linux/drivers/scsi/advansys.c
Arnd Bergmann 44a5b97712 scsi: advansys: fix uninitialized data access
gcc-7.0.1 now warns about a previously unnoticed access of uninitialized
struct members:

drivers/scsi/advansys.c: In function 'AscMsgOutSDTR':
drivers/scsi/advansys.c:3860:26: error: '*((void *)&sdtr_buf+5)' may be used uninitialized in this function [-Werror=maybe-uninitialized]
         ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
                          ^
drivers/scsi/advansys.c:3860:26: error: '*((void *)&sdtr_buf+7)' may be used uninitialized in this function [-Werror=maybe-uninitialized]
drivers/scsi/advansys.c:3860:26: error: '*((void *)&sdtr_buf+5)' may be used uninitialized in this function [-Werror=maybe-uninitialized]
drivers/scsi/advansys.c:3860:26: error: '*((void *)&sdtr_buf+7)' may be used uninitialized in this function [-Werror=maybe-uninitialized]

The code has existed in this exact form at least since v2.6.12, and the
warning seems correct. This uses named initializers to ensure we
initialize all members of the structure.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-04-04 19:39:39 -04:00

11867 lines
346 KiB
C

/*
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-2000 Advanced System Products, Inc.
* Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
* Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
* Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
/*
* As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
* changed its name to ConnectCom Solutions, Inc.
* On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/isa.h>
#include <linux/eisa.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/dmapool.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#define DRV_NAME "advansys"
#define ASC_VERSION "3.5" /* AdvanSys Driver Version */
/* FIXME:
*
* 1. Use scsi_transport_spi
* 2. advansys_info is not safe against multiple simultaneous callers
* 3. Add module_param to override ISA/VLB ioport array
*/
/* Enable driver /proc statistics. */
#define ADVANSYS_STATS
/* Enable driver tracing. */
#undef ADVANSYS_DEBUG
typedef unsigned char uchar;
#define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
#define PCI_VENDOR_ID_ASP 0x10cd
#define PCI_DEVICE_ID_ASP_1200A 0x1100
#define PCI_DEVICE_ID_ASP_ABP940 0x1200
#define PCI_DEVICE_ID_ASP_ABP940U 0x1300
#define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
#define PCI_DEVICE_ID_38C0800_REV1 0x2500
#define PCI_DEVICE_ID_38C1600_REV1 0x2700
#define PortAddr unsigned int /* port address size */
#define inp(port) inb(port)
#define outp(port, byte) outb((byte), (port))
#define inpw(port) inw(port)
#define outpw(port, word) outw((word), (port))
#define ASC_MAX_SG_QUEUE 7
#define ASC_MAX_SG_LIST 255
#define ASC_CS_TYPE unsigned short
#define ASC_IS_ISA (0x0001)
#define ASC_IS_ISAPNP (0x0081)
#define ASC_IS_EISA (0x0002)
#define ASC_IS_PCI (0x0004)
#define ASC_IS_PCI_ULTRA (0x0104)
#define ASC_IS_PCMCIA (0x0008)
#define ASC_IS_MCA (0x0020)
#define ASC_IS_VL (0x0040)
#define ASC_IS_WIDESCSI_16 (0x0100)
#define ASC_IS_WIDESCSI_32 (0x0200)
#define ASC_IS_BIG_ENDIAN (0x8000)
#define ASC_CHIP_MIN_VER_VL (0x01)
#define ASC_CHIP_MAX_VER_VL (0x07)
#define ASC_CHIP_MIN_VER_PCI (0x09)
#define ASC_CHIP_MAX_VER_PCI (0x0F)
#define ASC_CHIP_VER_PCI_BIT (0x08)
#define ASC_CHIP_MIN_VER_ISA (0x11)
#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
#define ASC_CHIP_MAX_VER_ISA (0x27)
#define ASC_CHIP_VER_ISA_BIT (0x30)
#define ASC_CHIP_VER_ISAPNP_BIT (0x20)
#define ASC_CHIP_VER_ASYN_BUG (0x21)
#define ASC_CHIP_VER_PCI 0x08
#define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
#define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
#define ASC_CHIP_MIN_VER_EISA (0x41)
#define ASC_CHIP_MAX_VER_EISA (0x47)
#define ASC_CHIP_VER_EISA_BIT (0x40)
#define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
#define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
#define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
#define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
#define ASC_SCSI_ID_BITS 3
#define ASC_SCSI_TIX_TYPE uchar
#define ASC_ALL_DEVICE_BIT_SET 0xFF
#define ASC_SCSI_BIT_ID_TYPE uchar
#define ASC_MAX_TID 7
#define ASC_MAX_LUN 7
#define ASC_SCSI_WIDTH_BIT_SET 0xFF
#define ASC_MAX_SENSE_LEN 32
#define ASC_MIN_SENSE_LEN 14
#define ASC_SCSI_RESET_HOLD_TIME_US 60
/*
* Narrow boards only support 12-byte commands, while wide boards
* extend to 16-byte commands.
*/
#define ASC_MAX_CDB_LEN 12
#define ADV_MAX_CDB_LEN 16
#define MS_SDTR_LEN 0x03
#define MS_WDTR_LEN 0x02
#define ASC_SG_LIST_PER_Q 7
#define QS_FREE 0x00
#define QS_READY 0x01
#define QS_DISC1 0x02
#define QS_DISC2 0x04
#define QS_BUSY 0x08
#define QS_ABORTED 0x40
#define QS_DONE 0x80
#define QC_NO_CALLBACK 0x01
#define QC_SG_SWAP_QUEUE 0x02
#define QC_SG_HEAD 0x04
#define QC_DATA_IN 0x08
#define QC_DATA_OUT 0x10
#define QC_URGENT 0x20
#define QC_MSG_OUT 0x40
#define QC_REQ_SENSE 0x80
#define QCSG_SG_XFER_LIST 0x02
#define QCSG_SG_XFER_MORE 0x04
#define QCSG_SG_XFER_END 0x08
#define QD_IN_PROGRESS 0x00
#define QD_NO_ERROR 0x01
#define QD_ABORTED_BY_HOST 0x02
#define QD_WITH_ERROR 0x04
#define QD_INVALID_REQUEST 0x80
#define QD_INVALID_HOST_NUM 0x81
#define QD_INVALID_DEVICE 0x82
#define QD_ERR_INTERNAL 0xFF
#define QHSTA_NO_ERROR 0x00
#define QHSTA_M_SEL_TIMEOUT 0x11
#define QHSTA_M_DATA_OVER_RUN 0x12
#define QHSTA_M_DATA_UNDER_RUN 0x12
#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
#define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
#define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
#define QHSTA_D_HOST_ABORT_FAILED 0x23
#define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
#define QHSTA_D_ASPI_NO_BUF_POOL 0x26
#define QHSTA_M_WTM_TIMEOUT 0x41
#define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
#define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
#define QHSTA_M_TARGET_STATUS_BUSY 0x45
#define QHSTA_M_BAD_TAG_CODE 0x46
#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
#define QHSTA_D_LRAM_CMP_ERROR 0x81
#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
#define ASC_FLAG_SCSIQ_REQ 0x01
#define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
#define ASC_FLAG_BIOS_ASYNC_IO 0x04
#define ASC_FLAG_SRB_LINEAR_ADDR 0x08
#define ASC_FLAG_WIN16 0x10
#define ASC_FLAG_WIN32 0x20
#define ASC_FLAG_ISA_OVER_16MB 0x40
#define ASC_FLAG_DOS_VM_CALLBACK 0x80
#define ASC_TAG_FLAG_EXTRA_BYTES 0x10
#define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
#define ASC_SCSIQ_CPY_BEG 4
#define ASC_SCSIQ_SGHD_CPY_BEG 2
#define ASC_SCSIQ_B_FWD 0
#define ASC_SCSIQ_B_BWD 1
#define ASC_SCSIQ_B_STATUS 2
#define ASC_SCSIQ_B_QNO 3
#define ASC_SCSIQ_B_CNTL 4
#define ASC_SCSIQ_B_SG_QUEUE_CNT 5
#define ASC_SCSIQ_D_DATA_ADDR 8
#define ASC_SCSIQ_D_DATA_CNT 12
#define ASC_SCSIQ_B_SENSE_LEN 20
#define ASC_SCSIQ_DONE_INFO_BEG 22
#define ASC_SCSIQ_D_SRBPTR 22
#define ASC_SCSIQ_B_TARGET_IX 26
#define ASC_SCSIQ_B_CDB_LEN 28
#define ASC_SCSIQ_B_TAG_CODE 29
#define ASC_SCSIQ_W_VM_ID 30
#define ASC_SCSIQ_DONE_STATUS 32
#define ASC_SCSIQ_HOST_STATUS 33
#define ASC_SCSIQ_SCSI_STATUS 34
#define ASC_SCSIQ_CDB_BEG 36
#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
#define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
#define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
#define ASC_SCSIQ_B_SG_WK_QP 49
#define ASC_SCSIQ_B_SG_WK_IX 50
#define ASC_SCSIQ_W_ALT_DC1 52
#define ASC_SCSIQ_B_LIST_CNT 6
#define ASC_SCSIQ_B_CUR_LIST_CNT 7
#define ASC_SGQ_B_SG_CNTL 4
#define ASC_SGQ_B_SG_HEAD_QP 5
#define ASC_SGQ_B_SG_LIST_CNT 6
#define ASC_SGQ_B_SG_CUR_LIST_CNT 7
#define ASC_SGQ_LIST_BEG 8
#define ASC_DEF_SCSI1_QNG 4
#define ASC_MAX_SCSI1_QNG 4
#define ASC_DEF_SCSI2_QNG 16
#define ASC_MAX_SCSI2_QNG 32
#define ASC_TAG_CODE_MASK 0x23
#define ASC_STOP_REQ_RISC_STOP 0x01
#define ASC_STOP_ACK_RISC_STOP 0x03
#define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
#define ASC_STOP_CLEAN_UP_DISC_Q 0x20
#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
#define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
#define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
#define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
#define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
#define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
#define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
#define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
typedef struct asc_scsiq_1 {
uchar status;
uchar q_no;
uchar cntl;
uchar sg_queue_cnt;
uchar target_id;
uchar target_lun;
__le32 data_addr;
__le32 data_cnt;
__le32 sense_addr;
uchar sense_len;
uchar extra_bytes;
} ASC_SCSIQ_1;
typedef struct asc_scsiq_2 {
u32 srb_tag;
uchar target_ix;
uchar flag;
uchar cdb_len;
uchar tag_code;
ushort vm_id;
} ASC_SCSIQ_2;
typedef struct asc_scsiq_3 {
uchar done_stat;
uchar host_stat;
uchar scsi_stat;
uchar scsi_msg;
} ASC_SCSIQ_3;
typedef struct asc_scsiq_4 {
uchar cdb[ASC_MAX_CDB_LEN];
uchar y_first_sg_list_qp;
uchar y_working_sg_qp;
uchar y_working_sg_ix;
uchar y_res;
ushort x_req_count;
ushort x_reconnect_rtn;
__le32 x_saved_data_addr;
__le32 x_saved_data_cnt;
} ASC_SCSIQ_4;
typedef struct asc_q_done_info {
ASC_SCSIQ_2 d2;
ASC_SCSIQ_3 d3;
uchar q_status;
uchar q_no;
uchar cntl;
uchar sense_len;
uchar extra_bytes;
uchar res;
u32 remain_bytes;
} ASC_QDONE_INFO;
typedef struct asc_sg_list {
__le32 addr;
__le32 bytes;
} ASC_SG_LIST;
typedef struct asc_sg_head {
ushort entry_cnt;
ushort queue_cnt;
ushort entry_to_copy;
ushort res;
ASC_SG_LIST sg_list[0];
} ASC_SG_HEAD;
typedef struct asc_scsi_q {
ASC_SCSIQ_1 q1;
ASC_SCSIQ_2 q2;
uchar *cdbptr;
ASC_SG_HEAD *sg_head;
ushort remain_sg_entry_cnt;
ushort next_sg_index;
} ASC_SCSI_Q;
typedef struct asc_scsi_bios_req_q {
ASC_SCSIQ_1 r1;
ASC_SCSIQ_2 r2;
uchar *cdbptr;
ASC_SG_HEAD *sg_head;
uchar *sense_ptr;
ASC_SCSIQ_3 r3;
uchar cdb[ASC_MAX_CDB_LEN];
uchar sense[ASC_MIN_SENSE_LEN];
} ASC_SCSI_BIOS_REQ_Q;
typedef struct asc_risc_q {
uchar fwd;
uchar bwd;
ASC_SCSIQ_1 i1;
ASC_SCSIQ_2 i2;
ASC_SCSIQ_3 i3;
ASC_SCSIQ_4 i4;
} ASC_RISC_Q;
typedef struct asc_sg_list_q {
uchar seq_no;
uchar q_no;
uchar cntl;
uchar sg_head_qp;
uchar sg_list_cnt;
uchar sg_cur_list_cnt;
} ASC_SG_LIST_Q;
typedef struct asc_risc_sg_list_q {
uchar fwd;
uchar bwd;
ASC_SG_LIST_Q sg;
ASC_SG_LIST sg_list[7];
} ASC_RISC_SG_LIST_Q;
#define ASCQ_ERR_Q_STATUS 0x0D
#define ASCQ_ERR_CUR_QNG 0x17
#define ASCQ_ERR_SG_Q_LINKS 0x18
#define ASCQ_ERR_ISR_RE_ENTRY 0x1A
#define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
#define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
/*
* Warning code values are set in ASC_DVC_VAR 'warn_code'.
*/
#define ASC_WARN_NO_ERROR 0x0000
#define ASC_WARN_IO_PORT_ROTATE 0x0001
#define ASC_WARN_EEPROM_CHKSUM 0x0002
#define ASC_WARN_IRQ_MODIFIED 0x0004
#define ASC_WARN_AUTO_CONFIG 0x0008
#define ASC_WARN_CMD_QNG_CONFLICT 0x0010
#define ASC_WARN_EEPROM_RECOVER 0x0020
#define ASC_WARN_CFG_MSW_RECOVER 0x0040
/*
* Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
*/
#define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
#define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
#define ASC_IERR_SET_PC_ADDR 0x0004
#define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
#define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
#define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
#define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
#define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
#define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
#define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
#define ASC_IERR_NO_BUS_TYPE 0x0400
#define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
#define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
#define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
#define ASC_DEF_MAX_TOTAL_QNG (0xF0)
#define ASC_MIN_TAG_Q_PER_DVC (0x04)
#define ASC_MIN_FREE_Q (0x02)
#define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
#define ASC_MAX_TOTAL_QNG 240
#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
#define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
#define ASC_MAX_INRAM_TAG_QNG 16
#define ASC_IOADR_GAP 0x10
#define ASC_SYN_MAX_OFFSET 0x0F
#define ASC_DEF_SDTR_OFFSET 0x0F
#define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
/* The narrow chip only supports a limited selection of transfer rates.
* These are encoded in the range 0..7 or 0..15 depending whether the chip
* is Ultra-capable or not. These tables let us convert from one to the other.
*/
static const unsigned char asc_syn_xfer_period[8] = {
25, 30, 35, 40, 50, 60, 70, 85
};
static const unsigned char asc_syn_ultra_xfer_period[16] = {
12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
};
typedef struct ext_msg {
uchar msg_type;
uchar msg_len;
uchar msg_req;
union {
struct {
uchar sdtr_xfer_period;
uchar sdtr_req_ack_offset;
} sdtr;
struct {
uchar wdtr_width;
} wdtr;
struct {
uchar mdp_b3;
uchar mdp_b2;
uchar mdp_b1;
uchar mdp_b0;
} mdp;
} u_ext_msg;
uchar res;
} EXT_MSG;
#define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
#define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
#define wdtr_width u_ext_msg.wdtr.wdtr_width
#define mdp_b3 u_ext_msg.mdp_b3
#define mdp_b2 u_ext_msg.mdp_b2
#define mdp_b1 u_ext_msg.mdp_b1
#define mdp_b0 u_ext_msg.mdp_b0
typedef struct asc_dvc_cfg {
ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
ASC_SCSI_BIT_ID_TYPE disc_enable;
ASC_SCSI_BIT_ID_TYPE sdtr_enable;
uchar chip_scsi_id;
uchar isa_dma_speed;
uchar isa_dma_channel;
uchar chip_version;
ushort mcode_date;
ushort mcode_version;
uchar max_tag_qng[ASC_MAX_TID + 1];
uchar sdtr_period_offset[ASC_MAX_TID + 1];
uchar adapter_info[6];
} ASC_DVC_CFG;
#define ASC_DEF_DVC_CNTL 0xFFFF
#define ASC_DEF_CHIP_SCSI_ID 7
#define ASC_DEF_ISA_DMA_SPEED 4
#define ASC_INIT_STATE_BEG_GET_CFG 0x0001
#define ASC_INIT_STATE_END_GET_CFG 0x0002
#define ASC_INIT_STATE_BEG_SET_CFG 0x0004
#define ASC_INIT_STATE_END_SET_CFG 0x0008
#define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
#define ASC_INIT_STATE_END_LOAD_MC 0x0020
#define ASC_INIT_STATE_BEG_INQUIRY 0x0040
#define ASC_INIT_STATE_END_INQUIRY 0x0080
#define ASC_INIT_RESET_SCSI_DONE 0x0100
#define ASC_INIT_STATE_WITHOUT_EEP 0x8000
#define ASC_BUG_FIX_IF_NOT_DWB 0x0001
#define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
#define ASC_MIN_TAGGED_CMD 7
#define ASC_MAX_SCSI_RESET_WAIT 30
#define ASC_OVERRUN_BSIZE 64
struct asc_dvc_var; /* Forward Declaration. */
typedef struct asc_dvc_var {
PortAddr iop_base;
ushort err_code;
ushort dvc_cntl;
ushort bug_fix_cntl;
ushort bus_type;
ASC_SCSI_BIT_ID_TYPE init_sdtr;
ASC_SCSI_BIT_ID_TYPE sdtr_done;
ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
ASC_SCSI_BIT_ID_TYPE unit_not_ready;
ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
ASC_SCSI_BIT_ID_TYPE start_motor;
uchar *overrun_buf;
dma_addr_t overrun_dma;
uchar scsi_reset_wait;
uchar chip_no;
bool is_in_int;
uchar max_total_qng;
uchar cur_total_qng;
uchar in_critical_cnt;
uchar last_q_shortage;
ushort init_state;
uchar cur_dvc_qng[ASC_MAX_TID + 1];
uchar max_dvc_qng[ASC_MAX_TID + 1];
ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
const uchar *sdtr_period_tbl;
ASC_DVC_CFG *cfg;
ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
char redo_scam;
ushort res2;
uchar dos_int13_table[ASC_MAX_TID + 1];
unsigned int max_dma_count;
ASC_SCSI_BIT_ID_TYPE no_scam;
ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
uchar min_sdtr_index;
uchar max_sdtr_index;
struct asc_board *drv_ptr;
unsigned int uc_break;
} ASC_DVC_VAR;
typedef struct asc_dvc_inq_info {
uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
} ASC_DVC_INQ_INFO;
typedef struct asc_cap_info {
u32 lba;
u32 blk_size;
} ASC_CAP_INFO;
typedef struct asc_cap_info_array {
ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
} ASC_CAP_INFO_ARRAY;
#define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
#define ASC_MCNTL_NULL_TARGET (ushort)0x0002
#define ASC_CNTL_INITIATOR (ushort)0x0001
#define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
#define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
#define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
#define ASC_CNTL_NO_SCAM (ushort)0x0010
#define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
#define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
#define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
#define ASC_CNTL_RESET_SCSI (ushort)0x0200
#define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
#define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
#define ASC_CNTL_SCSI_PARITY (ushort)0x1000
#define ASC_CNTL_BURST_MODE (ushort)0x2000
#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
#define ASC_EEP_DVC_CFG_BEG_VL 2
#define ASC_EEP_MAX_DVC_ADDR_VL 15
#define ASC_EEP_DVC_CFG_BEG 32
#define ASC_EEP_MAX_DVC_ADDR 45
#define ASC_EEP_MAX_RETRY 20
/*
* These macros keep the chip SCSI id and ISA DMA speed
* bitfields in board order. C bitfields aren't portable
* between big and little-endian platforms so they are
* not used.
