linux/drivers/spi/spi-mxs.c
Fabio Estevam e11933f626 spi: spi-mxs: Fix the error path sequence
On mxs_spi_probe() the dma channels are requested prior to enabling the SSP
clock, so in the error path we should disable the SSP clock first and
release the DMA channels later.

Same logic applies in mxs_spi_remove().

Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Acked-by: Marek Vasut <marex@denx.de>
Signed-off-by: Mark Brown <broonie@linaro.org>
2013-07-15 11:38:41 +01:00

624 lines
15 KiB
C

/*
* Freescale MXS SPI master driver
*
* Copyright 2012 DENX Software Engineering, GmbH.
* Copyright 2012 Freescale Semiconductor, Inc.
* Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
*
* Rework and transition to new API by:
* Marek Vasut <marex@denx.de>
*
* Based on previous attempt by:
* Fabio Estevam <fabio.estevam@freescale.com>
*
* Based on code from U-Boot bootloader by:
* Marek Vasut <marex@denx.de>
*
* Based on spi-stmp.c, which is:
* Author: Dmitry Pervushin <dimka@embeddedalley.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/highmem.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
#include <linux/stmp_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/mxs-spi.h>
#define DRIVER_NAME "mxs-spi"
/* Use 10S timeout for very long transfers, it should suffice. */
#define SSP_TIMEOUT 10000
#define SG_MAXLEN 0xff00
struct mxs_spi {
struct mxs_ssp ssp;
struct completion c;
};
static int mxs_spi_setup_transfer(struct spi_device *dev,
struct spi_transfer *t)
{
struct mxs_spi *spi = spi_master_get_devdata(dev->master);
struct mxs_ssp *ssp = &spi->ssp;
uint8_t bits_per_word;
uint32_t hz = 0;
bits_per_word = dev->bits_per_word;
if (t && t->bits_per_word)
bits_per_word = t->bits_per_word;
hz = dev->max_speed_hz;
if (t && t->speed_hz)
hz = min(hz, t->speed_hz);
if (hz == 0) {
dev_err(&dev->dev, "Cannot continue with zero clock\n");
return -EINVAL;
}
mxs_ssp_set_clk_rate(ssp, hz);
writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
BF_SSP_CTRL1_WORD_LENGTH
(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
ssp->base + HW_SSP_CTRL1(ssp));
writel(0x0, ssp->base + HW_SSP_CMD0);
writel(0x0, ssp->base + HW_SSP_CMD1);
return 0;
}
static int mxs_spi_setup(struct spi_device *dev)
{
int err = 0;
if (!dev->bits_per_word)
dev->bits_per_word = 8;
if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
return -EINVAL;
err = mxs_spi_setup_transfer(dev, NULL);
if (err) {
dev_err(&dev->dev,
"Failed to setup transfer, error = %d\n", err);
}
return err;
}
static uint32_t mxs_spi_cs_to_reg(unsigned cs)
{
uint32_t select = 0;
/*
* i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
*
* The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
* in HW_SSP_CTRL0 register do have multiple usage, please refer to
* the datasheet for further details. In SPI mode, they are used to
* toggle the chip-select lines (nCS pins).
*/
if (cs & 1)
select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
if (cs & 2)
select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
return select;
}
static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
{
const uint32_t mask =
BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
uint32_t select;
struct mxs_ssp *ssp = &spi->ssp;
writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
select = mxs_spi_cs_to_reg(cs);
writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
}
static inline void mxs_spi_enable(struct mxs_spi *spi)
{
struct mxs_ssp *ssp = &spi->ssp;
writel(BM_SSP_CTRL0_LOCK_CS,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
writel(BM_SSP_CTRL0_IGNORE_CRC,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
}
static inline void mxs_spi_disable(struct mxs_spi *spi)
{
struct mxs_ssp *ssp = &spi->ssp;
writel(BM_SSP_CTRL0_LOCK_CS,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
writel(BM_SSP_CTRL0_IGNORE_CRC,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
}
static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
{
const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
struct mxs_ssp *ssp = &spi->ssp;
uint32_t reg;
do {
reg = readl_relaxed(ssp->base + offset);
if (!set)
reg = ~reg;
reg &= mask;
if (reg == mask)
return 0;
} while (time_before(jiffies, timeout));
return -ETIMEDOUT;
}
static void mxs_ssp_dma_irq_callback(void *param)
{
struct mxs_spi *spi = param;
complete(&spi->c);
}
static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
{
struct mxs_ssp *ssp = dev_id;
dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
__func__, __LINE__,
readl(ssp->base + HW_SSP_CTRL1(ssp)),
readl(ssp->base + HW_SSP_STATUS(ssp)));
