hcd *ehci,
const unsigned int val, __u32 __iomem *regs)
{
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO
ehci_big_endian_mmio(ehci) ?
writel_be(val, regs) :
writel(val, regs);
#else
if (ehci->imx28_write_fix)
imx28_ehci_writel(val, regs);
else
writel(val, regs);
#endif
}
/*
* On certain ppc-44x SoC there is a HW issue, that could only worked around with
* explicit suspend/operate of OHCI. This function hereby makes sense only on that arch.
* Other common bits are dependent on has_amcc_usb23 quirk flag.
*/
#ifdef CONFIG_44x
static inline void set_ohci_hcfs(struct ehci_hcd *ehci, int operational)
{
u32 hc_control;
hc_control = (readl_be(ehci->ohci_hcctrl_reg) & ~OHCI_CTRL_HCFS);
if (operational)
hc_control |= OHCI_USB_OPER;
else
hc_control |= OHCI_USB_SUSPEND;
writel_be(hc_control, ehci->ohci_hcctrl_reg);
(void) readl_be(ehci->ohci_hcctrl_reg);
}
#else
static inline void set_ohci_hcfs(struct ehci_hcd *ehci, int operational)
{ }
#endif
/*-------------------------------------------------------------------------*/
/*
* The AMCC 440EPx not only implements its EHCI registers in big-endian
* format, but also its DMA data structures (descriptors).
*
* EHCI controllers accessed through PCI work normally (little-endian
* everywhere), so we won't bother supporting a BE-only mode for now.
*/
#ifdef CONFIG_USB_EHCI_BIG_ENDIAN_DESC
#define ehci_big_endian_desc(e) ((e)->big_endian_desc)
/* cpu to ehci */
static inline __hc32 cpu_to_hc32(const struct ehci_hcd *ehci, const u32 x)
{
return ehci_big_endian_desc(ehci)
? (__force __hc32)cpu_to_be32(x)
: (__force __hc32)cpu_to_le32(x);
}
/* ehci to cpu */
static inline u32 hc32_to_cpu(const struct ehci_hcd *ehci, const __hc32 x)
{
return ehci_big_endian_desc(ehci)
? be32_to_cpu((__force __be32)x)
: le32_to_cpu((__force __le32)x);
}
static inline u32 hc32_to_cpup(const struct ehci_hcd *ehci, const __hc32 *x)
{
return ehci_big_endian_desc(ehci)
? be32_to_cpup((__force __be32 *)x)
: le32_to_cpup((__force __le32 *)x);
}
#else
/* cpu to ehci */
static inline __hc32 cpu_to_hc32(const struct ehci_hcd *ehci, const u32 x)
{
return cpu_to_le32(x);
}
/* ehci to cpu */
static inline u32 hc32_to_cpu(const struct ehci_hcd *ehci, const __hc32 x)
{
return le32_to_cpu(x);
}
static inline u32 hc32_to_cpup(const struct ehci_hcd *ehci, const __hc32 *x)
{
return le32_to_cpup(x);
}
#endif
/*-------------------------------------------------------------------------*/
#define ehci_dbg(ehci, fmt, args...) \
dev_dbg(ehci_to_hcd(ehci)->self.controller, fmt, ## args)
#define ehci_err(ehci, fmt, args...) \
dev_err(ehci_to_hcd(ehci)->self.controller, fmt, ## args)
#define ehci_info(ehci, fmt, args...) \
dev_info(ehci_to_hcd(ehci)->self.controller, fmt, ## args)
#define ehci_warn(ehci, fmt, args...) \
dev_warn(ehci_to_hcd(ehci)->self.controller, fmt, ## args)
/*-------------------------------------------------------------------------*/
/* Declarations of things exported for use by ehci platform drivers */
struct ehci_driver_overrides {
size_t extra_priv_size;
int (*reset)(struct usb_hcd *hcd);
int (*port_power)(struct usb_hcd *hcd,
int portnum, bool enable);
};
extern void ehci_init_driver(struct hc_driver *drv,
const struct ehci_driver_overrides *over);
extern int ehci_setup(struct usb_hcd *hcd);
extern int ehci_handshake(struct ehci_hcd *ehci, void __iomem *ptr,
u32 mask, u32 done, int usec);
extern int ehci_reset(struct ehci_hcd *ehci);
extern int ehci_suspend(struct usb_hcd *hcd, bool do_wakeup);
extern int ehci_resume(struct usb_hcd *hcd, bool force_reset);
extern void ehci_adjust_port_wakeup_flags(struct ehci_hcd *ehci,
bool suspending, bool do_wakeup);
extern int ehci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
u16 wIndex, char *buf, u16 wLength);
#endif /* __LINUX_EHCI_HCD_H */