*/
#define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
#define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
typedef struct asceep_config {
ushort cfg_lsw;
ushort cfg_msw;
uchar init_sdtr;
uchar disc_enable;
uchar use_cmd_qng;
uchar start_motor;
uchar max_total_qng;
uchar max_tag_qng;
uchar bios_scan;
uchar power_up_wait;
uchar no_scam;
uchar id_speed; /* low order 4 bits is chip scsi id */
/* high order 4 bits is isa dma speed */
uchar dos_int13_table[ASC_MAX_TID + 1];
uchar adapter_info[6];
ushort cntl;
ushort chksum;
} ASCEEP_CONFIG;
#define ASC_EEP_CMD_READ 0x80
#define ASC_EEP_CMD_WRITE 0x40
#define ASC_EEP_CMD_WRITE_ABLE 0x30
#define ASC_EEP_CMD_WRITE_DISABLE 0x00
#define ASCV_MSGOUT_BEG 0x0000
#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
#define ASCV_BREAK_SAVED_CODE (ushort)0x0006
#define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
#define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
#define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
#define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
#define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
#define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
#define ASCV_BREAK_ADDR (ushort)0x0028
#define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
#define ASCV_BREAK_CONTROL (ushort)0x002C
#define ASCV_BREAK_HIT_COUNT (ushort)0x002E
#define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
#define ASCV_MCODE_CHKSUM_W (ushort)0x0032
#define ASCV_MCODE_SIZE_W (ushort)0x0034
#define ASCV_STOP_CODE_B (ushort)0x0036
#define ASCV_DVC_ERR_CODE_B (ushort)0x0037
#define ASCV_OVERRUN_PADDR_D (ushort)0x0038
#define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
#define ASCV_HALTCODE_W (ushort)0x0040
#define ASCV_CHKSUM_W (ushort)0x0042
#define ASCV_MC_DATE_W (ushort)0x0044
#define ASCV_MC_VER_W (ushort)0x0046
#define ASCV_NEXTRDY_B (ushort)0x0048
#define ASCV_DONENEXT_B (ushort)0x0049
#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
#define ASCV_SCSIBUSY_B (ushort)0x004B
#define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
#define ASCV_CURCDB_B (ushort)0x004D
#define ASCV_RCLUN_B (ushort)0x004E
#define ASCV_BUSY_QHEAD_B (ushort)0x004F
#define ASCV_DISC1_QHEAD_B (ushort)0x0050
#define ASCV_DISC_ENABLE_B (ushort)0x0052
#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
#define ASCV_HOSTSCSI_ID_B (ushort)0x0055
#define ASCV_MCODE_CNTL_B (ushort)0x0056
#define ASCV_NULL_TARGET_B (ushort)0x0057
#define ASCV_FREE_Q_HEAD_W (ushort)0x0058
#define ASCV_DONE_Q_TAIL_W (ushort)0x005A
#define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
#define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
#define ASCV_HOST_FLAG_B (ushort)0x005D
#define ASCV_TOTAL_READY_Q_B (ushort)0x0064
#define ASCV_VER_SERIAL_B (ushort)0x0065
#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
#define ASCV_WTM_FLAG_B (ushort)0x0068
#define ASCV_RISC_FLAG_B (ushort)0x006A
#define ASCV_REQ_SG_LIST_QP (ushort)0x006B
#define ASC_HOST_FLAG_IN_ISR 0x01
#define ASC_HOST_FLAG_ACK_INT 0x02
#define ASC_RISC_FLAG_GEN_INT 0x01
#define ASC_RISC_FLAG_REQ_SG_LIST 0x02
#define IOP_CTRL (0x0F)
#define IOP_STATUS (0x0E)
#define IOP_INT_ACK IOP_STATUS
#define IOP_REG_IFC (0x0D)
#define IOP_SYN_OFFSET (0x0B)
#define IOP_EXTRA_CONTROL (0x0D)
#define IOP_REG_PC (0x0C)
#define IOP_RAM_ADDR (0x0A)
#define IOP_RAM_DATA (0x08)
#define IOP_EEP_DATA (0x06)
#define IOP_EEP_CMD (0x07)
#define IOP_VERSION (0x03)
#define IOP_CONFIG_HIGH (0x04)
#define IOP_CONFIG_LOW (0x02)
#define IOP_SIG_BYTE (0x01)
#define IOP_SIG_WORD (0x00)
#define IOP_REG_DC1 (0x0E)
#define IOP_REG_DC0 (0x0C)
#define IOP_REG_SB (0x0B)
#define IOP_REG_DA1 (0x0A)
#define IOP_REG_DA0 (0x08)
#define IOP_REG_SC (0x09)
#define IOP_DMA_SPEED (0x07)
#define IOP_REG_FLAG (0x07)
#define IOP_FIFO_H (0x06)
#define IOP_FIFO_L (0x04)
#define IOP_REG_ID (0x05)
#define IOP_REG_QP (0x03)
#define IOP_REG_IH (0x02)
#define IOP_REG_IX (0x01)
#define IOP_REG_AX (0x00)
#define IFC_REG_LOCK (0x00)
#define IFC_REG_UNLOCK (0x09)
#define IFC_WR_EN_FILTER (0x10)
#define IFC_RD_NO_EEPROM (0x10)
#define IFC_SLEW_RATE (0x20)
#define IFC_ACT_NEG (0x40)
#define IFC_INP_FILTER (0x80)
#define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
#define SC_SEL (uchar)(0x80)
#define SC_BSY (uchar)(0x40)
#define SC_ACK (uchar)(0x20)
#define SC_REQ (uchar)(0x10)
#define SC_ATN (uchar)(0x08)
#define SC_IO (uchar)(0x04)
#define SC_CD (uchar)(0x02)
#define SC_MSG (uchar)(0x01)
#define SEC_SCSI_CTL (uchar)(0x80)
#define SEC_ACTIVE_NEGATE (uchar)(0x40)
#define SEC_SLEW_RATE (uchar)(0x20)
#define SEC_ENABLE_FILTER (uchar)(0x10)
#define ASC_HALT_EXTMSG_IN (ushort)0x8000
#define ASC_HALT_CHK_CONDITION (ushort)0x8100
#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
#define ASC_MAX_QNO 0xF8
#define ASC_DATA_SEC_BEG (ushort)0x0080
#define ASC_DATA_SEC_END (ushort)0x0080
#define ASC_CODE_SEC_BEG (ushort)0x0080
#define ASC_CODE_SEC_END (ushort)0x0080
#define ASC_QADR_BEG (0x4000)
#define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
#define ASC_QADR_END (ushort)0x7FFF
#define ASC_QLAST_ADR (ushort)0x7FC0
#define ASC_QBLK_SIZE 0x40
#define ASC_BIOS_DATA_QBEG 0xF8
#define ASC_MIN_ACTIVE_QNO 0x01
#define ASC_QLINK_END 0xFF
#define ASC_EEPROM_WORDS 0x10
#define ASC_MAX_MGS_LEN 0x10
#define ASC_BIOS_ADDR_DEF 0xDC00
#define ASC_BIOS_SIZE 0x3800
#define ASC_BIOS_RAM_OFF 0x3800
#define ASC_BIOS_RAM_SIZE 0x800
#define ASC_BIOS_MIN_ADDR 0xC000
#define ASC_BIOS_MAX_ADDR 0xEC00
#define ASC_BIOS_BANK_SIZE 0x0400
#define ASC_MCODE_START_ADDR 0x0080
#define ASC_CFG0_HOST_INT_ON 0x0020
#define ASC_CFG0_BIOS_ON 0x0040
#define ASC_CFG0_VERA_BURST_ON 0x0080
#define ASC_CFG0_SCSI_PARITY_ON 0x0800
#define ASC_CFG1_SCSI_TARGET_ON 0x0080
#define ASC_CFG1_LRAM_8BITS_ON 0x0800
#define ASC_CFG_MSW_CLR_MASK 0x3080
#define CSW_TEST1 (ASC_CS_TYPE)0x8000
#define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
#define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
#define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
#define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
#define CSW_TEST2 (ASC_CS_TYPE)0x0400
#define CSW_TEST3 (ASC_CS_TYPE)0x0200
#define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
#define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
#define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
#define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
#define CSW_HALTED (ASC_CS_TYPE)0x0010
#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
#define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
#define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
#define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
#define CIW_INT_ACK (ASC_CS_TYPE)0x0100
#define CIW_TEST1 (ASC_CS_TYPE)0x0200
#define CIW_TEST2 (ASC_CS_TYPE)0x0400
#define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
#define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
#define CC_CHIP_RESET (uchar)0x80
#define CC_SCSI_RESET (uchar)0x40
#define CC_HALT (uchar)0x20
#define CC_SINGLE_STEP (uchar)0x10
#define CC_DMA_ABLE (uchar)0x08
#define CC_TEST (uchar)0x04
#define CC_BANK_ONE (uchar)0x02
#define CC_DIAG (uchar)0x01
#define ASC_1000_ID0W 0x04C1
#define ASC_1000_ID0W_FIX 0x00C1
#define ASC_1000_ID1B 0x25
#define ASC_EISA_REV_IOP_MASK (0x0C83)
#define ASC_EISA_CFG_IOP_MASK (0x0C86)
#define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
#define INS_HALTINT (ushort)0x6281
#define INS_HALT (ushort)0x6280
#define INS_SINT (ushort)0x6200
#define INS_RFLAG_WTM (ushort)0x7380
#define ASC_MC_SAVE_CODE_WSIZE 0x500
#define ASC_MC_SAVE_DATA_WSIZE 0x40
typedef struct asc_mc_saved {
ushort data[ASC_MC_SAVE_DATA_WSIZE];
ushort code[ASC_MC_SAVE_CODE_WSIZE];
} ASC_MC_SAVED;
#define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
#define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
#define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
#define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
#define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
#define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
#define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
#define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
#define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
#define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
#define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
#define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
#define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
#define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
#define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
#define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
#define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
#define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
#define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
#define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
#define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
#define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
#define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
#define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
#define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
#define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
#define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
#define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
#define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
#define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
#define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
#define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
#define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
#define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
#define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
#define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
#define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
#define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
#define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
#define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
#define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
#define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
#define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
#define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
#define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
#define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
#define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
#define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
#define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
#define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
#define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
#define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
#define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
#define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
#define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
#define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
#define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
#define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
#define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
#define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
#define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
#define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
#define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
#define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
#define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
#define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
#define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
#define AdvPortAddr void __iomem * /* Virtual memory address size */
/*
* Define Adv Library required memory access macros.
*/
#define ADV_MEM_READB(addr) readb(addr)
#define ADV_MEM_READW(addr) readw(addr)
#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
/*
* Define total number of simultaneous maximum element scatter-gather
* request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
* maximum number of outstanding commands per wide host adapter. Each
* command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
* elements. Allow each command to have at least one ADV_SG_BLOCK structure.
* This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
* structures or 255 scatter-gather elements.
*/
#define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
/*
* Define maximum number of scatter-gather elements per request.
*/
#define ADV_MAX_SG_LIST 255
#define NO_OF_SG_PER_BLOCK 15
#define ADV_EEP_DVC_CFG_BEGIN (0x00)
#define ADV_EEP_DVC_CFG_END (0x15)
#define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
#define ADV_EEP_MAX_WORD_ADDR (0x1E)
#define ADV_EEP_DELAY_MS 100
#define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
#define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
/*
* For the ASC3550 Bit 13 is Termination Polarity control bit.
* For later ICs Bit 13 controls whether the CIS (Card Information
* Service Section) is loaded from EEPROM.
*/
#define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
#define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
/*
* ASC38C1600 Bit 11
*
* If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
* INT A in the PCI Configuration Space Int Pin field. If it is 1, then
* Function 0 will specify INT B.
*
* If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
* INT B in the PCI Configuration Space Int Pin field. If it is 1, then
* Function 1 will specify INT A.