return IRQ_HANDLED;
}
static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
unsigned char *buf, int len,
int *first, int *last, int write)
{
struct mxs_ssp *ssp = &spi->ssp;
struct dma_async_tx_descriptor *desc = NULL;
const bool vmalloced_buf = is_vmalloc_addr(buf);
const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
const int sgs = DIV_ROUND_UP(len, desc_len);
int sg_count;
int min, ret;
uint32_t ctrl0;
struct page *vm_page;
void *sg_buf;
struct {
uint32_t pio[4];
struct scatterlist sg;
} *dma_xfer;
if (!len)
return -EINVAL;
dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
if (!dma_xfer)
return -ENOMEM;
INIT_COMPLETION(spi->c);
ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
if (*first)
ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
if (!write)
ctrl0 |= BM_SSP_CTRL0_READ;
/* Queue the DMA data transfer. */
for (sg_count = 0; sg_count < sgs; sg_count++) {
min = min(len, desc_len);
/* Prepare the transfer descriptor. */
if ((sg_count + 1 == sgs) && *last)
ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
if (ssp->devid == IMX23_SSP) {
ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
ctrl0 |= min;
}
dma_xfer[sg_count].pio[0] = ctrl0;
dma_xfer[sg_count].pio[3] = min;
if (vmalloced_buf) {
vm_page = vmalloc_to_page(buf);
if (!vm_page) {
ret = -ENOMEM;
goto err_vmalloc;
}
sg_buf = page_address(vm_page) +
((size_t)buf & ~PAGE_MASK);
} else {
sg_buf = buf;
}
sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
len -= min;
buf += min;
/* Queue the PIO register write transfer. */
desc = dmaengine_prep_slave_sg(ssp->dmach,
(struct scatterlist *)dma_xfer[sg_count].pio,
(ssp->devid == IMX23_SSP) ? 1 : 4,
DMA_TRANS_NONE,
sg_count ? DMA_PREP_INTERRUPT : 0);
if (!desc) {
dev_err(ssp->dev,
"Failed to get PIO reg. write descriptor.\n");
ret = -EINVAL;
goto err_mapped;
}
desc = dmaengine_prep_slave_sg(ssp->dmach,
&dma_xfer[sg_count].sg, 1,
write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(ssp->dev,
"Failed to get DMA data write descriptor.\n");
ret = -EINVAL;
goto err_mapped;
}
}
/*
* The last descriptor must have this callback,
* to finish the DMA transaction.
*/
desc->callback = mxs_ssp_dma_irq_callback;
desc->callback_param = spi;
/* Start the transfer. */
dmaengine_submit(desc);
dma_async_issue_pending(ssp->dmach);
ret = wait_for_completion_timeout(&spi->c,
msecs_to_jiffies(SSP_TIMEOUT));
if (!ret) {
dev_err(ssp->dev, "DMA transfer timeout\n");
ret = -ETIMEDOUT;
dmaengine_terminate_all(ssp->dmach);
goto err_vmalloc;
}
ret = 0;
err_vmalloc:
while (--sg_count >= 0) {
err_mapped:
dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
}
kfree(dma_xfer);
return ret;
}
static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
unsigned char *buf, int len,
int *first, int *last, int write)
{
struct mxs_ssp *ssp = &spi->ssp;
if (*first)
mxs_spi_enable(spi);
mxs_spi_set_cs(spi, cs);
while (len--) {
if (*last && len == 0)
mxs_spi_disable(spi);
if (ssp->devid == IMX23_SSP) {
writel(BM_SSP_CTRL0_XFER_COUNT,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
writel(1,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
} else {
writel(1, ssp->base + HW_SSP_XFER_SIZE);
}
if (write)
writel(BM_SSP_CTRL0_READ,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
else
writel(BM_SSP_CTRL0_READ,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
writel(BM_SSP_CTRL0_RUN,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
return -ETIMEDOUT;
if (write)
writel(*buf, ssp->base + HW_SSP_DATA(ssp));
writel(BM_SSP_CTRL0_DATA_XFER,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
if (!write) {
if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
BM_SSP_STATUS_FIFO_EMPTY, 0))
return -ETIMEDOUT;
*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
}
if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
return -ETIMEDOUT;
buf++;
}
if (len <= 0)
return 0;
return -ETIMEDOUT;
}
static int mxs_spi_transfer_one(struct spi_master *master,
struct spi_message *m)
{
struct mxs_spi *spi = spi_master_get_devdata(master);
struct mxs_ssp *ssp = &spi->ssp;
int first, last;
struct spi_transfer *t, *tmp_t;
int status = 0;
int cs;
first = last = 0;
cs = m->spi->chip_select;
list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
status = mxs_spi_setup_transfer(m->spi, t);
if (status)
break;
if (&t->transfer_list == m->transfers.next)
first = 1;
if (&t->transfer_list == m->transfers.prev)
last = 1;
if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
dev_err(ssp->dev,
"Cannot send and receive simultaneously\n");
status = -EINVAL;
break;
}
/*
* Small blocks can be transfered via PIO.
