linux/kernel/sched_debug.c
Mike Galbraith e12f31d3e5 sched: Remove avg_overlap
Both avg_overlap and avg_wakeup had an inherent problem in that their accuracy
was detrimentally affected by cross-cpu wakeups, this because we are missing
the necessary call to update_curr().  This can't be fixed without increasing
overhead in our already too fat fastpath.

Additionally, with recent load balancing changes making us prefer to place tasks
in an idle cache domain (which is good for compute bound loads), communicating
tasks suffer when a sync wakeup, which would enable affine placement, is turned
into a non-sync wakeup by SYNC_LESS.  With one task on the runqueue, wake_affine()
rejects the affine wakeup request, leaving the unfortunate where placed, taking
frequent cache misses.

Remove it, and recover some fastpath cycles.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301121.6785.30.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-11 18:32:50 +01:00

499 lines
12 KiB
C

/*
* kernel/time/sched_debug.c
*
* Print the CFS rbtree
*
* Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/kallsyms.h>
#include <linux/utsname.h>
/*
* This allows printing both to /proc/sched_debug and
* to the console
*/
#define SEQ_printf(m, x...) \
do { \
if (m) \
seq_printf(m, x); \
else \
printk(x); \
} while (0)
/*
* Ease the printing of nsec fields:
*/
static long long nsec_high(unsigned long long nsec)
{
if ((long long)nsec < 0) {
nsec = -nsec;
do_div(nsec, 1000000);
return -nsec;
}
do_div(nsec, 1000000);
return nsec;
}
static unsigned long nsec_low(unsigned long long nsec)
{
if ((long long)nsec < 0)
nsec = -nsec;
return do_div(nsec, 1000000);
}
#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
#ifdef CONFIG_FAIR_GROUP_SCHED
static void print_cfs_group_stats(struct seq_file *m, int cpu,
struct task_group *tg)
{
struct sched_entity *se = tg->se[cpu];
if (!se)
return;
#define P(F) \
SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
#define PN(F) \
SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
#ifdef CONFIG_SCHEDSTATS
PN(se->statistics.wait_start);
PN(se->statistics.sleep_start);
PN(se->statistics.block_start);
PN(se->statistics.sleep_max);
PN(se->statistics.block_max);
PN(se->statistics.exec_max);
PN(se->statistics.slice_max);
PN(se->statistics.wait_max);
PN(se->statistics.wait_sum);
P(se->statistics.wait_count);
#endif
P(se->load.weight);
#undef PN
#undef P
}
#endif
static void
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
{
if (rq->curr == p)
SEQ_printf(m, "R");
else
SEQ_printf(m, " ");
SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
p->comm, p->pid,
SPLIT_NS(p->se.vruntime),
(long long)(p->nvcsw + p->nivcsw),
p->prio);
#ifdef CONFIG_SCHEDSTATS
SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
SPLIT_NS(p->se.vruntime),
SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(p->se.statistics.sum_sleep_runtime));
#else
SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
#endif
#ifdef CONFIG_CGROUP_SCHED
{
char path[64];
cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
SEQ_printf(m, " %s", path);
}
#endif
SEQ_printf(m, "\n");
}
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
{
struct task_struct *g, *p;
unsigned long flags;
SEQ_printf(m,
"\nrunnable tasks:\n"
" task PID tree-key switches prio"
" exec-runtime sum-exec sum-sleep\n"
"------------------------------------------------------"
"----------------------------------------------------\n");
read_lock_irqsave(&tasklist_lock, flags);
do_each_thread(g, p) {
if (!p->se.on_rq || task_cpu(p) != rq_cpu)
continue;
print_task(m, rq, p);
} while_each_thread(g, p);
read_unlock_irqrestore(&tasklist_lock, flags);
}
#if defined(CONFIG_CGROUP_SCHED) && \
(defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED))
static void task_group_path(struct task_group *tg, char *buf, int buflen)
{
/* may be NULL if the underlying cgroup isn't fully-created yet */
if (!tg->css.cgroup) {
buf[0] = '\0';
return;
}
cgroup_path(tg->css.cgroup, buf, buflen);
}
#endif
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
spread, rq0_min_vruntime, spread0;
struct rq *rq = cpu_rq(cpu);
struct sched_entity *last;
unsigned long flags;
#if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
char path[128];
struct task_group *tg = cfs_rq->tg;
task_group_path(tg, path, sizeof(path));
SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
#elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
{
uid_t uid = cfs_rq->tg->uid;
SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid);
}
#else
SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
#endif
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
SPLIT_NS(cfs_rq->exec_clock));
raw_spin_lock_irqsave(&rq->lock, flags);
if (cfs_rq->rb_leftmost)
MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
last = __pick_last_entity(cfs_rq);
if (last)
max_vruntime = last->vruntime;
min_vruntime = cfs_rq->min_vruntime;
rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
raw_spin_unlock_irqrestore(&rq->lock, flags);
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
SPLIT_NS(MIN_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
SPLIT_NS(min_vruntime));
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
SPLIT_NS(max_vruntime));
spread = max_vruntime - MIN_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
SPLIT_NS(spread));
spread0 = min_vruntime - rq0_min_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
SPLIT_NS(spread0));
SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
cfs_rq->nr_spread_over);
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
#endif