*/
#define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
typedef struct adveep_3550_config {
/* Word Offset, Description */
ushort cfg_lsw; /* 00 power up initialization */
/* bit 13 set - Term Polarity Control */
/* bit 14 set - BIOS Enable */
/* bit 15 set - Big Endian Mode */
ushort cfg_msw; /* 01 unused */
ushort disc_enable; /* 02 disconnect enable */
ushort wdtr_able; /* 03 Wide DTR able */
ushort sdtr_able; /* 04 Synchronous DTR able */
ushort start_motor; /* 05 send start up motor */
ushort tagqng_able; /* 06 tag queuing able */
ushort bios_scan; /* 07 BIOS device control */
ushort scam_tolerant; /* 08 no scam */
uchar adapter_scsi_id; /* 09 Host Adapter ID */
uchar bios_boot_delay; /* power up wait */
uchar scsi_reset_delay; /* 10 reset delay */
uchar bios_id_lun; /* first boot device scsi id & lun */
/* high nibble is lun */
/* low nibble is scsi id */
uchar termination; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
uchar reserved1; /* reserved byte (not used) */
ushort bios_ctrl; /* 12 BIOS control bits */
/* bit 0 BIOS don't act as initiator. */
/* bit 1 BIOS > 1 GB support */
/* bit 2 BIOS > 2 Disk Support */
/* bit 3 BIOS don't support removables */
/* bit 4 BIOS support bootable CD */
/* bit 5 BIOS scan enabled */
/* bit 6 BIOS support multiple LUNs */
/* bit 7 BIOS display of message */
/* bit 8 SCAM disabled */
/* bit 9 Reset SCSI bus during init. */
/* bit 10 */
/* bit 11 No verbose initialization. */
/* bit 12 SCSI parity enabled */
/* bit 13 */
/* bit 14 */
/* bit 15 */
ushort ultra_able; /* 13 ULTRA speed able */
ushort reserved2; /* 14 reserved */
uchar max_host_qng; /* 15 maximum host queuing */
uchar max_dvc_qng; /* maximum per device queuing */
ushort dvc_cntl; /* 16 control bit for driver */
ushort bug_fix; /* 17 control bit for bug fix */
ushort serial_number_word1; /* 18 Board serial number word 1 */
ushort serial_number_word2; /* 19 Board serial number word 2 */
ushort serial_number_word3; /* 20 Board serial number word 3 */
ushort check_sum; /* 21 EEP check sum */
uchar oem_name[16]; /* 22 OEM name */
ushort dvc_err_code; /* 30 last device driver error code */
ushort adv_err_code; /* 31 last uc and Adv Lib error code */
ushort adv_err_addr; /* 32 last uc error address */
ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
ushort saved_adv_err_addr; /* 35 saved last uc error address */
ushort num_of_err; /* 36 number of error */
} ADVEEP_3550_CONFIG;
typedef struct adveep_38C0800_config {
/* Word Offset, Description */
ushort cfg_lsw; /* 00 power up initialization */
/* bit 13 set - Load CIS */
/* bit 14 set - BIOS Enable */
/* bit 15 set - Big Endian Mode */
ushort cfg_msw; /* 01 unused */
ushort disc_enable; /* 02 disconnect enable */
ushort wdtr_able; /* 03 Wide DTR able */
ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
ushort start_motor; /* 05 send start up motor */
ushort tagqng_able; /* 06 tag queuing able */
ushort bios_scan; /* 07 BIOS device control */
ushort scam_tolerant; /* 08 no scam */
uchar adapter_scsi_id; /* 09 Host Adapter ID */
uchar bios_boot_delay; /* power up wait */
uchar scsi_reset_delay; /* 10 reset delay */
uchar bios_id_lun; /* first boot device scsi id & lun */
/* high nibble is lun */
/* low nibble is scsi id */
uchar termination_se; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
uchar termination_lvd; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
ushort bios_ctrl; /* 12 BIOS control bits */
/* bit 0 BIOS don't act as initiator. */
/* bit 1 BIOS > 1 GB support */
/* bit 2 BIOS > 2 Disk Support */
/* bit 3 BIOS don't support removables */
/* bit 4 BIOS support bootable CD */
/* bit 5 BIOS scan enabled */
/* bit 6 BIOS support multiple LUNs */
/* bit 7 BIOS display of message */
/* bit 8 SCAM disabled */
/* bit 9 Reset SCSI bus during init. */
/* bit 10 */
/* bit 11 No verbose initialization. */
/* bit 12 SCSI parity enabled */
/* bit 13 */
/* bit 14 */
/* bit 15 */
ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
uchar max_host_qng; /* 15 maximum host queueing */
uchar max_dvc_qng; /* maximum per device queuing */
ushort dvc_cntl; /* 16 control bit for driver */
ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
ushort serial_number_word1; /* 18 Board serial number word 1 */
ushort serial_number_word2; /* 19 Board serial number word 2 */
ushort serial_number_word3; /* 20 Board serial number word 3 */
ushort check_sum; /* 21 EEP check sum */
uchar oem_name[16]; /* 22 OEM name */
ushort dvc_err_code; /* 30 last device driver error code */
ushort adv_err_code; /* 31 last uc and Adv Lib error code */
ushort adv_err_addr; /* 32 last uc error address */
ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
ushort saved_adv_err_addr; /* 35 saved last uc error address */
ushort reserved36; /* 36 reserved */
ushort reserved37; /* 37 reserved */
ushort reserved38; /* 38 reserved */
ushort reserved39; /* 39 reserved */
ushort reserved40; /* 40 reserved */
ushort reserved41; /* 41 reserved */
ushort reserved42; /* 42 reserved */
ushort reserved43; /* 43 reserved */
ushort reserved44; /* 44 reserved */
ushort reserved45; /* 45 reserved */
ushort reserved46; /* 46 reserved */
ushort reserved47; /* 47 reserved */
ushort reserved48; /* 48 reserved */
ushort reserved49; /* 49 reserved */
ushort reserved50; /* 50 reserved */
ushort reserved51; /* 51 reserved */
ushort reserved52; /* 52 reserved */
ushort reserved53; /* 53 reserved */
ushort reserved54; /* 54 reserved */
ushort reserved55; /* 55 reserved */
ushort cisptr_lsw; /* 56 CIS PTR LSW */
ushort cisprt_msw; /* 57 CIS PTR MSW */
ushort subsysvid; /* 58 SubSystem Vendor ID */
ushort subsysid; /* 59 SubSystem ID */
ushort reserved60; /* 60 reserved */
ushort reserved61; /* 61 reserved */
ushort reserved62; /* 62 reserved */
ushort reserved63; /* 63 reserved */
} ADVEEP_38C0800_CONFIG;
typedef struct adveep_38C1600_config {
/* Word Offset, Description */
ushort cfg_lsw; /* 00 power up initialization */
/* bit 11 set - Func. 0 INTB, Func. 1 INTA */
/* clear - Func. 0 INTA, Func. 1 INTB */
/* bit 13 set - Load CIS */
/* bit 14 set - BIOS Enable */
/* bit 15 set - Big Endian Mode */
ushort cfg_msw; /* 01 unused */
ushort disc_enable; /* 02 disconnect enable */
ushort wdtr_able; /* 03 Wide DTR able */
ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
ushort start_motor; /* 05 send start up motor */
ushort tagqng_able; /* 06 tag queuing able */
ushort bios_scan; /* 07 BIOS device control */
ushort scam_tolerant; /* 08 no scam */
uchar adapter_scsi_id; /* 09 Host Adapter ID */
uchar bios_boot_delay; /* power up wait */
uchar scsi_reset_delay; /* 10 reset delay */
uchar bios_id_lun; /* first boot device scsi id & lun */
/* high nibble is lun */
/* low nibble is scsi id */
uchar termination_se; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
uchar termination_lvd; /* 11 0 - automatic */
/* 1 - low off / high off */
/* 2 - low off / high on */
/* 3 - low on / high on */
/* There is no low on / high off */
ushort bios_ctrl; /* 12 BIOS control bits */
/* bit 0 BIOS don't act as initiator. */
/* bit 1 BIOS > 1 GB support */
/* bit 2 BIOS > 2 Disk Support */
/* bit 3 BIOS don't support removables */
/* bit 4 BIOS support bootable CD */
/* bit 5 BIOS scan enabled */
/* bit 6 BIOS support multiple LUNs */
/* bit 7 BIOS display of message */
/* bit 8 SCAM disabled */
/* bit 9 Reset SCSI bus during init. */
/* bit 10 Basic Integrity Checking disabled */
/* bit 11 No verbose initialization. */
/* bit 12 SCSI parity enabled */
/* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
/* bit 14 */
/* bit 15 */
ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
uchar max_host_qng; /* 15 maximum host queueing */
uchar max_dvc_qng; /* maximum per device queuing */
ushort dvc_cntl; /* 16 control bit for driver */
ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
ushort serial_number_word1; /* 18 Board serial number word 1 */
ushort serial_number_word2; /* 19 Board serial number word 2 */
ushort serial_number_word3; /* 20 Board serial number word 3 */
ushort check_sum; /* 21 EEP check sum */
uchar oem_name[16]; /* 22 OEM name */
ushort dvc_err_code; /* 30 last device driver error code */
ushort adv_err_code; /* 31 last uc and Adv Lib error code */
ushort adv_err_addr; /* 32 last uc error address */
ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
ushort saved_adv_err_addr; /* 35 saved last uc error address */
ushort reserved36; /* 36 reserved */
ushort reserved37; /* 37 reserved */
ushort reserved38; /* 38 reserved */
ushort reserved39; /* 39 reserved */
ushort reserved40; /* 40 reserved */
ushort reserved41; /* 41 reserved */
ushort reserved42; /* 42 reserved */
ushort reserved43; /* 43 reserved */
ushort reserved44; /* 44 reserved */
ushort reserved45; /* 45 reserved */
ushort reserved46; /* 46 reserved */
ushort reserved47; /* 47 reserved */
ushort reserved48; /* 48 reserved */
ushort reserved49; /* 49 reserved */
ushort reserved50; /* 50 reserved */
ushort reserved51; /* 51 reserved */
ushort reserved52; /* 52 reserved */
ushort reserved53; /* 53 reserved */
ushort reserved54; /* 54 reserved */
ushort reserved55; /* 55 reserved */
ushort cisptr_lsw; /* 56 CIS PTR LSW */
ushort cisprt_msw; /* 57 CIS PTR MSW */
ushort subsysvid; /* 58 SubSystem Vendor ID */
ushort subsysid; /* 59 SubSystem ID */
ushort reserved60; /* 60 reserved */
ushort reserved61; /* 61 reserved */
ushort reserved62; /* 62 reserved */
ushort reserved63; /* 63 reserved */
} ADVEEP_38C1600_CONFIG;
/*
* EEPROM Commands
*/
#define ASC_EEP_CMD_DONE 0x0200
/* bios_ctrl */
#define BIOS_CTRL_BIOS 0x0001
#define BIOS_CTRL_EXTENDED_XLAT 0x0002
#define BIOS_CTRL_GT_2_DISK 0x0004
#define BIOS_CTRL_BIOS_REMOVABLE 0x0008
#define BIOS_CTRL_BOOTABLE_CD 0x0010
#define BIOS_CTRL_MULTIPLE_LUN 0x0040
#define BIOS_CTRL_DISPLAY_MSG 0x0080
#define BIOS_CTRL_NO_SCAM 0x0100
#define BIOS_CTRL_RESET_SCSI_BUS 0x0200
#define BIOS_CTRL_INIT_VERBOSE 0x0800
#define BIOS_CTRL_SCSI_PARITY 0x1000
#define BIOS_CTRL_AIPP_DIS 0x2000
#define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
#define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
/*
* XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
* a special 16K Adv Library and Microcode version. After the issue is
* resolved, should restore 32K support.
*
* #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
*/
#define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
/*
* Byte I/O register address from base of 'iop_base'.
*/
#define IOPB_INTR_STATUS_REG 0x00
#define IOPB_CHIP_ID_1 0x01
#define IOPB_INTR_ENABLES 0x02
#define IOPB_CHIP_TYPE_REV 0x03
#define IOPB_RES_ADDR_4 0x04
#define IOPB_RES_ADDR_5 0x05
#define IOPB_RAM_DATA 0x06
#define IOPB_RES_ADDR_7 0x07
#define IOPB_FLAG_REG 0x08
#define IOPB_RES_ADDR_9 0x09
#define IOPB_RISC_CSR 0x0A
#define IOPB_RES_ADDR_B 0x0B
#define IOPB_RES_ADDR_C 0x0C
#define IOPB_RES_ADDR_D 0x0D
#define IOPB_SOFT_OVER_WR 0x0E
#define IOPB_RES_ADDR_F 0x0F
#define IOPB_MEM_CFG 0x10
#define IOPB_RES_ADDR_11 0x11
#define IOPB_GPIO_DATA 0x12
#define IOPB_RES_ADDR_13 0x13
#define IOPB_FLASH_PAGE 0x14
#define IOPB_RES_ADDR_15 0x15
#define IOPB_GPIO_CNTL 0x16
#define IOPB_RES_ADDR_17 0x17
#define IOPB_FLASH_DATA 0x18
#define IOPB_RES_ADDR_19 0x19
#define IOPB_RES_ADDR_1A 0x1A
#define IOPB_RES_ADDR_1B 0x1B
#define IOPB_RES_ADDR_1C 0x1C
#define IOPB_RES_ADDR_1D 0x1D
#define IOPB_RES_ADDR_1E 0x1E
#define IOPB_RES_ADDR_1F 0x1F
#define IOPB_DMA_CFG0 0x20
#define IOPB_DMA_CFG1 0x21
#define IOPB_TICKLE 0x22
#define IOPB_DMA_REG_WR 0x23
#define IOPB_SDMA_STATUS 0x24
#define IOPB_SCSI_BYTE_CNT 0x25
#define IOPB_HOST_BYTE_CNT 0x26
#define IOPB_BYTE_LEFT_TO_XFER 0x27
#define IOPB_BYTE_TO_XFER_0 0x28
#define IOPB_BYTE_TO_XFER_1 0x29
#define IOPB_BYTE_TO_XFER_2 0x2A
#define IOPB_BYTE_TO_XFER_3 0x2B
#define IOPB_ACC_GRP 0x2C
#define IOPB_RES_ADDR_2D 0x2D
#define IOPB_DEV_ID 0x2E
#define IOPB_RES_ADDR_2F 0x2F
#define IOPB_SCSI_DATA 0x30
#define IOPB_RES_ADDR_31 0x31
#define IOPB_RES_ADDR_32 0x32
#define IOPB_SCSI_DATA_HSHK 0x33
#define IOPB_SCSI_CTRL 0x34
#define IOPB_RES_ADDR_35 0x35
#define IOPB_RES_ADDR_36 0x36
#define IOPB_RES_ADDR_37 0x37
#define IOPB_RAM_BIST 0x38
#define IOPB_PLL_TEST 0x39
#define IOPB_PCI_INT_CFG 0x3A
#define IOPB_RES_ADDR_3B 0x3B
#define IOPB_RFIFO_CNT 0x3C
#define IOPB_RES_ADDR_3D 0x3D
#define IOPB_RES_ADDR_3E 0x3E
#define IOPB_RES_ADDR_3F 0x3F
/*
* Word I/O register address from base of 'iop_base'.
*/
#define IOPW_CHIP_ID_0 0x00 /* CID0 */
#define IOPW_CTRL_REG 0x02 /* CC */
#define IOPW_RAM_ADDR 0x04 /* LA */
#define IOPW_RAM_DATA 0x06 /* LD */
#define IOPW_RES_ADDR_08 0x08
#define IOPW_RISC_CSR 0x0A /* CSR */
#define IOPW_SCSI_CFG0 0x0C /* CFG0 */
#define IOPW_SCSI_CFG1 0x0E /* CFG1 */
#define IOPW_RES_ADDR_10 0x10
#define IOPW_SEL_MASK 0x12 /* SM */
#define IOPW_RES_ADDR_14 0x14
#define IOPW_FLASH_ADDR 0x16 /* FA */
#define IOPW_RES_ADDR_18 0x18
#define IOPW_EE_CMD 0x1A /* EC */
#define IOPW_EE_DATA 0x1C /* ED */
#define IOPW_SFIFO_CNT 0x1E /* SFC */
#define IOPW_RES_ADDR_20 0x20
#define IOPW_Q_BASE 0x22 /* QB */
#define IOPW_QP 0x24 /* QP */
#define IOPW_IX 0x26 /* IX */
#define IOPW_SP 0x28 /* SP */
#define IOPW_PC 0x2A /* PC */
#define IOPW_RES_ADDR_2C 0x2C
#define IOPW_RES_ADDR_2E 0x2E
#define IOPW_SCSI_DATA 0x30 /* SD */
#define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
#define IOPW_SCSI_CTRL 0x34 /* SC */
#define IOPW_HSHK_CFG 0x36 /* HCFG */
#define IOPW_SXFR_STATUS 0x36 /* SXS */
#define IOPW_SXFR_CNTL 0x38 /* SXL */
#define IOPW_SXFR_CNTH 0x3A /* SXH */
#define IOPW_RES_ADDR_3C 0x3C
#define IOPW_RFIFO_DATA 0x3E /* RFD */
/*
* Doubleword I/O register address from base of 'iop_base'.
*/
#define IOPDW_RES_ADDR_0 0x00
#define IOPDW_RAM_DATA 0x04
#define IOPDW_RES_ADDR_8 0x08
#define IOPDW_RES_ADDR_C 0x0C
#define IOPDW_RES_ADDR_10 0x10
#define IOPDW_COMMA 0x14
#define IOPDW_COMMB 0x18
#define IOPDW_RES_ADDR_1C 0x1C
#define IOPDW_SDMA_ADDR0 0x20
#define IOPDW_SDMA_ADDR1 0x24
#define IOPDW_SDMA_COUNT 0x28
#define IOPDW_SDMA_ERROR 0x2C
#define IOPDW_RDMA_ADDR0 0x30
#define IOPDW_RDMA_ADDR1 0x34
#define IOPDW_RDMA_COUNT 0x38
#define IOPDW_RDMA_ERROR 0x3C
#define ADV_CHIP_ID_BYTE 0x25
#define ADV_CHIP_ID_WORD 0x04C1
#define ADV_INTR_ENABLE_HOST_INTR 0x01
#define ADV_INTR_ENABLE_SEL_INTR 0x02
#define ADV_INTR_ENABLE_DPR_INTR 0x04
#define ADV_INTR_ENABLE_RTA_INTR 0x08
#define ADV_INTR_ENABLE_RMA_INTR 0x10
#define ADV_INTR_ENABLE_RST_INTR 0x20
#define ADV_INTR_ENABLE_DPE_INTR 0x40
#define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
#define ADV_INTR_STATUS_INTRA 0x01
#define ADV_INTR_STATUS_INTRB 0x02
#define ADV_INTR_STATUS_INTRC 0x04
#define ADV_RISC_CSR_STOP (0x0000)
#define ADV_RISC_TEST_COND (0x2000)
#define ADV_RISC_CSR_RUN (0x4000)
#define ADV_RISC_CSR_SINGLE_STEP (0x8000)
#define ADV_CTRL_REG_HOST_INTR 0x0100
#define ADV_CTRL_REG_SEL_INTR 0x0200
#define ADV_CTRL_REG_DPR_INTR 0x0400
#define ADV_CTRL_REG_RTA_INTR 0x0800
#define ADV_CTRL_REG_RMA_INTR 0x1000
#define ADV_CTRL_REG_RES_BIT14 0x2000
#define ADV_CTRL_REG_DPE_INTR 0x4000
#define ADV_CTRL_REG_POWER_DONE 0x8000
#define ADV_CTRL_REG_ANY_INTR 0xFF00
#define ADV_CTRL_REG_CMD_RESET 0x00C6
#define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
#define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
#define ADV_TICKLE_NOP 0x00
#define ADV_TICKLE_A 0x01
#define ADV_TICKLE_B 0x02
#define ADV_TICKLE_C 0x03
#define AdvIsIntPending(port) \
(AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
/*
* SCSI_CFG0 Register bit definitions
*/
#define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
#define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
#define EVEN_PARITY 0x1000 /* Select Even Parity */
#define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
#define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
#define PRIM_MODE 0x0100 /* Primitive SCSI mode */
#define SCAM_EN 0x0080 /* Enable SCAM selection */
#define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
#define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
#define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
#define OUR_ID 0x000F /* SCSI ID */
/*
* SCSI_CFG1 Register bit definitions
*/
#define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
#define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
#define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
#define FILTER_SEL 0x0C00 /* Filter Period Selection */
#define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
#define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
#define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
#define ACTIVE_DBL 0x0200 /* Disable Active Negation */
#define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
#define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
#define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
#define TERM_CTL 0x0030 /* External SCSI Termination Bits */
#define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
#define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
#define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
/*
* Addendum for ASC-38C0800 Chip
*
* The ASC-38C1600 Chip uses the same definitions except that the
* bus mode override bits [12:10] have been moved to byte register
* offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
* SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
* is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
* Also each ASC-38C1600 function or channel uses only cable bits [5:4]
* and [1:0]. Bits [14], [7:6], [3:2] are unused.