* Measured by empiric means:
*
* dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
*
* DMA only: 2.164808 seconds, 473.0KB/s
* Combined: 1.676276 seconds, 610.9KB/s
*/
if (t->len < 32) {
writel(BM_SSP_CTRL1_DMA_ENABLE,
ssp->base + HW_SSP_CTRL1(ssp) +
STMP_OFFSET_REG_CLR);
if (t->tx_buf)
status = mxs_spi_txrx_pio(spi, cs,
(void *)t->tx_buf,
t->len, &first, &last, 1);
if (t->rx_buf)
status = mxs_spi_txrx_pio(spi, cs,
t->rx_buf, t->len,
&first, &last, 0);
} else {
writel(BM_SSP_CTRL1_DMA_ENABLE,
ssp->base + HW_SSP_CTRL1(ssp) +
STMP_OFFSET_REG_SET);
if (t->tx_buf)
status = mxs_spi_txrx_dma(spi, cs,
(void *)t->tx_buf, t->len,
&first, &last, 1);
if (t->rx_buf)
status = mxs_spi_txrx_dma(spi, cs,
t->rx_buf, t->len,
&first, &last, 0);
}
if (status) {
stmp_reset_block(ssp->base);
break;
}
m->actual_length += t->len;
first = last = 0;
}
m->status = status;
spi_finalize_current_message(master);
return status;
}
static const struct of_device_id mxs_spi_dt_ids[] = {
{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
static int mxs_spi_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(mxs_spi_dt_ids, &pdev->dev);
struct device_node *np = pdev->dev.of_node;
struct spi_master *master;
struct mxs_spi *spi;
struct mxs_ssp *ssp;
struct resource *iores;
struct clk *clk;
void __iomem *base;
int devid, clk_freq;
int ret = 0, irq_err;
/*
* Default clock speed for the SPI core. 160MHz seems to
* work reasonably well with most SPI flashes, so use this
* as a default. Override with "clock-frequency" DT prop.
*/
const int clk_freq_default = 160000000;
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq_err = platform_get_irq(pdev, 0);
if (!iores || irq_err < 0)
return -EINVAL;
base = devm_ioremap_resource(&pdev->dev, iores);
if (IS_ERR(base))
return PTR_ERR(base);
clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
devid = (enum mxs_ssp_id) of_id->data;
ret = of_property_read_u32(np, "clock-frequency",
&clk_freq);
if (ret)
clk_freq = clk_freq_default;
master = spi_alloc_master(&pdev->dev, sizeof(*spi));
if (!master)
return -ENOMEM;
master->transfer_one_message = mxs_spi_transfer_one;
master->setup = mxs_spi_setup;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->num_chipselect = 3;
master->dev.of_node = np;
master->flags = SPI_MASTER_HALF_DUPLEX;
spi = spi_master_get_devdata(master);
ssp = &spi->ssp;
ssp->dev = &pdev->dev;
ssp->clk = clk;
ssp->base = base;
ssp->devid = devid;
init_completion(&spi->c);
ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
DRIVER_NAME, ssp);
if (ret)
goto out_master_free;
ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
if (!ssp->dmach) {
dev_err(ssp->dev, "Failed to request DMA\n");
ret = -ENODEV;
goto out_master_free;
}
clk_prepare_enable(ssp->clk);
clk_set_rate(ssp->clk, clk_freq);
ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
stmp_reset_block(ssp->base);
platform_set_drvdata(pdev, master);
ret = spi_register_master(master);
if (ret) {
dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
goto out_free_dma;
}
return 0;
out_free_dma:
clk_disable_unprepare(ssp->clk);
dma_release_channel(ssp->dmach);
out_master_free:
spi_master_put(master);
return ret;
}
static int mxs_spi_remove(struct platform_device *pdev)
{
struct spi_master *master;
struct mxs_spi *spi;
struct mxs_ssp *ssp;
master = spi_master_get(platform_get_drvdata(pdev));
spi = spi_master_get_devdata(master);
ssp = &spi->ssp;
spi_unregister_master(master);
clk_disable_unprepare(ssp->clk);
dma_release_channel(ssp->dmach);
spi_master_put(master);
return 0;
}
static struct platform_driver mxs_spi_driver = {
.probe = mxs_spi_probe,
.remove = mxs_spi_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = mxs_spi_dt_ids,
},
};
module_platform_driver(mxs_spi_driver);
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("MXS SPI master driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mxs-spi");