print_cfs_group_stats(m, cpu, cfs_rq->tg);
#endif
}
void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
{
#if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
char path[128];
struct task_group *tg = rt_rq->tg;
task_group_path(tg, path, sizeof(path));
SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
#else
SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
#endif
#define P(x) \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
P(rt_nr_running);
P(rt_throttled);
PN(rt_time);
PN(rt_runtime);
#undef PN
#undef P
}
static void print_cpu(struct seq_file *m, int cpu)
{
struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_X86
{
unsigned int freq = cpu_khz ? : 1;
SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
cpu, freq / 1000, (freq % 1000));
}
#else
SEQ_printf(m, "\ncpu#%d\n", cpu);
#endif
#define P(x) \
SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
#define PN(x) \
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
P(nr_running);
SEQ_printf(m, " .%-30s: %lu\n", "load",
rq->load.weight);
P(nr_switches);
P(nr_load_updates);
P(nr_uninterruptible);
PN(next_balance);
P(curr->pid);
PN(clock);
P(cpu_load[0]);
P(cpu_load[1]);
P(cpu_load[2]);
P(cpu_load[3]);
P(cpu_load[4]);
#undef P
#undef PN
#ifdef CONFIG_SCHEDSTATS
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
P(yld_count);
P(sched_switch);
P(sched_count);
P(sched_goidle);
#ifdef CONFIG_SMP
P64(avg_idle);
#endif
P(ttwu_count);
P(ttwu_local);
P(bkl_count);
#undef P
#endif
print_cfs_stats(m, cpu);
print_rt_stats(m, cpu);
print_rq(m, rq, cpu);
}
static const char *sched_tunable_scaling_names[] = {
"none",
"logaritmic",
"linear"
};
static int sched_debug_show(struct seq_file *m, void *v)
{
u64 now = ktime_to_ns(ktime_get());
int cpu;
SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n",
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
#define P(x) \
SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
#define PN(x) \
SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
P(jiffies);
PN(sysctl_sched_latency);
PN(sysctl_sched_min_granularity);
PN(sysctl_sched_wakeup_granularity);
PN(sysctl_sched_child_runs_first);
P(sysctl_sched_features);
#undef PN
#undef P
SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling",
sysctl_sched_tunable_scaling,
sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
for_each_online_cpu(cpu)
print_cpu(m, cpu);
SEQ_printf(m, "\n");
return 0;
}
static void sysrq_sched_debug_show(void)
{
sched_debug_show(NULL, NULL);
}
static int sched_debug_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_debug_show, NULL);
}
static const struct file_operations sched_debug_fops = {
.open = sched_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init init_sched_debug_procfs(void)
{
struct proc_dir_entry *pe;
pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
if (!pe)
return -ENOMEM;
return 0;
}
__initcall(init_sched_debug_procfs);
void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
{
unsigned long nr_switches;
unsigned long flags;
int num_threads = 1;
if (lock_task_sighand(p, &flags)) {
num_threads = atomic_read(&p->signal->count);
unlock_task_sighand(p, &flags);
}
SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
SEQ_printf(m,
"---------------------------------------------------------\n");
#define __P(F) \
SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
#define P(F) \
SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
#define __PN(F) \
SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN(F) \
SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
PN(se.exec_start);
PN(se.vruntime);
PN(se.sum_exec_runtime);
nr_switches = p->nvcsw + p->nivcsw;
#ifdef CONFIG_SCHEDSTATS
PN(se.statistics.wait_start);
PN(se.statistics.sleep_start);
PN(se.statistics.block_start);
PN(se.statistics.sleep_max);
PN(se.statistics.block_max);
PN(se.statistics.exec_max);
PN(se.statistics.slice_max);
PN(se.statistics.wait_max);
PN(se.statistics.wait_sum);
P(se.statistics.wait_count);
PN(se.statistics.iowait_sum);
P(se.statistics.iowait_count);
P(sched_info.bkl_count);
P(se.nr_migrations);
P(se.statistics.nr_migrations_cold);
P(se.statistics.nr_failed_migrations_affine);
P(se.statistics.nr_failed_migrations_running);
P(se.statistics.nr_failed_migrations_hot);
P(se.statistics.nr_forced_migrations);
P(se.statistics.nr_wakeups);
P(se.statistics.nr_wakeups_sync);
P(se.statistics.nr_wakeups_migrate);
P(se.statistics.nr_wakeups_local);
P(se.statistics.nr_wakeups_remote);
P(se.statistics.nr_wakeups_affine);
P(se.statistics.nr_wakeups_affine_attempts);
P(se.statistics.nr_wakeups_passive);
P(se.statistics.nr_wakeups_idle);
{
u64 avg_atom, avg_per_cpu;
avg_atom = p->se.sum_exec_runtime;
if (nr_switches)
do_div(avg_atom, nr_switches);
else
avg_atom = -1LL;
avg_per_cpu = p->se.sum_exec_runtime;
if (p->se.nr_migrations) {
avg_per_cpu = div64_u64(avg_per_cpu,
p->se.nr_migrations);
} else {
avg_per_cpu = -1LL;
}
__PN(avg_atom);
__PN(avg_per_cpu);
}
#endif
__P(nr_switches);
SEQ_printf(m, "%-35s:%21Ld\n",
"nr_voluntary_switches", (long long)p->nvcsw);
SEQ_printf(m, "%-35s:%21Ld\n",
"nr_involuntary_switches", (long long)p->nivcsw);
P(se.load.weight);
P(policy);
P(prio);
#undef PN
#undef __PN
#undef P
#undef __P
{
unsigned int this_cpu = raw_smp_processor_id();
u64 t0, t1;
t0 = cpu_clock(this_cpu);
t1 = cpu_clock(this_cpu);
SEQ_printf(m, "%-35s:%21Ld\n",
"clock-delta", (long long)(t1-t0));
}
}
void proc_sched_set_task(struct task_struct *p)
{
#ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
#endif
p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0;
p->nvcsw = 0;
p->nivcsw = 0;
}