*/
#define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
#define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
#define HVD 0x1000 /* HVD Device Detect */
#define LVD 0x0800 /* LVD Device Detect */
#define SE 0x0400 /* SE Device Detect */
#define TERM_LVD 0x00C0 /* LVD Termination Bits */
#define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
#define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
#define TERM_SE 0x0030 /* SE Termination Bits */
#define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
#define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
#define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
#define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
#define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
#define C_DET_SE 0x0003 /* SE Cable Detect Bits */
#define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
#define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
#define CABLE_ILLEGAL_A 0x7
/* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
#define CABLE_ILLEGAL_B 0xB
/* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
/*
* MEM_CFG Register bit definitions
*/
#define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
#define FAST_EE_CLK 0x20 /* Diagnostic Bit */
#define RAM_SZ 0x1C /* Specify size of RAM to RISC */
#define RAM_SZ_2KB 0x00 /* 2 KB */
#define RAM_SZ_4KB 0x04 /* 4 KB */
#define RAM_SZ_8KB 0x08 /* 8 KB */
#define RAM_SZ_16KB 0x0C /* 16 KB */
#define RAM_SZ_32KB 0x10 /* 32 KB */
#define RAM_SZ_64KB 0x14 /* 64 KB */
/*
* DMA_CFG0 Register bit definitions
*
* This register is only accessible to the host.
*/
#define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
#define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
#define FIFO_THRESH_16B 0x00 /* 16 bytes */
#define FIFO_THRESH_32B 0x20 /* 32 bytes */
#define FIFO_THRESH_48B 0x30 /* 48 bytes */
#define FIFO_THRESH_64B 0x40 /* 64 bytes */
#define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
#define FIFO_THRESH_96B 0x60 /* 96 bytes */
#define FIFO_THRESH_112B 0x70 /* 112 bytes */
#define START_CTL 0x0C /* DMA start conditions */
#define START_CTL_TH 0x00 /* Wait threshold level (default) */
#define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
#define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
#define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
#define READ_CMD 0x03 /* Memory Read Method */
#define READ_CMD_MR 0x00 /* Memory Read */
#define READ_CMD_MRL 0x02 /* Memory Read Long */
#define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
/*
* ASC-38C0800 RAM BIST Register bit definitions
*/
#define RAM_TEST_MODE 0x80
#define PRE_TEST_MODE 0x40
#define NORMAL_MODE 0x00
#define RAM_TEST_DONE 0x10
#define RAM_TEST_STATUS 0x0F
#define RAM_TEST_HOST_ERROR 0x08
#define RAM_TEST_INTRAM_ERROR 0x04
#define RAM_TEST_RISC_ERROR 0x02
#define RAM_TEST_SCSI_ERROR 0x01
#define RAM_TEST_SUCCESS 0x00
#define PRE_TEST_VALUE 0x05
#define NORMAL_VALUE 0x00
/*
* ASC38C1600 Definitions
*
* IOPB_PCI_INT_CFG Bit Field Definitions
*/
#define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
/*
* Bit 1 can be set to change the interrupt for the Function to operate in
* Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
* Open Drain mode. Both functions of the ASC38C1600 must be set to the same
* mode, otherwise the operating mode is undefined.
*/
#define TOTEMPOLE 0x02
/*
* Bit 0 can be used to change the Int Pin for the Function. The value is
* 0 by default for both Functions with Function 0 using INT A and Function
* B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
* INT A is used.
*
* EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
* value specified in the PCI Configuration Space.
*/
#define INTAB 0x01
/*
* Adv Library Status Definitions
*/
#define ADV_TRUE 1
#define ADV_FALSE 0
#define ADV_SUCCESS 1
#define ADV_BUSY 0
#define ADV_ERROR (-1)
/*
* ADV_DVC_VAR 'warn_code' values
*/
#define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
#define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
#define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
#define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
#define ADV_MAX_TID 15 /* max. target identifier */
#define ADV_MAX_LUN 7 /* max. logical unit number */
/*
* Fixed locations of microcode operating variables.
*/
#define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
#define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
#define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
#define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
#define ASC_MC_VERSION_NUM 0x003A /* microcode number */
#define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
#define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
#define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
#define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
#define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
#define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
#define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
#define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
#define ASC_MC_CHIP_TYPE 0x009A
#define ASC_MC_INTRB_CODE 0x009B
#define ASC_MC_WDTR_ABLE 0x009C
#define ASC_MC_SDTR_ABLE 0x009E
#define ASC_MC_TAGQNG_ABLE 0x00A0
#define ASC_MC_DISC_ENABLE 0x00A2
#define ASC_MC_IDLE_CMD_STATUS 0x00A4
#define ASC_MC_IDLE_CMD 0x00A6
#define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
#define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
#define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
#define ASC_MC_DEFAULT_MEM_CFG 0x00B0
#define ASC_MC_DEFAULT_SEL_MASK 0x00B2
#define ASC_MC_SDTR_DONE 0x00B6
#define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
#define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
#define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
#define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
#define ASC_MC_WDTR_DONE 0x0124
#define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
#define ASC_MC_ICQ 0x0160
#define ASC_MC_IRQ 0x0164
#define ASC_MC_PPR_ABLE 0x017A
/*
* BIOS LRAM variable absolute offsets.
*/
#define BIOS_CODESEG 0x54
#define BIOS_CODELEN 0x56
#define BIOS_SIGNATURE 0x58
#define BIOS_VERSION 0x5A
/*
* Microcode Control Flags
*
* Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
* and handled by the microcode.
*/
#define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
#define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
/*
* ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
*/
#define HSHK_CFG_WIDE_XFR 0x8000
#define HSHK_CFG_RATE 0x0F00
#define HSHK_CFG_OFFSET 0x001F
#define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
#define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
#define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
#define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
#define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
#define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
#define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
#define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
#define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
#define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
#define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
#define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
/*
* Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
* ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
*/
#define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
#define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
/*
* All fields here are accessed by the board microcode and need to be
* little-endian.
*/
typedef struct adv_carr_t {
__le32 carr_va; /* Carrier Virtual Address */
__le32 carr_pa; /* Carrier Physical Address */
__le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */
/*
* next_vpa [31:4] Carrier Virtual or Physical Next Pointer
*
* next_vpa [3:1] Reserved Bits
* next_vpa [0] Done Flag set in Response Queue.
*/
__le32 next_vpa;
} ADV_CARR_T;
/*
* Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
*/
#define ADV_NEXT_VPA_MASK 0xFFFFFFF0
#define ADV_RQ_DONE 0x00000001
#define ADV_RQ_GOOD 0x00000002
#define ADV_CQ_STOPPER 0x00000000
#define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
/*
* Each carrier is 64 bytes, and we need three additional
* carrier for icq, irq, and the termination carrier.
*/
#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
#define ADV_CARRIER_BUFSIZE \
(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
#define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
#define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
#define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
/*
* Adapter temporary configuration structure
*
* This structure can be discarded after initialization. Don't add
* fields here needed after initialization.
*
* Field naming convention:
*
* *_enable indicates the field enables or disables a feature. The
* value of the field is never reset.
*/
typedef struct adv_dvc_cfg {
ushort disc_enable; /* enable disconnection */
uchar chip_version; /* chip version */
uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
ushort control_flag; /* Microcode Control Flag */
ushort mcode_date; /* Microcode date */
ushort mcode_version; /* Microcode version */
ushort serial1; /* EEPROM serial number word 1 */
ushort serial2; /* EEPROM serial number word 2 */
ushort serial3; /* EEPROM serial number word 3 */
} ADV_DVC_CFG;
struct adv_dvc_var;
struct adv_scsi_req_q;
typedef struct adv_sg_block {
uchar reserved1;
uchar reserved2;
uchar reserved3;
uchar sg_cnt; /* Valid entries in block. */
__le32 sg_ptr; /* Pointer to next sg block. */
struct {
__le32 sg_addr; /* SG element address. */
__le32 sg_count; /* SG element count. */
} sg_list[NO_OF_SG_PER_BLOCK];
} ADV_SG_BLOCK;
/*
* ADV_SCSI_REQ_Q - microcode request structure
*
* All fields in this structure up to byte 60 are used by the microcode.
* The microcode makes assumptions about the size and ordering of fields
* in this structure. Do not change the structure definition here without
* coordinating the change with the microcode.
*
* All fields accessed by microcode must be maintained in little_endian
* order.
*/
typedef struct adv_scsi_req_q {
uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
uchar target_cmd;
uchar target_id; /* Device target identifier. */
uchar target_lun; /* Device target logical unit number. */
__le32 data_addr; /* Data buffer physical address. */
__le32 data_cnt; /* Data count. Ucode sets to residual. */
__le32 sense_addr;
__le32 carr_pa;
uchar mflag;
uchar sense_len;
uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
uchar scsi_cntl;
uchar done_status; /* Completion status. */
uchar scsi_status; /* SCSI status byte. */
uchar host_status; /* Ucode host status. */
uchar sg_working_ix;
uchar cdb[12]; /* SCSI CDB bytes 0-11. */
__le32 sg_real_addr; /* SG list physical address. */
__le32 scsiq_rptr;
uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
__le32 scsiq_ptr;
__le32 carr_va;
/*
* End of microcode structure - 60 bytes. The rest of the structure
* is used by the Adv Library and ignored by the microcode.
*/
u32 srb_tag;
ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
} ADV_SCSI_REQ_Q;
/*
* The following two structures are used to process Wide Board requests.
*
* The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
* and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
* SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
* to the Mid-Level SCSI request structure.
*
* Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
* ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
* up to 255 scatter-gather elements may be used per request or
* ADV_SCSI_REQ_Q.
*
* Both structures must be 32 byte aligned.
*/
typedef struct adv_sgblk {
ADV_SG_BLOCK sg_block; /* Sgblock structure. */
dma_addr_t sg_addr; /* Physical address */
struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
} adv_sgblk_t;
typedef struct adv_req {
ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
uchar align[24]; /* Request structure padding. */
struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
dma_addr_t req_addr;
adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
} adv_req_t __aligned(32);
/*
* Adapter operation variable structure.
*
* One structure is required per host adapter.
*
* Field naming convention:
*
* *_able indicates both whether a feature should be enabled or disabled
* and whether a device isi capable of the feature. At initialization
* this field may be set, but later if a device is found to be incapable
* of the feature, the field is cleared.
*/
typedef struct adv_dvc_var {
AdvPortAddr iop_base; /* I/O port address */
ushort err_code; /* fatal error code */
ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
ushort wdtr_able; /* try WDTR for a device */
ushort sdtr_able; /* try SDTR for a device */
ushort ultra_able; /* try SDTR Ultra speed for a device */
ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
ushort tagqng_able; /* try tagged queuing with a device */
ushort ppr_able; /* PPR message capable per TID bitmask. */
uchar max_dvc_qng; /* maximum number of tagged commands per device */
ushort start_motor; /* start motor command allowed */
uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
uchar chip_no; /* should be assigned by caller */
uchar max_host_qng; /* maximum number of Q'ed command allowed */
ushort no_scam; /* scam_tolerant of EEPROM */
struct asc_board *drv_ptr; /* driver pointer to private structure */
uchar chip_scsi_id; /* chip SCSI target ID */
uchar chip_type;
uchar bist_err_code;
ADV_CARR_T *carrier;
ADV_CARR_T *carr_freelist; /* Carrier free list. */
dma_addr_t carrier_addr;
ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
ushort carr_pending_cnt; /* Count of pending carriers. */
/*
* Note: The following fields will not be used after initialization. The
* driver may discard the buffer after initialization is done.
*/
ADV_DVC_CFG *cfg; /* temporary configuration structure */
} ADV_DVC_VAR;
/*
* Microcode idle loop commands
*/
#define IDLE_CMD_COMPLETED 0
#define IDLE_CMD_STOP_CHIP 0x0001
#define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
#define IDLE_CMD_SEND_INT 0x0004
#define IDLE_CMD_ABORT 0x0008
#define IDLE_CMD_DEVICE_RESET 0x0010
#define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
#define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
#define IDLE_CMD_SCSIREQ 0x0080
#define IDLE_CMD_STATUS_SUCCESS 0x0001
#define IDLE_CMD_STATUS_FAILURE 0x0002
/*
* AdvSendIdleCmd() flag definitions.
*/
#define ADV_NOWAIT 0x01
/*
* Wait loop time out values.
*/
#define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
#define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
#define SCSI_MAX_RETRY 10 /* retry count */
#define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
#define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
#define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
#define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
/* Read byte from a register. */
#define AdvReadByteRegister(iop_base, reg_off) \
(ADV_MEM_READB((iop_base) + (reg_off)))
/* Write byte to a register. */
#define AdvWriteByteRegister(iop_base, reg_off, byte) \
(ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
/* Read word (2 bytes) from a register. */
#define AdvReadWordRegister(iop_base, reg_off) \
(ADV_MEM_READW((iop_base) + (reg_off)))
/* Write word (2 bytes) to a register. */
#define AdvWriteWordRegister(iop_base, reg_off, word) \
(ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
/* Write dword (4 bytes) to a register. */
#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
(ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
/* Read byte from LRAM. */
#define AdvReadByteLram(iop_base, addr, byte) \
do { \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
(byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
} while (0)
/* Write byte to LRAM. */
#define AdvWriteByteLram(iop_base, addr, byte) \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
/* Read word (2 bytes) from LRAM. */
#define AdvReadWordLram(iop_base, addr, word) \
do { \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
(word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
} while (0)
/* Write word (2 bytes) to LRAM. */
#define AdvWriteWordLram(iop_base, addr, word) \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
/* Write little-endian double word (4 bytes) to LRAM */
/* Because of unspecified C language ordering don't use auto-increment. */
#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
/* Read word (2 bytes) from LRAM assuming that the address is already set. */
#define AdvReadWordAutoIncLram(iop_base) \
(ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
/* Write word (2 bytes) to LRAM assuming that the address is already set. */
#define AdvWriteWordAutoIncLram(iop_base, word) \
(ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
/*
* Define macro to check for Condor signature.
*
* Evaluate to ADV_TRUE if a Condor chip is found the specified port
* address 'iop_base'. Otherwise evalue to ADV_FALSE.
*/
#define AdvFindSignature(iop_base) \
(((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
ADV_CHIP_ID_BYTE) && \
(AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
/*
* Define macro to Return the version number of the chip at 'iop_base'.
*
* The second parameter 'bus_type' is currently unused.
*/
#define AdvGetChipVersion(iop_base, bus_type) \
AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
/*
* Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
* match the ADV_SCSI_REQ_Q 'srb_tag' field.
*
* If the request has not yet been sent to the device it will simply be
* aborted from RISC memory. If the request is disconnected it will be
* aborted on reselection by sending an Abort Message to the target ID.
*
* Return value:
* ADV_TRUE(1) - Queue was successfully aborted.
* ADV_FALSE(0) - Queue was not found on the active queue list.
*/
#define AdvAbortQueue(asc_dvc, srb_tag) \
AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
(ADV_DCNT) (srb_tag))
/*
* Send a Bus Device Reset Message to the specified target ID.
*
* All outstanding commands will be purged if sending the
* Bus Device Reset Message is successful.
*
* Return Value:
* ADV_TRUE(1) - All requests on the target are purged.
* ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
* are not purged.
*/
#define AdvResetDevice(asc_dvc, target_id) \
AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
(ADV_DCNT) (target_id))
/*
* SCSI Wide Type definition.
*/
#define ADV_SCSI_BIT_ID_TYPE ushort
/*
* AdvInitScsiTarget() 'cntl_flag' options.
*/
#define ADV_SCAN_LUN 0x01
#define ADV_CAPINFO_NOLUN 0x02
/*
* Convert target id to target id bit mask.
*/
#define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
/*
* ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
*/
#define QD_NO_STATUS 0x00 /* Request not completed yet. */
#define QD_NO_ERROR 0x01
#define QD_ABORTED_BY_HOST 0x02
#define QD_WITH_ERROR 0x04
#define QHSTA_NO_ERROR 0x00
#define QHSTA_M_SEL_TIMEOUT 0x11
#define QHSTA_M_DATA_OVER_RUN 0x12
#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
#define QHSTA_M_QUEUE_ABORTED 0x15
#define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
#define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
#define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
#define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
#define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
#define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
#define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
#define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
#define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
#define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
#define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
#define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
#define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
#define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
#define QHSTA_M_WTM_TIMEOUT 0x41
#define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
#define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
#define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
#define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
#define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
/* Return the address that is aligned at the next doubleword >= to 'addr'. */
#define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
/*
* Total contiguous memory needed for driver SG blocks.
*
* ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
* number of scatter-gather elements the driver supports in a
* single request.
*/
#define ADV_SG_LIST_MAX_BYTE_SIZE \
(sizeof(ADV_SG_BLOCK) * \
((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
/* struct asc_board flags */
#define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
#define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
#define ASC_INFO_SIZE 128 /* advansys_info() line size */
/* Asc Library return codes */
#define ASC_TRUE 1
#define ASC_FALSE 0
#define ASC_NOERROR 1
#define ASC_BUSY 0
#define ASC_ERROR (-1)
/* struct scsi_cmnd function return codes */
#define STATUS_BYTE(byte) (byte)
#define MSG_BYTE(byte) ((byte) << 8)
#define HOST_BYTE(byte) ((byte) << 16)
#define DRIVER_BYTE(byte) ((byte) << 24)
#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
#ifndef ADVANSYS_STATS
#define ASC_STATS_ADD(shost, counter, count)
#else /* ADVANSYS_STATS */
#define ASC_STATS_ADD(shost, counter, count) \
(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
#endif /* ADVANSYS_STATS */
/* If the result wraps when calculating tenths, return 0. */
#define ASC_TENTHS(num, den) \
(((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
/*
* Display a message to the console.
*/
#define ASC_PRINT(s) \
{ \
printk("advansys: "); \
printk(s); \
}
#define ASC_PRINT1(s, a1) \
{ \
printk("advansys: "); \
printk((s), (a1)); \
}
#define ASC_PRINT2(s, a1, a2) \
{ \
printk("advansys: "); \
printk((s), (a1), (a2)); \
}
#define ASC_PRINT3(s, a1, a2, a3) \
{ \
printk("advansys: "); \
printk((s), (a1), (a2), (a3)); \
}
#define ASC_PRINT4(s, a1, a2, a3, a4) \
{ \
printk("advansys: "); \
printk((s), (a1), (a2), (a3), (a4)); \
}
#ifndef ADVANSYS_DEBUG
#define ASC_DBG(lvl, s...)
#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
#define ASC_DBG_PRT_HEX(lvl, name, start, length)
#define ASC_DBG_PRT_CDB(lvl, cdb, len)
#define ASC_DBG_PRT_SENSE(lvl, sense, len)
#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
#else /* ADVANSYS_DEBUG */
/*
* Debugging Message Levels:
* 0: Errors Only
* 1: High-Level Tracing
* 2-N: Verbose Tracing
*/
#define ASC_DBG(lvl, format, arg...) { \
if (asc_dbglvl >= (lvl)) \
printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
__func__ , ## arg); \
}
#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_scsi_host(s); \
} \
}
#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_asc_scsi_q(scsiqp); \
} \
}
#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_asc_qdone_info(qdone); \
} \
}
#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_adv_scsi_req_q(scsiqp); \
} \
}
#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
{ \
if (asc_dbglvl >= (lvl)) { \
asc_prt_hex((name), (start), (length)); \
} \
}
#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
#endif /* ADVANSYS_DEBUG */
#ifdef ADVANSYS_STATS
/* Per board statistics structure */
struct asc_stats {
/* Driver Entrypoint Statistics */
unsigned int queuecommand; /* # calls to advansys_queuecommand() */
unsigned int reset; /* # calls to advansys_eh_bus_reset() */
unsigned int biosparam; /* # calls to advansys_biosparam() */
unsigned int interrupt; /* # advansys_interrupt() calls */
unsigned int callback; /* # calls to asc/adv_isr_callback() */
unsigned int done; /* # calls to request's scsi_done function */
unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
unsigned int exe_noerror; /* # ASC_NOERROR returns. */
unsigned int exe_busy; /* # ASC_BUSY returns. */
unsigned int exe_error; /* # ASC_ERROR returns. */
unsigned int exe_unknown; /* # unknown returns. */
/* Data Transfer Statistics */
unsigned int xfer_cnt; /* # I/O requests received */
unsigned int xfer_elem; /* # scatter-gather elements */
unsigned int xfer_sect; /* # 512-byte blocks */
};
#endif /* ADVANSYS_STATS */
/*
* Structure allocated for each board.
*
* This structure is allocated by scsi_host_alloc() at the end
* of the 'Scsi_Host' structure starting at the 'hostdata'
* field. It is guaranteed to be allocated from DMA-able memory.
*/
struct asc_board {
struct device *dev;
struct Scsi_Host *shost;
uint flags; /* Board flags */
unsigned int irq;
union {
ASC_DVC_VAR asc_dvc_var; /* Narrow board */
ADV_DVC_VAR adv_dvc_var; /* Wide board */
} dvc_var;
union {
ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
} dvc_cfg;
ushort asc_n_io_port; /* Number I/O ports. */
ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
union {
ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
} eep_config;
/* /proc/scsi/advansys/[0...] */
#ifdef ADVANSYS_STATS
struct asc_stats asc_stats; /* Board statistics */
#endif /* ADVANSYS_STATS */
/*
* The following fields are used only for Narrow Boards.
*/
uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
/*
* The following fields are used only for Wide Boards.
*/
void __iomem *ioremap_addr; /* I/O Memory remap address. */
ushort ioport; /* I/O Port address. */
adv_req_t *adv_reqp; /* Request structures. */
dma_addr_t adv_reqp_addr;
size_t adv_reqp_size;
struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */
ushort bios_signature; /* BIOS Signature. */
ushort bios_version; /* BIOS Version. */
ushort bios_codeseg; /* BIOS Code Segment. */
ushort bios_codelen; /* BIOS Code Segment Length. */
};
#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
dvc_var.asc_dvc_var)
#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
dvc_var.adv_dvc_var)
#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
#ifdef ADVANSYS_DEBUG
static int asc_dbglvl = 3;
/*
* asc_prt_asc_dvc_var()
*/
static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
{
printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
"%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
(unsigned)h->init_sdtr);
printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
"chip_no 0x%x,\n", (unsigned)h->sdtr_done,
(unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
(unsigned)h->chip_no);
printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
"%u,\n", (unsigned)h->queue_full_or_busy,
(unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
"in_critical_cnt %u,\n", (unsigned)h->is_in_int,
(unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
(unsigned)h->in_critical_cnt);
printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
"pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
(unsigned)h->init_state, (unsigned)h->no_scam,
(unsigned)h->pci_fix_asyn_xfer);
printk(" cfg 0x%lx\n", (ulong)h->cfg);
}
/*
* asc_prt_asc_dvc_cfg()
*/
static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
{
printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
h->can_tagged_qng, h->cmd_qng_enabled);
printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
h->disc_enable, h->sdtr_enable);
printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
h->isa_dma_channel, h->chip_version);
printk(" mcode_date 0x%x, mcode_version %d\n",
h->mcode_date, h->mcode_version);
}
/*
* asc_prt_adv_dvc_var()
*
* Display an ADV_DVC_VAR structure.
*/
static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
{
printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
(ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
(unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
(unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
(unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
h->carr_freelist);
printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
printk(" no_scam 0x%x, tagqng_able 0x%x\n",
(unsigned)h->no_scam, (unsigned)h->tagqng_able);
printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
(unsigned)h->chip_scsi_id, (ulong)h->cfg);
}
/*
* asc_prt_adv_dvc_cfg()
*
* Display an ADV_DVC_CFG structure.
*/
static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
{
printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
printk(" disc_enable 0x%x, termination 0x%x\n",
h->disc_enable, h->termination);
printk(" chip_version 0x%x, mcode_date 0x%x\n",
h->chip_version, h->mcode_date);
printk(" mcode_version 0x%x, control_flag 0x%x\n",
h->mcode_version, h->control_flag);
}
/*
* asc_prt_scsi_host()
*/
static void asc_prt_scsi_host(struct Scsi_Host *s)
{
struct asc_board *boardp = shost_priv(s);
printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
printk(" host_busy %u, host_no %d,\n",
atomic_read(&s->host_busy), s->host_no);
printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
(ulong)s->base, (ulong)s->io_port, boardp->irq);
printk(" dma_channel %d, this_id %d, can_queue %d,\n",
s->dma_channel, s->this_id, s->can_queue);
printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
if (ASC_NARROW_BOARD(boardp)) {
asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
} else {
asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
}
}
/*
* asc_prt_hex()
*
* Print hexadecimal output in 4 byte groupings 32 bytes
* or 8 double-words per line.
*/
static void asc_prt_hex(char *f, uchar *s, int l)
{
int i;
int j;
int k;
int m;
printk("%s: (%d bytes)\n", f, l);
for (i = 0; i < l; i += 32) {
/* Display a maximum of 8 double-words per line. */
if ((k = (l - i) / 4) >= 8) {
k = 8;
m = 0;
} else {
m = (l - i) % 4;
}
for (j = 0; j < k; j++) {
printk(" %2.2X%2.2X%2.2X%2.2X",
(unsigned)s[i + (j * 4)],
(unsigned)s[i + (j * 4) + 1],
(unsigned)s[i + (j * 4) + 2],
(unsigned)s[i + (j * 4) + 3]);
}
switch (m) {
case 0:
default:
break;
case 1:
printk(" %2.2X", (unsigned)s[i + (j * 4)]);
break;
case 2:
printk(" %2.2X%2.2X",
(unsigned)s[i + (j * 4)],
(unsigned)s[i + (j * 4) + 1]);
break;
case 3:
printk(" %2.2X%2.2X%2.2X",
(unsigned)s[i + (j * 4) + 1],
(unsigned)s[i + (j * 4) + 2],
(unsigned)s[i + (j * 4) + 3]);
break;
}
printk("\n");
}
}
/*
* asc_prt_asc_scsi_q()
*/
static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
{
ASC_SG_HEAD *sgp;
int i;
printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
printk
(" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
q->q2.tag_code);
printk
(" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
(ulong)le32_to_cpu(q->q1.data_addr),
(ulong)le32_to_cpu(q->q1.data_cnt),
(ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
(ulong)q->cdbptr, q->q2.cdb_len,
(ulong)q->sg_head, q->q1.sg_queue_cnt);
if (q->sg_head) {
sgp = q->sg_head;
printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
sgp->queue_cnt);
for (i = 0; i < sgp->entry_cnt; i++) {
printk(" [%u]: addr 0x%lx, bytes %lu\n",
i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
(ulong)le32_to_cpu(sgp->sg_list[i].bytes));
}
}
}
/*
* asc_prt_asc_qdone_info()
*/
static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
{
printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
q->d2.tag_code);
printk
(" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
}
/*
* asc_prt_adv_sgblock()
*
* Display an ADV_SG_BLOCK structure.
*/
static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
{
int i;
printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
(ulong)b, sgblockno);
printk(" sg_cnt %u, sg_ptr 0x%x\n",
b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
if (b->sg_ptr != 0)
BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
for (i = 0; i < b->sg_cnt; i++) {
printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n",
i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
(u32)le32_to_cpu(b->sg_list[i].sg_count));
}
}
/*
* asc_prt_adv_scsi_req_q()
*
* Display an ADV_SCSI_REQ_Q structure.
*/
static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
{
int sg_blk_cnt;
struct adv_sg_block *sg_ptr;
adv_sgblk_t *sgblkp;
printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
printk(" target_id %u, target_lun %u, srb_tag 0x%x\n",
q->target_id, q->target_lun, q->srb_tag);
printk(" cntl 0x%x, data_addr 0x%lx\n",
q->cntl, (ulong)le32_to_cpu(q->data_addr));
printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
(ulong)le32_to_cpu(q->data_cnt),
(ulong)le32_to_cpu(q->sense_addr), q->sense_len);
printk
(" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
q->cdb_len, q->done_status, q->host_status, q->scsi_status);
printk(" sg_working_ix 0x%x, target_cmd %u\n",
q->sg_working_ix, q->target_cmd);
printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
(ulong)le32_to_cpu(q->scsiq_rptr),
(ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
/* Display the request's ADV_SG_BLOCK structures. */
if (q->sg_list_ptr != NULL) {
sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
sg_blk_cnt = 0;
while (sgblkp) {
sg_ptr = &sgblkp->sg_block;
asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
if (sg_ptr->sg_ptr == 0) {
break;
}
sgblkp = sgblkp->next_sgblkp;
sg_blk_cnt++;
}
}
}
#endif /* ADVANSYS_DEBUG */
/*
* advansys_info()
*
* Return suitable for printing on the console with the argument
* adapter's configuration information.
*
* Note: The information line should not exceed ASC_INFO_SIZE bytes,
* otherwise the static 'info' array will be overrun.
*/
static const char *advansys_info(struct Scsi_Host *shost)
{
static char info[ASC_INFO_SIZE];
struct asc_board *boardp = shost_priv(shost);
ASC_DVC_VAR *asc_dvc_varp;
ADV_DVC_VAR *adv_dvc_varp;
char *busname;
char *widename = NULL;
if (ASC_NARROW_BOARD(boardp)) {
asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
ASC_DBG(1, "begin\n");
if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
ASC_IS_ISAPNP) {
busname = "ISA PnP";
} else {
busname = "ISA";
}
sprintf(info,
"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
ASC_VERSION, busname,
(ulong)shost->io_port,
(ulong)shost->io_port + ASC_IOADR_GAP - 1,
boardp->irq, shost->dma_channel);
} else {
if (asc_dvc_varp->bus_type & ASC_IS_VL) {
busname = "VL";
} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
busname = "EISA";
} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
== ASC_IS_PCI_ULTRA) {
busname = "PCI Ultra";
} else {
busname = "PCI";
}
} else {
busname = "?";
shost_printk(KERN_ERR, shost, "unknown bus "
"type %d\n", asc_dvc_varp->bus_type);
}
sprintf(info,
"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
ASC_VERSION, busname, (ulong)shost->io_port,
(ulong)shost->io_port + ASC_IOADR_GAP - 1,
boardp->irq);
}
} else {
/*
* Wide Adapter Information
*
* Memory-mapped I/O is used instead of I/O space to access
* the adapter, but display the I/O Port range. The Memory
* I/O address is displayed through the driver /proc file.
*/
adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
widename = "Ultra-Wide";
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
widename = "Ultra2-Wide";
} else {
widename = "Ultra3-Wide";
}
sprintf(info,
"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
}
BUG_ON(strlen(info) >= ASC_INFO_SIZE);
ASC_DBG(1, "end\n");
return info;
}
#ifdef CONFIG_PROC_FS
/*
* asc_prt_board_devices()
*
* Print driver information for devices attached to the board.
*/
static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
int chip_scsi_id;
int i;
seq_printf(m,
"\nDevice Information for AdvanSys SCSI Host %d:\n",
shost->host_no);
if (ASC_NARROW_BOARD(boardp)) {
chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
} else {
chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
}
seq_puts(m, "Target IDs Detected:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
seq_printf(m, " %X,", i);
}
seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
}
/*
* Display Wide Board BIOS Information.
*/
static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
ushort major, minor, letter;
seq_puts(m, "\nROM BIOS Version: ");
/*
* If the BIOS saved a valid signature, then fill in
* the BIOS code segment base address.
*/
if (boardp->bios_signature != 0x55AA) {
seq_puts(m, "Disabled or Pre-3.1\n"
"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
} else {
major = (boardp->bios_version >> 12) & 0xF;
minor = (boardp->bios_version >> 8) & 0xF;
letter = (boardp->bios_version & 0xFF);
seq_printf(m, "%d.%d%c\n",
major, minor,
letter >= 26 ? '?' : letter + 'A');
/*
* Current available ROM BIOS release is 3.1I for UW
* and 3.2I for U2W. This code doesn't differentiate
* UW and U2W boards.
*/
if (major < 3 || (major <= 3 && minor < 1) ||
(major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
"ftp://ftp.connectcom.net/pub\n");
}
}
}
/*
* Add serial number to information bar if signature AAh
* is found in at bit 15-9 (7 bits) of word 1.
*
* Serial Number consists fo 12 alpha-numeric digits.
*
* 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
* 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
* 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
* 5 - Product revision (A-J) Word0: " "
*
* Signature Word1: 15-9 (7 bits)
* 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
* 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
*
* 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
*
* Note 1: Only production cards will have a serial number.
*
* Note 2: Signature is most significant 7 bits (0xFE).
*
* Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
*/
static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
{
ushort w, num;
if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
return ASC_FALSE;
} else {
/*
* First word - 6 digits.
*/
w = serialnum[0];
/* Product type - 1st digit. */
if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
/* Product type is P=Prototype */
*cp += 0x8;
}
cp++;
/* Manufacturing location - 2nd digit. */
*cp++ = 'A' + ((w & 0x1C00) >> 10);
/* Product ID - 3rd, 4th digits. */
num = w & 0x3FF;
*cp++ = '0' + (num / 100);
num %= 100;
*cp++ = '0' + (num / 10);
/* Product revision - 5th digit. */
*cp++ = 'A' + (num % 10);
/*
* Second word
*/
w = serialnum[1];
/*
* Year - 6th digit.
*
* If bit 15 of third word is set, then the
* last digit of the year is greater than 7.
*/
if (serialnum[2] & 0x8000) {
*cp++ = '8' + ((w & 0x1C0) >> 6);
} else {
*cp++ = '0' + ((w & 0x1C0) >> 6);
}
/* Week of year - 7th, 8th digits. */
num = w & 0x003F;
*cp++ = '0' + num / 10;
num %= 10;
*cp++ = '0' + num;
/*
* Third word
*/
w = serialnum[2] & 0x7FFF;
/* Serial number - 9th digit. */
*cp++ = 'A' + (w / 1000);
/* 10th, 11th, 12th digits. */
num = w % 1000;
*cp++ = '0' + num / 100;
num %= 100;
*cp++ = '0' + num / 10;
num %= 10;
*cp++ = '0' + num;
*cp = '\0'; /* Null Terminate the string. */
return ASC_TRUE;
}
}
/*
* asc_prt_asc_board_eeprom()
*
* Print board EEPROM configuration.
*/
static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
ASC_DVC_VAR *asc_dvc_varp;
ASCEEP_CONFIG *ep;
int i;
#ifdef CONFIG_ISA
int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
#endif /* CONFIG_ISA */
uchar serialstr[13];
asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
ep = &boardp->eep_config.asc_eep;
seq_printf(m,
"\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
shost->host_no);
if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
== ASC_TRUE)
seq_printf(m, " Serial Number: %s\n", serialstr);
else if (ep->adapter_info[5] == 0xBB)
seq_puts(m,
" Default Settings Used for EEPROM-less Adapter.\n");
else
seq_puts(m, " Serial Number Signature Not Present.\n");
seq_printf(m,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
ep->max_tag_qng);
seq_printf(m,
" cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
seq_puts(m, " Target ID: ");
for (i = 0; i <= ASC_MAX_TID; i++)
seq_printf(m, " %d", i);
seq_puts(m, "\n Disconnects: ");
for (i = 0; i <= ASC_MAX_TID; i++)
seq_printf(m, " %c",
(ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_puts(m, "\n Command Queuing: ");
for (i = 0; i <= ASC_MAX_TID; i++)
seq_printf(m, " %c",
(ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_puts(m, "\n Start Motor: ");
for (i = 0; i <= ASC_MAX_TID; i++)
seq_printf(m, " %c",
(ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_puts(m, "\n Synchronous Transfer:");
for (i = 0; i <= ASC_MAX_TID; i++)
seq_printf(m, " %c",
(ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_putc(m, '\n');
#ifdef CONFIG_ISA
if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
seq_printf(m,
" Host ISA DMA speed: %d MB/S\n",
isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
}
#endif /* CONFIG_ISA */
}
/*
* asc_prt_adv_board_eeprom()
*
* Print board EEPROM configuration.
*/
static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
ADV_DVC_VAR *adv_dvc_varp;
int i;
char *termstr;
uchar serialstr[13];
ADVEEP_3550_CONFIG *ep_3550 = NULL;
ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
ushort word;
ushort *wordp;
ushort sdtr_speed = 0;
adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
ep_3550 = &boardp->eep_config.adv_3550_eep;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
} else {
ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
}
seq_printf(m,
"\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
shost->host_no);
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
wordp = &ep_3550->serial_number_word1;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
wordp = &ep_38C0800->serial_number_word1;
} else {
wordp = &ep_38C1600->serial_number_word1;
}
if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
seq_printf(m, " Serial Number: %s\n", serialstr);
else
seq_puts(m, " Serial Number Signature Not Present.\n");
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
seq_printf(m,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ep_3550->adapter_scsi_id,
ep_3550->max_host_qng, ep_3550->max_dvc_qng);
else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
seq_printf(m,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ep_38C0800->adapter_scsi_id,
ep_38C0800->max_host_qng,
ep_38C0800->max_dvc_qng);
else
seq_printf(m,
" Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
ep_38C1600->adapter_scsi_id,
ep_38C1600->max_host_qng,
ep_38C1600->max_dvc_qng);
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->termination;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->termination_lvd;
} else {
word = ep_38C1600->termination_lvd;
}
switch (word) {
case 1:
termstr = "Low Off/High Off";
break;
case 2:
termstr = "Low Off/High On";
break;
case 3:
termstr = "Low On/High On";
break;
default:
case 0:
termstr = "Automatic";
break;
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
seq_printf(m,
" termination: %u (%s), bios_ctrl: 0x%x\n",
ep_3550->termination, termstr,
ep_3550->bios_ctrl);
else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
seq_printf(m,
" termination: %u (%s), bios_ctrl: 0x%x\n",
ep_38C0800->termination_lvd, termstr,
ep_38C0800->bios_ctrl);
else
seq_printf(m,
" termination: %u (%s), bios_ctrl: 0x%x\n",
ep_38C1600->termination_lvd, termstr,
ep_38C1600->bios_ctrl);
seq_puts(m, " Target ID: ");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %X", i);
seq_putc(m, '\n');
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->disc_enable;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->disc_enable;
} else {
word = ep_38C1600->disc_enable;
}
seq_puts(m, " Disconnects: ");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_putc(m, '\n');
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->tagqng_able;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->tagqng_able;
} else {
word = ep_38C1600->tagqng_able;
}
seq_puts(m, " Command Queuing: ");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_putc(m, '\n');
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->start_motor;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->start_motor;
} else {
word = ep_38C1600->start_motor;
}
seq_puts(m, " Start Motor: ");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_putc(m, '\n');
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
seq_puts(m, " Synchronous Transfer:");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %c",
(ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
'Y' : 'N');
seq_putc(m, '\n');
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
seq_puts(m, " Ultra Transfer: ");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %c",
(ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
? 'Y' : 'N');
seq_putc(m, '\n');
}
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
word = ep_3550->wdtr_able;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
word = ep_38C0800->wdtr_able;
} else {
word = ep_38C1600->wdtr_able;
}
seq_puts(m, " Wide Transfer: ");
for (i = 0; i <= ADV_MAX_TID; i++)
seq_printf(m, " %c",
(word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
seq_putc(m, '\n');
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
seq_puts(m, " Synchronous Transfer Speed (Mhz):\n ");
for (i = 0; i <= ADV_MAX_TID; i++) {
char *speed_str;
if (i == 0) {
sdtr_speed = adv_dvc_varp->sdtr_speed1;
} else if (i == 4) {
sdtr_speed = adv_dvc_varp->sdtr_speed2;
} else if (i == 8) {
sdtr_speed = adv_dvc_varp->sdtr_speed3;
} else if (i == 12) {
sdtr_speed = adv_dvc_varp->sdtr_speed4;
}
switch (sdtr_speed & ADV_MAX_TID) {
case 0:
speed_str = "Off";
break;
case 1:
speed_str = " 5";
break;
case 2:
speed_str = " 10";
break;
case 3:
speed_str = " 20";
break;
case 4:
speed_str = " 40";
break;
case 5:
speed_str = " 80";
break;
default:
speed_str = "Unk";
break;
}
seq_printf(m, "%X:%s ", i, speed_str);
if (i == 7)
seq_puts(m, "\n ");
sdtr_speed >>= 4;
}
seq_putc(m, '\n');
}
}
/*
* asc_prt_driver_conf()
*/
static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
int chip_scsi_id;
seq_printf(m,
"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
shost->host_no);
seq_printf(m,
" host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
atomic_read(&shost->host_busy), shost->max_id,
shost->max_lun, shost->max_channel);
seq_printf(m,
" unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
shost->unique_id, shost->can_queue, shost->this_id,
shost->sg_tablesize, shost->cmd_per_lun);
seq_printf(m,
" unchecked_isa_dma %d, use_clustering %d\n",
shost->unchecked_isa_dma, shost->use_clustering);
seq_printf(m,
" flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
boardp->flags, shost->last_reset, jiffies,
boardp->asc_n_io_port);
seq_printf(m, " io_port 0x%lx\n", shost->io_port);
if (ASC_NARROW_BOARD(boardp)) {
chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
} else {
chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
}
}
/*
* asc_prt_asc_board_info()
*
* Print dynamic board configuration information.
*/
static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
int chip_scsi_id;
ASC_DVC_VAR *v;
ASC_DVC_CFG *c;
int i;
int renegotiate = 0;
v = &boardp->dvc_var.asc_dvc_var;
c = &boardp->dvc_cfg.asc_dvc_cfg;
chip_scsi_id = c->chip_scsi_id;
seq_printf(m,
"\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
shost->host_no);
seq_printf(m, " chip_version %u, mcode_date 0x%x, "
"mcode_version 0x%x, err_code %u\n",
c->chip_version, c->mcode_date, c->mcode_version,
v->err_code);
/* Current number of commands waiting for the host. */
seq_printf(m,
" Total Command Pending: %d\n", v->cur_total_qng);
seq_puts(m, " Command Queuing:");
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%c",
i,
(v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
}
/* Current number of commands waiting for a device. */
seq_puts(m, "\n Command Queue Pending:");
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
}
/* Current limit on number of commands that can be sent to a device. */
seq_puts(m, "\n Command Queue Limit:");
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
}
/* Indicate whether the device has returned queue full status. */
seq_puts(m, "\n Command Queue Full:");
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
seq_printf(m, " %X:Y-%d",
i, boardp->queue_full_cnt[i]);
else
seq_printf(m, " %X:N", i);
}
seq_puts(m, "\n Synchronous Transfer:");
for (i = 0; i <= ASC_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%c",
i,
(v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
}
seq_putc(m, '\n');
for (i = 0; i <= ASC_MAX_TID; i++) {
uchar syn_period_ix;
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:", i);
if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
seq_puts(m, " Asynchronous");
} else {
syn_period_ix =
(boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
1);
seq_printf(m,
" Transfer Period Factor: %d (%d.%d Mhz),",
v->sdtr_period_tbl[syn_period_ix],
250 / v->sdtr_period_tbl[syn_period_ix],
ASC_TENTHS(250,
v->sdtr_period_tbl[syn_period_ix]));
seq_printf(m, " REQ/ACK Offset: %d",
boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
}
if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
seq_puts(m, "*\n");
renegotiate = 1;
} else {
seq_putc(m, '\n');
}
}
if (renegotiate) {
seq_puts(m, " * = Re-negotiation pending before next command.\n");
}
}
/*
* asc_prt_adv_board_info()
*
* Print dynamic board configuration information.
*/
static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
int i;
ADV_DVC_VAR *v;
ADV_DVC_CFG *c;
AdvPortAddr iop_base;
ushort chip_scsi_id;
ushort lramword;
uchar lrambyte;
ushort tagqng_able;
ushort sdtr_able, wdtr_able;
ushort wdtr_done, sdtr_done;
ushort period = 0;
int renegotiate = 0;
v = &boardp->dvc_var.adv_dvc_var;
c = &boardp->dvc_cfg.adv_dvc_cfg;
iop_base = v->iop_base;
chip_scsi_id = v->chip_scsi_id;
seq_printf(m,
"\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
shost->host_no);
seq_printf(m,
" iop_base 0x%lx, cable_detect: %X, err_code %u\n",
(unsigned long)v->iop_base,
AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
v->err_code);
seq_printf(m, " chip_version %u, mcode_date 0x%x, "
"mcode_version 0x%x\n", c->chip_version,
c->mcode_date, c->mcode_version);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
seq_puts(m, " Queuing Enabled:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%c",
i,
(tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
}
seq_puts(m, "\n Queue Limit:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
lrambyte);
seq_printf(m, " %X:%d", i, lrambyte);
}
seq_puts(m, "\n Command Pending:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
lrambyte);
seq_printf(m, " %X:%d", i, lrambyte);
}
seq_putc(m, '\n');
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
seq_puts(m, " Wide Enabled:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%c",
i,
(wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
}
seq_putc(m, '\n');
AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
seq_puts(m, " Transfer Bit Width:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
AdvReadWordLram(iop_base,
ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
lramword);
seq_printf(m, " %X:%d",
i, (lramword & 0x8000) ? 16 : 8);
if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
(wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
seq_putc(m, '*');
renegotiate = 1;
}
}
seq_putc(m, '\n');
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
seq_puts(m, " Synchronous Enabled:");
for (i = 0; i <= ADV_MAX_TID; i++) {
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:%c",
i,
(sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
}
seq_putc(m, '\n');
AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
for (i = 0; i <= ADV_MAX_TID; i++) {
AdvReadWordLram(iop_base,
ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
lramword);
lramword &= ~0x8000;
if ((chip_scsi_id == i) ||
((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
continue;
}
seq_printf(m, " %X:", i);
if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
seq_puts(m, " Asynchronous");
} else {
seq_puts(m, " Transfer Period Factor: ");
if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
seq_puts(m, "9 (80.0 Mhz),");
} else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
seq_puts(m, "10 (40.0 Mhz),");
} else { /* 20 Mhz or below. */
period = (((lramword >> 8) * 25) + 50) / 4;
if (period == 0) { /* Should never happen. */
seq_printf(m, "%d (? Mhz), ", period);
} else {
seq_printf(m,
"%d (%d.%d Mhz),",
period, 250 / period,
ASC_TENTHS(250, period));
}
}
seq_printf(m, " REQ/ACK Offset: %d",
lramword & 0x1F);
}
if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
seq_puts(m, "*\n");
renegotiate = 1;
} else {
seq_putc(m, '\n');
}
}
if (renegotiate) {
seq_puts(m, " * = Re-negotiation pending before next command.\n");
}
}
#ifdef ADVANSYS_STATS
/*
* asc_prt_board_stats()
*/
static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
struct asc_stats *s = &boardp->asc_stats;
seq_printf(m,
"\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
shost->host_no);
seq_printf(m,
" queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
s->queuecommand, s->reset, s->biosparam,
s->interrupt);
seq_printf(m,
" callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
s->callback, s->done, s->build_error,
s->adv_build_noreq, s->adv_build_nosg);
seq_printf(m,
" exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
s->exe_noerror, s->exe_busy, s->exe_error,
s->exe_unknown);
/*
* Display data transfer statistics.
*/
if (s->xfer_cnt > 0) {
seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
s->xfer_cnt, s->xfer_elem);
seq_printf(m, "xfer_bytes %u.%01u kb\n",
s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
/* Scatter gather transfer statistics */
seq_printf(m, " avg_num_elem %u.%01u, ",
s->xfer_elem / s->xfer_cnt,
ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
seq_printf(m, "avg_elem_size %u.%01u kb, ",
(s->xfer_sect / 2) / s->xfer_elem,
ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
seq_printf(m, "avg_xfer_size %u.%01u kb\n",
(s->xfer_sect / 2) / s->xfer_cnt,
ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
}
}
#endif /* ADVANSYS_STATS */
/*
* advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
*
* m: seq_file to print into
* shost: Scsi_Host
*
* Return the number of bytes read from or written to a
* /proc/scsi/advansys/[0...] file.
*/
static int
advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
{
struct asc_board *boardp = shost_priv(shost);
ASC_DBG(1, "begin\n");
/*
* User read of /proc/scsi/advansys/[0...] file.
*/
/*
* Get board configuration information.
*
* advansys_info() returns the board string from its own static buffer.
*/
/* Copy board information. */
seq_printf(m, "%s\n", (char *)advansys_info(shost));
/*
* Display Wide Board BIOS Information.
*/
if (!ASC_NARROW_BOARD(boardp))
asc_prt_adv_bios(m, shost);
/*
* Display driver information for each device attached to the board.
*/
asc_prt_board_devices(m, shost);
/*
* Display EEPROM configuration for the board.
*/
if (ASC_NARROW_BOARD(boardp))
asc_prt_asc_board_eeprom(m, shost);
else
asc_prt_adv_board_eeprom(m, shost);
/*
* Display driver configuration and information for the board.
*/
asc_prt_driver_conf(m, shost);
#ifdef ADVANSYS_STATS
/*
* Display driver statistics for the board.
*/
asc_prt_board_stats(m, shost);
#endif /* ADVANSYS_STATS */
/*
* Display Asc Library dynamic configuration information
* for the board.
*/
if (ASC_NARROW_BOARD(boardp))
asc_prt_asc_board_info(m, shost);
else
asc_prt_adv_board_info(m, shost);
return 0;
}
#endif /* CONFIG_PROC_FS */
static void asc_scsi_done(struct scsi_cmnd *scp)
{
scsi_dma_unmap(scp);
ASC_STATS(scp->device->host, done);
scp->scsi_done(scp);
}
static void AscSetBank(PortAddr iop_base, uchar bank)
{
uchar val;
val = AscGetChipControl(iop_base) &
(~
(CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
CC_CHIP_RESET));
if (bank == 1) {
val |= CC_BANK_ONE;
} else if (bank == 2) {
val |= CC_DIAG | CC_BANK_ONE;
} else {
val &= ~CC_BANK_ONE;
}
AscSetChipControl(iop_base, val);
}
static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
{
AscSetBank(iop_base, 1);
AscWriteChipIH(iop_base, ins_code);
AscSetBank(iop_base, 0);
}
static int AscStartChip(PortAddr iop_base)
{
AscSetChipControl(iop_base, 0);
if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
return (0);
}
return (1);
}
static bool AscStopChip(PortAddr iop_base)
{
uchar cc_val;
cc_val =
AscGetChipControl(iop_base) &
(~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
AscSetChipIH(iop_base, INS_HALT);
AscSetChipIH(iop_base, INS_RFLAG_WTM);
if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
return false;
}
return true;
}
static bool AscIsChipHalted(PortAddr iop_base)
{
if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
return true;
}
}
return false;
}
static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
{
PortAddr iop_base;
int i = 10;
iop_base = asc_dvc->iop_base;
while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
&& (i-- > 0)) {
mdelay(100);
}
AscStopChip(iop_base);
AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
udelay(60);
AscSetChipIH(iop_base, INS_RFLAG_WTM);
AscSetChipIH(iop_base, INS_HALT);
AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
AscSetChipControl(iop_base, CC_HALT);
mdelay(200);
AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
AscSetChipStatus(iop_base, 0);
return (AscIsChipHalted(iop_base));
}
static int AscFindSignature(PortAddr iop_base)
{
ushort sig_word;
ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
iop_base, AscGetChipSignatureByte(iop_base));
if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
iop_base, AscGetChipSignatureWord(iop_base));
sig_word = AscGetChipSignatureWord(iop_base);
if ((sig_word == (ushort)ASC_1000_ID0W) ||
(sig_word == (ushort)ASC_1000_ID0W_FIX)) {
return (1);
}
}
return (0);
}
static void AscEnableInterrupt(PortAddr iop_base)
{
ushort cfg;
cfg = AscGetChipCfgLsw(iop_base);
AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
}
static void AscDisableInterrupt(PortAddr iop_base)
{
ushort cfg;
cfg = AscGetChipCfgLsw(iop_base);
AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
}
static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
{
unsigned char byte_data;
unsigned short word_data;
if (isodd_word(addr)) {
AscSetChipLramAddr(iop_base, addr - 1);
word_data = AscGetChipLramData(iop_base);
byte_data = (word_data >> 8) & 0xFF;
} else {
AscSetChipLramAddr(iop_base, addr);
word_data = AscGetChipLramData(iop_base);
byte_data = word_data & 0xFF;
}
return byte_data;
}
static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
{
ushort word_data;
AscSetChipLramAddr(iop_base, addr);
word_data = AscGetChipLramData(iop_base);
return (word_data);
}
static void
AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
{
int i;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < words; i++) {
AscSetChipLramData(iop_base, set_wval);
}
}
static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
{
AscSetChipLramAddr(iop_base, addr);
AscSetChipLramData(iop_base, word_val);
}
static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
{
ushort word_data;
if (isodd_word(addr)) {
addr--;
word_data = AscReadLramWord(iop_base, addr);
word_data &= 0x00FF;
word_data |= (((ushort)byte_val << 8) & 0xFF00);
} else {
word_data = AscReadLramWord(iop_base, addr);
word_data &= 0xFF00;
word_data |= ((ushort)byte_val & 0x00FF);
}
AscWriteLramWord(iop_base, addr, word_data);
}
/*
* Copy 2 bytes to LRAM.
*
* The source data is assumed to be in little-endian order in memory
* and is maintained in little-endian order when written to LRAM.
*/
static void
AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
const uchar *s_buffer, int words)
{
int i;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
/*
* On a little-endian system the second argument below
* produces a little-endian ushort which is written to
* LRAM in little-endian order. On a big-endian system
* the second argument produces a big-endian ushort which
* is "transparently" byte-swapped by outpw() and written
* in little-endian order to LRAM.
*/
outpw(iop_base + IOP_RAM_DATA,
((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
}
}
/*
* Copy 4 bytes to LRAM.
*
* The source data is assumed to be in little-endian order in memory
* and is maintained in little-endian order when written to LRAM.
*/
static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,
ushort s_addr, uchar *s_buffer, int dwords)
{
int i;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 4 * dwords; i += 4) {
outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
}
}
/*
* Copy 2 bytes from LRAM.
*
* The source data is assumed to be in little-endian order in LRAM
* and is maintained in little-endian order when written to memory.
*/
static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,
ushort s_addr, uchar *d_buffer, int words)
{
int i;
ushort word;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
word = inpw(iop_base + IOP_RAM_DATA);
d_buffer[i] = word & 0xff;
d_buffer[i + 1] = (word >> 8) & 0xff;
}
}
static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
{
u32 sum = 0;
int i;
for (i = 0; i < words; i++, s_addr += 2) {
sum += AscReadLramWord(iop_base, s_addr);
}
return (sum);
}
static void AscInitLram(ASC_DVC_VAR *asc_dvc)
{
uchar i;
ushort s_addr;
PortAddr iop_base;
iop_base = asc_dvc->iop_base;
AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
(ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
64) >> 1));
i = ASC_MIN_ACTIVE_QNO;
s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
(uchar)(i + 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
(uchar)(asc_dvc->max_total_qng));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
(uchar)i);
i++;
s_addr += ASC_QBLK_SIZE;
for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
(uchar)(i + 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
(uchar)(i - 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
(uchar)i);
}
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
(uchar)ASC_QLINK_END);
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
(uchar)(asc_dvc->max_total_qng - 1));
AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
(uchar)asc_dvc->max_total_qng);
i++;
s_addr += ASC_QBLK_SIZE;
for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
i++, s_addr += ASC_QBLK_SIZE) {
AscWriteLramByte(iop_base,
(ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
AscWriteLramByte(iop_base,
(ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
AscWriteLramByte(iop_base,
(ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
}
}
static u32
AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
const uchar *mcode_buf, ushort mcode_size)
{
u32 chksum;
ushort mcode_word_size;
ushort mcode_chksum;
/* Write the microcode buffer starting at LRAM address 0. */
mcode_word_size = (ushort)(mcode_size >> 1);
AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
(ushort)ASC_CODE_SEC_BEG,
(ushort)((mcode_size -
s_addr - (ushort)
ASC_CODE_SEC_BEG) /
2));
ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
return chksum;
}
static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
{
PortAddr iop_base;
int i;
ushort lram_addr;
iop_base = asc_dvc->iop_base;
AscPutRiscVarFreeQHead(iop_base, 1);
AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
AscPutVarFreeQHead(iop_base, 1);
AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
(uchar)((int)asc_dvc->max_total_qng + 1));
AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
(uchar)((int)asc_dvc->max_total_qng + 2));
AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
asc_dvc->max_total_qng);
AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
AscPutQDoneInProgress(iop_base, 0);
lram_addr = ASC_QADR_BEG;
for (i = 0; i < 32; i++, lram_addr += 2) {
AscWriteLramWord(iop_base, lram_addr, 0);
}
}
static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
{
int i;
int warn_code;
PortAddr iop_base;
__le32 phy_addr;
__le32 phy_size;
struct asc_board *board = asc_dvc_to_board(asc_dvc);
iop_base = asc_dvc->iop_base;
warn_code = 0;
for (i = 0; i <= ASC_MAX_TID; i++) {
AscPutMCodeInitSDTRAtID(iop_base, i,
asc_dvc->cfg->sdtr_period_offset[i]);
}
AscInitQLinkVar(asc_dvc);
AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
asc_dvc->cfg->disc_enable);
AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
/* Ensure overrun buffer is aligned on an 8 byte boundary. */
BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
warn_code = -ENOMEM;
goto err_dma_map;
}
phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
(uchar *)&phy_addr, 1);
phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
(uchar *)&phy_size, 1);
asc_dvc->cfg->mcode_date =
AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
asc_dvc->cfg->mcode_version =
AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
warn_code = -EINVAL;
goto err_mcode_start;
}
if (AscStartChip(iop_base) != 1) {
asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
warn_code = -EIO;
goto err_mcode_start;
}
return warn_code;
err_mcode_start:
dma_unmap_single(board->dev, asc_dvc->overrun_dma,
ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
err_dma_map:
asc_dvc->overrun_dma = 0;
return warn_code;
}
static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/mcode.bin";
int err;
unsigned long chksum;
int warn_code;
PortAddr iop_base;
iop_base = asc_dvc->iop_base;
warn_code = 0;
if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
!(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
AscResetChipAndScsiBus(asc_dvc);
mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
}
asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
if (asc_dvc->err_code != 0)
return ASC_ERROR;
if (!AscFindSignature(asc_dvc->iop_base)) {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
return warn_code;
}
AscDisableInterrupt(iop_base);
AscInitLram(asc_dvc);
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
fw->size - 4) != chksum) {
asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
release_firmware(fw);
return warn_code;
}
release_firmware(fw);
warn_code |= AscInitMicroCodeVar(asc_dvc);
if (!asc_dvc->overrun_dma)
return warn_code;
asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
AscEnableInterrupt(iop_base);
return warn_code;
}
/*
* Load the Microcode
*
* Write the microcode image to RISC memory starting at address 0.
*
* The microcode is stored compressed in the following format:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*
* Returns 0 or an error if the checksum doesn't match
*/
static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
int size, int memsize, int chksum)
{
int i, j, end, len = 0;
u32 sum;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (i = 253 * 2; i < size; i++) {
if (buf[i] == 0xff) {
unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
for (j = 0; j < buf[i + 1]; j++) {
AdvWriteWordAutoIncLram(iop_base, word);
len += 2;
}
i += 3;
} else if (buf[i] == 0xfe) {
unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
AdvWriteWordAutoIncLram(iop_base, word);
i += 2;
len += 2;
} else {
unsigned int off = buf[i] * 2;
unsigned short word = (buf[off + 1] << 8) | buf[off];
AdvWriteWordAutoIncLram(iop_base, word);
len += 2;
}
}
end = len;
while (len < memsize) {
AdvWriteWordAutoIncLram(iop_base, 0);
len += 2;
}
/* Verify the microcode checksum. */
sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
for (len = 0; len < end; len += 2) {
sum += AdvReadWordAutoIncLram(iop_base);
}
if (sum != chksum)
return ASC_IERR_MCODE_CHKSUM;
return 0;
}
static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
{
off_t carr_offset = 0, next_offset;
dma_addr_t carr_paddr;
int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
for (i = 0; i < carr_num; i++) {
carr_offset = i * sizeof(ADV_CARR_T);
/* Get physical address of the carrier 'carrp'. */
carr_paddr = adv_dvc->carrier_addr + carr_offset;
adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
adv_dvc->carrier[i].areq_vpa = 0;
next_offset = carr_offset + sizeof(ADV_CARR_T);
if (i == carr_num)
next_offset = ~0;
adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
}
/*
* We cannot have a carrier with 'carr_va' of '0', as
* a reference to this carrier would be interpreted as
* list termination.
* So start at carrier 1 with the freelist.
*/
adv_dvc->carr_freelist = &adv_dvc->carrier[1];
}
static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
{
int index;
BUG_ON(offset > ADV_CARRIER_BUFSIZE);
index = offset / sizeof(ADV_CARR_T);
return &adv_dvc->carrier[index];
}
static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
{
ADV_CARR_T *carrp = adv_dvc->carr_freelist;
u32 next_vpa = le32_to_cpu(carrp->next_vpa);
if (next_vpa == 0 || next_vpa == ~0) {
ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
return NULL;
}
adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
/*
* insert stopper carrier to terminate list
*/
carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
return carrp;
}
/*
* 'offset' is the index in the request pointer array
*/
static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
{
struct asc_board *boardp = adv_dvc->drv_ptr;
BUG_ON(offset > adv_dvc->max_host_qng);
return &boardp->adv_reqp[offset];
}
/*
* Send an idle command to the chip and wait for completion.
*
* Command completion is polled for once per microsecond.
*
* The function can be called from anywhere including an interrupt handler.
* But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
* functions to prevent reentrancy.
*
* Return Values:
* ADV_TRUE - command completed successfully
* ADV_FALSE - command failed
* ADV_ERROR - command timed out
*/
static int
AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
ushort idle_cmd, u32 idle_cmd_parameter)
{
int result, i, j;
AdvPortAddr iop_base;
iop_base = asc_dvc->iop_base;
/*
* Clear the idle command status which is set by the microcode
* to a non-zero value to indicate when the command is completed.
* The non-zero result is one of the IDLE_CMD_STATUS_* values
*/
AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
/*
* Write the idle command value after the idle command parameter
* has been written to avoid a race condition. If the order is not
* followed, the microcode may process the idle command before the
* parameters have been written to LRAM.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
cpu_to_le32(idle_cmd_parameter));
AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
/*
* Tickle the RISC to tell it to process the idle command.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
/*
* Clear the tickle value. In the ASC-3550 the RISC flag
* command 'clr_tickle_b' does not work unless the host
* value is cleared.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
}
/* Wait for up to 100 millisecond for the idle command to timeout. */
for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
/* Poll once each microsecond for command completion. */
for (j = 0; j < SCSI_US_PER_MSEC; j++) {
AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
result);
if (result != 0)
return result;
udelay(1);
}
}
BUG(); /* The idle command should never timeout. */
return ADV_ERROR;
}
/*
* Reset SCSI Bus and purge all outstanding requests.
*
* Return Value:
* ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
* ADV_FALSE(0) - Microcode command failed.
* ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
* may be hung which requires driver recovery.
*/
static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
{
int status;
/*
* Send the SCSI Bus Reset idle start idle command which asserts
* the SCSI Bus Reset signal.
*/
status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
if (status != ADV_TRUE) {
return status;
}
/*
* Delay for the specified SCSI Bus Reset hold time.
*
* The hold time delay is done on the host because the RISC has no
* microsecond accurate timer.
*/
udelay(ASC_SCSI_RESET_HOLD_TIME_US);
/*
* Send the SCSI Bus Reset end idle command which de-asserts
* the SCSI Bus Reset signal and purges any pending requests.
*/
status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
if (status != ADV_TRUE) {
return status;
}
mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
return status;
}
/*
* Initialize the ASC-3550.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Needed after initialization for error recovery.
*/
static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/3550.bin";
AdvPortAddr iop_base;
ushort warn_code;
int begin_addr;
int end_addr;
ushort code_sum;
int word;
int i;
int err;
unsigned long chksum;
ushort scsi_cfg1;
uchar tid;
ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
ushort wdtr_able = 0, sdtr_able, tagqng_able;
uchar max_cmd[ADV_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0)
return ADV_ERROR;
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC3550.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
warn_code = 0;
iop_base = asc_dvc->iop_base;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
ushort bios_version, major, minor;
bios_version =
bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
major = (bios_version >> 12) & 0xF;
minor = (bios_version >> 8) & 0xF;
if (major < 3 || (major == 3 && minor == 1)) {
/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
AdvReadWordLram(iop_base, 0x120, wdtr_able);
} else {
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
}
}
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
fw->size - 4, ADV_3550_MEMSIZE,
chksum);
release_firmware(fw);
if (asc_dvc->err_code)
return ADV_ERROR;
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
*/
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += AdvReadWordAutoIncLram(iop_base);
}
AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
/*
* Read and save microcode version and date.
*/
AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
asc_dvc->cfg->mcode_date);
AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
asc_dvc->cfg->mcode_version);
/*
* Set the chip type to indicate the ASC3550.
*/
AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_IGNORE_PERR;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
* threshold of 128 bytes. This register is only accessible to the host.
*/
AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
START_CTL_EMFU | READ_CMD_MRM);
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in slave_configure() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
asc_dvc->wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
asc_dvc->sdtr_able);
}
/*
* Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
* bitmask. These values determine the maximum SDTR speed negotiated
* with a device.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*
* 4-bit speed SDTR speed name
* =========== ===============
* 0000b (0x0) SDTR disabled
* 0001b (0x1) 5 Mhz
* 0010b (0x2) 10 Mhz
* 0011b (0x3) 20 Mhz (Ultra)
* 0100b (0x4) 40 Mhz (LVD/Ultra2)
* 0101b (0x5) 80 Mhz (LVD2/Ultra3)
* 0110b (0x6) Undefined
* .
* 1111b (0xF) Undefined
*/
word = 0;
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
/* Set Ultra speed for TID 'tid'. */
word |= (0x3 << (4 * (tid % 4)));
} else {
/* Set Fast speed for TID 'tid'. */
word |= (0x2 << (4 * (tid % 4)));
}
if (tid == 3) { /* Check if done with sdtr_speed1. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
word = 0;
} else if (tid == 7) { /* Check if done with sdtr_speed2. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
word = 0;
} else if (tid == 11) { /* Check if done with sdtr_speed3. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
word = 0;
} else if (tid == 15) { /* Check if done with sdtr_speed4. */
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
/* End of loop. */
}
}
/*
* Set microcode operating variable for the disconnect per TID bitmask.
*/
AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
asc_dvc->cfg->disc_enable);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
asc_dvc->chip_scsi_id);
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
/*
* If all three connectors are in use, return an error.
*/
if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
(scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
return ADV_ERROR;
}
/*
* If the internal narrow cable is reversed all of the SCSI_CTRL
* register signals will be set. Check for and return an error if
* this condition is found.
*/
if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
return ADV_ERROR;
}
/*
* If this is a differential board and a single-ended device
* is attached to one of the connectors, return an error.
*/
if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
return ADV_ERROR;
}
/*
* If automatic termination control is enabled, then set the
* termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting
* then 'termination' was set-up in AdvInitFrom3550EEPROM() and
* is ready to be 'ored' into SCSI_CFG1.
*/
if (asc_dvc->cfg->termination == 0) {
/*
* The software always controls termination by setting TERM_CTL_SEL.
* If TERM_CTL_SEL were set to 0, the hardware would set termination.
*/
asc_dvc->cfg->termination |= TERM_CTL_SEL;
switch (scsi_cfg1 & CABLE_DETECT) {
/* TERM_CTL_H: on, TERM_CTL_L: on */
case 0x3:
case 0x7:
case 0xB:
case 0xD:
case 0xE:
case 0xF:
asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
break;
/* TERM_CTL_H: on, TERM_CTL_L: off */
case 0x1:
case 0x5:
case 0x9:
case 0xA:
case 0xC:
asc_dvc->cfg->termination |= TERM_CTL_H;
break;
/* TERM_CTL_H: off, TERM_CTL_L: off */
case 0x2:
case 0x6:
break;
}
}
/*
* Clear any set TERM_CTL_H and TERM_CTL_L bits.
*/
scsi_cfg1 &= ~TERM_CTL;
/*
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
* set 'scsi_cfg1'. The TERM_POL bit does not need to be
* referenced, because the hardware internally inverts
* the Termination High and Low bits if TERM_POL is set.
*/
scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set filter value and possibly modified termination control
* bits in the Microcode SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
FLTR_DISABLE | scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-3550 has 8KB internal memory.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
BIOS_EN | RAM_SZ_8KB);
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
AdvBuildCarrierFreelist(asc_dvc);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
if (!asc_dvc->icq_sp) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
/*
* Set RISC ICQ physical address start value.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
if (!asc_dvc->irq_sp) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
/*
* Set RISC IRQ physical address start value.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
asc_dvc->carr_pending_cnt = 0;
AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
(ADV_INTR_ENABLE_HOST_INTR |
ADV_INTR_ENABLE_GLOBAL_INTR));
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
AdvWriteWordRegister(iop_base, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
/*
* If the BIOS Signature is present in memory, restore the
* BIOS Handshake Configuration Table and do not perform
* a SCSI Bus Reset.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdvResetSB(asc_dvc) != ADV_TRUE) {
warn_code = ASC_WARN_BUSRESET_ERROR;
}
}
}
return warn_code;
}
/*
* Initialize the ASC-38C0800.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Needed after initialization for error recovery.
*/
static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/38C0800.bin";
AdvPortAddr iop_base;
ushort warn_code;
int begin_addr;
int end_addr;
ushort code_sum;
int word;
int i;
int err;
unsigned long chksum;
ushort scsi_cfg1;
uchar byte;
uchar tid;
ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
ushort wdtr_able, sdtr_able, tagqng_able;
uchar max_cmd[ADV_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0)
return ADV_ERROR;
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
warn_code = 0;
iop_base = asc_dvc->iop_base;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* RAM BIST (RAM Built-In Self Test)
*
* Address : I/O base + offset 0x38h register (byte).
* Function: Bit 7-6(RW) : RAM mode
* Normal Mode : 0x00
* Pre-test Mode : 0x40
* RAM Test Mode : 0x80
* Bit 5 : unused
* Bit 4(RO) : Done bit
* Bit 3-0(RO) : Status
* Host Error : 0x08
* Int_RAM Error : 0x04
* RISC Error : 0x02
* SCSI Error : 0x01
* No Error : 0x00
*
* Note: RAM BIST code should be put right here, before loading the
* microcode and after saving the RISC memory BIOS region.
*/
/*
* LRAM Pre-test
*
* Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
* If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
* an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
* to NORMAL_MODE, return an error too.
*/
for (i = 0; i < 2; i++) {
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0
|| (byte & 0x0F) != PRE_TEST_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
}
/*
* LRAM Test - It takes about 1.5 ms to run through the test.
*
* Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
* If Done bit not set or Status not 0, save register byte, set the
* err_code, and return an error.
*/
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
mdelay(10); /* Wait for 10ms before checking status. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
/* Get here if Done bit not set or Status not 0. */
asc_dvc->bist_err_code = byte; /* for BIOS display message */
asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
return ADV_ERROR;
}
/* We need to reset back to normal mode after LRAM test passes. */
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
fw->size - 4, ADV_38C0800_MEMSIZE,
chksum);
release_firmware(fw);
if (asc_dvc->err_code)
return ADV_ERROR;
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
*/
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += AdvReadWordAutoIncLram(iop_base);
}
AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
/*
* Read microcode version and date.
*/
AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
asc_dvc->cfg->mcode_date);
AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
asc_dvc->cfg->mcode_version);
/*
* Set the chip type to indicate the ASC38C0800.
*/
AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
/*
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
* cable detection and then we are able to read C_DET[3:0].
*
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
* Microcode Default Value' section below.
*/
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
scsi_cfg1 | DIS_TERM_DRV);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_IGNORE_PERR;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
* bits for the default FIFO threshold.
*
* Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
*
* For DMA Errata #4 set the BC_THRESH_ENB bit.
*/
AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
READ_CMD_MRM);
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in slave_configure() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
asc_dvc->wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
asc_dvc->sdtr_able);
}
/*
* Set microcode operating variables for DISC and SDTR_SPEED1,
* SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
* configuration values.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*/
AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
asc_dvc->cfg->disc_enable);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
asc_dvc->chip_scsi_id);
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
/*
* If the internal narrow cable is reversed all of the SCSI_CTRL
* register signals will be set. Check for and return an error if
* this condition is found.
*/
if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
return ADV_ERROR;
}
/*
* All kind of combinations of devices attached to one of four
* connectors are acceptable except HVD device attached. For example,
* LVD device can be attached to SE connector while SE device attached
* to LVD connector. If LVD device attached to SE connector, it only
* runs up to Ultra speed.
*
* If an HVD device is attached to one of LVD connectors, return an
* error. However, there is no way to detect HVD device attached to
* SE connectors.
*/
if (scsi_cfg1 & HVD) {
asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
return ADV_ERROR;
}
/*
* If either SE or LVD automatic termination control is enabled, then
* set the termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting then
* 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
* to be 'ored' into SCSI_CFG1.
*/
if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
/* SE automatic termination control is enabled. */
switch (scsi_cfg1 & C_DET_SE) {
/* TERM_SE_HI: on, TERM_SE_LO: on */
case 0x1:
case 0x2:
case 0x3:
asc_dvc->cfg->termination |= TERM_SE;
break;
/* TERM_SE_HI: on, TERM_SE_LO: off */
case 0x0:
asc_dvc->cfg->termination |= TERM_SE_HI;
break;
}
}
if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
/* LVD automatic termination control is enabled. */
switch (scsi_cfg1 & C_DET_LVD) {
/* TERM_LVD_HI: on, TERM_LVD_LO: on */
case 0x4:
case 0x8:
case 0xC:
asc_dvc->cfg->termination |= TERM_LVD;
break;
/* TERM_LVD_HI: off, TERM_LVD_LO: off */
case 0x0:
break;
}
}
/*
* Clear any set TERM_SE and TERM_LVD bits.
*/
scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
/*
* Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
*/
scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
/*
* Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
* bits and set possibly modified termination control bits in the
* Microcode SCSI_CFG1 Register Value.
*/
scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set possibly modified termination control and reset DIS_TERM_DRV
* bits in the Microcode SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-38C0800 has 16KB internal memory.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
BIOS_EN | RAM_SZ_16KB);
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
AdvBuildCarrierFreelist(asc_dvc);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
if (!asc_dvc->icq_sp) {
ASC_DBG(0, "Failed to get ICQ carrier\n");
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
/*
* Set RISC ICQ physical address start value.
* carr_pa is LE, must be native before write
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
if (!asc_dvc->irq_sp) {
ASC_DBG(0, "Failed to get IRQ carrier\n");
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
/*
* Set RISC IRQ physical address start value.
*
* carr_pa is LE, must be native before write *
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
asc_dvc->carr_pending_cnt = 0;
AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
(ADV_INTR_ENABLE_HOST_INTR |
ADV_INTR_ENABLE_GLOBAL_INTR));
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
AdvWriteWordRegister(iop_base, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
/*
* If the BIOS Signature is present in memory, restore the
* BIOS Handshake Configuration Table and do not perform
* a SCSI Bus Reset.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdvResetSB(asc_dvc) != ADV_TRUE) {
warn_code = ASC_WARN_BUSRESET_ERROR;
}
}
}
return warn_code;
}
/*
* Initialize the ASC-38C1600.
*
* On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Needed after initialization for error recovery.
*/
static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
{
const struct firmware *fw;
const char fwname[] = "advansys/38C1600.bin";
AdvPortAddr iop_base;
ushort warn_code;
int begin_addr;
int end_addr;
ushort code_sum;
long word;
int i;
int err;
unsigned long chksum;
ushort scsi_cfg1;
uchar byte;
uchar tid;
ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
uchar max_cmd[ASC_MAX_TID + 1];
/* If there is already an error, don't continue. */
if (asc_dvc->err_code != 0) {
return ADV_ERROR;
}
/*
* The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
warn_code = 0;
iop_base = asc_dvc->iop_base;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ASC_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* RAM BIST (Built-In Self Test)
*
* Address : I/O base + offset 0x38h register (byte).
* Function: Bit 7-6(RW) : RAM mode
* Normal Mode : 0x00
* Pre-test Mode : 0x40
* RAM Test Mode : 0x80
* Bit 5 : unused
* Bit 4(RO) : Done bit
* Bit 3-0(RO) : Status
* Host Error : 0x08
* Int_RAM Error : 0x04
* RISC Error : 0x02
* SCSI Error : 0x01
* No Error : 0x00
*
* Note: RAM BIST code should be put right here, before loading the
* microcode and after saving the RISC memory BIOS region.
*/
/*
* LRAM Pre-test
*
* Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
* If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
* an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
* to NORMAL_MODE, return an error too.
*/
for (i = 0; i < 2; i++) {
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0
|| (byte & 0x0F) != PRE_TEST_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
mdelay(10); /* Wait for 10ms before reading back. */
if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
return ADV_ERROR;
}
}
/*
* LRAM Test - It takes about 1.5 ms to run through the test.
*
* Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
* If Done bit not set or Status not 0, save register byte, set the
* err_code, and return an error.
*/
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
mdelay(10); /* Wait for 10ms before checking status. */
byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
/* Get here if Done bit not set or Status not 0. */
asc_dvc->bist_err_code = byte; /* for BIOS display message */
asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
return ADV_ERROR;
}
/* We need to reset back to normal mode after LRAM test passes. */
AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
if (err) {
printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
fwname, err);
asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
return err;
}
if (fw->size < 4) {
printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
fw->size, fwname);
release_firmware(fw);
asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
return -EINVAL;
}
chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
(fw->data[1] << 8) | fw->data[0];
asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
fw->size - 4, ADV_38C1600_MEMSIZE,
chksum);
release_firmware(fw);
if (asc_dvc->err_code)
return ADV_ERROR;
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
*/
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += AdvReadWordAutoIncLram(iop_base);
}
AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
/*
* Read microcode version and date.
*/
AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
asc_dvc->cfg->mcode_date);
AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
asc_dvc->cfg->mcode_version);
/*
* Set the chip type to indicate the ASC38C1600.
*/
AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
/*
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
* cable detection and then we are able to read C_DET[3:0].
*
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
* Microcode Default Value' section below.
*/
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
scsi_cfg1 | DIS_TERM_DRV);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_IGNORE_PERR;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* If the BIOS control flag AIPP (Asynchronous Information
* Phase Protection) disable bit is not set, then set the firmware
* 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
* AIPP checking and encoding.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
word |= CONTROL_FLAG_ENABLE_AIPP;
AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
}
/*
* For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
* and START_CTL_TH [3:2].
*/
AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in slave_configure() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
asc_dvc->wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
asc_dvc->sdtr_able);
}
/*
* Set microcode operating variables for DISC and SDTR_SPEED1,
* SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
* configuration values.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*/
AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
asc_dvc->cfg->disc_enable);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
asc_dvc->chip_scsi_id);
/*
* Calculate SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*
* Each ASC-38C1600 function has only two cable detect bits.
* The bus mode override bits are in IOPB_SOFT_OVER_WR.
*/
scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
/*
* If the cable is reversed all of the SCSI_CTRL register signals
* will be set. Check for and return an error if this condition is
* found.
*/
if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
return ADV_ERROR;
}
/*
* Each ASC-38C1600 function has two connectors. Only an HVD device
* can not be connected to either connector. An LVD device or SE device
* may be connected to either connecor. If an SE device is connected,
* then at most Ultra speed (20 Mhz) can be used on both connectors.
*
* If an HVD device is attached, return an error.
*/
if (scsi_cfg1 & HVD) {
asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
return ADV_ERROR;
}
/*
* Each function in the ASC-38C1600 uses only the SE cable detect and
* termination because there are two connectors for each function. Each
* function may use either LVD or SE mode. Corresponding the SE automatic
* termination control EEPROM bits are used for each function. Each
* function has its own EEPROM. If SE automatic control is enabled for
* the function, then set the termination value based on a table listed
* in a_condor.h.
*
* If manual termination is specified in the EEPROM for the function,
* then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
* ready to be 'ored' into SCSI_CFG1.
*/
if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
/* SE automatic termination control is enabled. */
switch (scsi_cfg1 & C_DET_SE) {
/* TERM_SE_HI: on, TERM_SE_LO: on */
case 0x1:
case 0x2:
case 0x3:
asc_dvc->cfg->termination |= TERM_SE;
break;
case 0x0:
if (PCI_FUNC(pdev->devfn) == 0) {
/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
} else {
/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
asc_dvc->cfg->termination |= TERM_SE_HI;
}
break;
}
}
/*
* Clear any set TERM_SE bits.
*/
scsi_cfg1 &= ~TERM_SE;
/*
* Invert the TERM_SE bits and then set 'scsi_cfg1'.
*/
scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
/*
* Clear Big Endian and Terminator Polarity bits and set possibly
* modified termination control bits in the Microcode SCSI_CFG1
* Register Value.
*
* Big Endian bit is not used even on big endian machines.
*/
scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set possibly modified termination control bits in the Microcode
* SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-38C1600 has 32KB internal memory.
*
* XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
* out a special 16K Adv Library and Microcode version. After the issue
* resolved, we should turn back to the 32K support. Both a_condor.h and
* mcode.sas files also need to be updated.
*
* AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
* BIOS_EN | RAM_SZ_32KB);
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
BIOS_EN | RAM_SZ_16KB);
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
AdvBuildCarrierFreelist(asc_dvc);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
if (!asc_dvc->icq_sp) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
/*
* Set RISC ICQ physical address start value. Initialize the
* COMMA register to the same value otherwise the RISC will
* prematurely detect a command is available.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
le32_to_cpu(asc_dvc->icq_sp->carr_pa));
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
if (!asc_dvc->irq_sp) {
asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
return ADV_ERROR;
}
/*
* Set RISC IRQ physical address start value.
*/
AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
asc_dvc->carr_pending_cnt = 0;
AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
(ADV_INTR_ENABLE_HOST_INTR |
ADV_INTR_ENABLE_GLOBAL_INTR));
AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
AdvWriteWordRegister(iop_base, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
/*
* If the BIOS Signature is present in memory, restore the
* per TID microcode operating variables.
*/
if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ASC_MAX_TID; tid++) {
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdvResetSB(asc_dvc) != ADV_TRUE) {
warn_code = ASC_WARN_BUSRESET_ERROR;
}
}
}
return warn_code;
}
/*
* Reset chip and SCSI Bus.
*
* Return Value:
* ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
* ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
*/
static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
{
int status;
ushort wdtr_able, sdtr_able, tagqng_able;
ushort ppr_able = 0;
uchar tid, max_cmd[ADV_MAX_TID + 1];
AdvPortAddr iop_base;
ushort bios_sig;
iop_base = asc_dvc->iop_base;
/*
* Save current per TID negotiated values.
*/
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
}
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* Force the AdvInitAsc3550/38C0800Driver() function to
* perform a SCSI Bus Reset by clearing the BIOS signature word.
* The initialization functions assumes a SCSI Bus Reset is not
* needed if the BIOS signature word is present.
*/
AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
/*
* Stop chip and reset it.
*/
AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
mdelay(100);
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
ADV_CTRL_REG_CMD_WR_IO_REG);
/*
* Reset Adv Library error code, if any, and try
* re-initializing the chip.
*/
asc_dvc->err_code = 0;
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
status = AdvInitAsc38C1600Driver(asc_dvc);
} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
status = AdvInitAsc38C0800Driver(asc_dvc);
} else {
status = AdvInitAsc3550Driver(asc_dvc);
}
/* Translate initialization return value to status value. */
if (status == 0) {
status = ADV_TRUE;
} else {
status = ADV_FALSE;
}
/*
* Restore the BIOS signature word.
*/
AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
/*
* Restore per TID negotiated values.
*/
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
}
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
return status;
}
/*
* adv_async_callback() - Adv Library asynchronous event callback function.
*/
static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
{
switch (code) {
case ADV_ASYNC_SCSI_BUS_RESET_DET:
/*
* The firmware detected a SCSI Bus reset.
*/
ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
break;
case ADV_ASYNC_RDMA_FAILURE:
/*
* Handle RDMA failure by resetting the SCSI Bus and
* possibly the chip if it is unresponsive. Log the error
* with a unique code.
*/
ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
AdvResetChipAndSB(adv_dvc_varp);
break;
case ADV_HOST_SCSI_BUS_RESET:
/*
* Host generated SCSI bus reset occurred.
*/
ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
break;
default:
ASC_DBG(0, "unknown code 0x%x\n", code);
break;
}
}
/*
* adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
*
* Callback function for the Wide SCSI Adv Library.
*/
static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
{
struct asc_board *boardp = adv_dvc_varp->drv_ptr;
u32 srb_tag;
adv_req_t *reqp;
adv_sgblk_t *sgblkp;
struct scsi_cmnd *scp;
u32 resid_cnt;
dma_addr_t sense_addr;
ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
adv_dvc_varp, scsiqp);
ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
/*
* Get the adv_req_t structure for the command that has been
* completed. The adv_req_t structure actually contains the
* completed ADV_SCSI_REQ_Q structure.
*/
srb_tag = le32_to_cpu(scsiqp->srb_tag);
scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
ASC_DBG(1, "scp 0x%p\n", scp);
if (scp == NULL) {
ASC_PRINT
("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
return;
}
ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
reqp = (adv_req_t *)scp->host_scribble;
ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
if (reqp == NULL) {
ASC_PRINT("adv_isr_callback: reqp is NULL\n");
return;
}
/*
* Remove backreferences to avoid duplicate
* command completions.
*/
scp->host_scribble = NULL;
reqp->cmndp = NULL;
ASC_STATS(boardp->shost, callback);
ASC_DBG(1, "shost 0x%p\n", boardp->shost);
sense_addr = le32_to_cpu(scsiqp->sense_addr);
dma_unmap_single(boardp->dev, sense_addr,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
/*
* 'done_status' contains the command's ending status.
*/
switch (scsiqp->done_status) {
case QD_NO_ERROR:
ASC_DBG(2, "QD_NO_ERROR\n");
scp->result = 0;
/*
* Check for an underrun condition.
*
* If there was no error and an underrun condition, then
* then return the number of underrun bytes.
*/
resid_cnt = le32_to_cpu(scsiqp->data_cnt);
if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
resid_cnt <= scsi_bufflen(scp)) {
ASC_DBG(1, "underrun condition %lu bytes\n",
(ulong)resid_cnt);
scsi_set_resid(scp, resid_cnt);
}
break;
case QD_WITH_ERROR:
ASC_DBG(2, "QD_WITH_ERROR\n");
switch (scsiqp->host_status) {
case QHSTA_NO_ERROR:
if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE);
/*
* Note: The 'status_byte()' macro used by
* target drivers defined in scsi.h shifts the
* status byte returned by host drivers right
* by 1 bit. This is why target drivers also
* use right shifted status byte definitions.
* For instance target drivers use
* CHECK_CONDITION, defined to 0x1, instead of
* the SCSI defined check condition value of
* 0x2. Host drivers are supposed to return
* the status byte as it is defined by SCSI.
*/
scp->result = DRIVER_BYTE(DRIVER_SENSE) |
STATUS_BYTE(scsiqp->scsi_status);
} else {
scp->result = STATUS_BYTE(scsiqp->scsi_status);
}
break;
default:
/* Some other QHSTA error occurred. */
ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
scp->result = HOST_BYTE(DID_BAD_TARGET);
break;
}
break;
case QD_ABORTED_BY_HOST:
ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
scp->result =
HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
break;
default:
ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
scp->result =
HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
break;
}
/*
* If the 'init_tidmask' bit isn't already set for the target and the
* current request finished normally, then set the bit for the target
* to indicate that a device is present.
*/
if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
scsiqp->done_status == QD_NO_ERROR &&
scsiqp->host_status == QHSTA_NO_ERROR) {
boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
}
asc_scsi_done(scp);
/*
* Free all 'adv_sgblk_t' structures allocated for the request.
*/
while ((sgblkp = reqp->sgblkp) != NULL) {
/* Remove 'sgblkp' from the request list. */
reqp->sgblkp = sgblkp->next_sgblkp;
dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
sgblkp->sg_addr);
}
ASC_DBG(1, "done\n");
}
/*
* Adv Library Interrupt Service Routine
*
* This function is called by a driver's interrupt service routine.
* The function disables and re-enables interrupts.
*
* When a microcode idle command is completed, the ADV_DVC_VAR
* 'idle_cmd_done' field is set to ADV_TRUE.
*
* Note: AdvISR() can be called when interrupts are disabled or even
* when there is no hardware interrupt condition present. It will
* always check for completed idle commands and microcode requests.
* This is an important feature that shouldn't be changed because it
* allows commands to be completed from polling mode loops.
*
* Return:
* ADV_TRUE(1) - interrupt was pending
* ADV_FALSE(0) - no interrupt was pending
*/
static int AdvISR(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
uchar int_stat;
ushort target_bit;
ADV_CARR_T *free_carrp;
__le32 irq_next_vpa;
ADV_SCSI_REQ_Q *scsiq;
adv_req_t *reqp;
iop_base = asc_dvc->iop_base;
/* Reading the register clears the interrupt. */
int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
ADV_INTR_STATUS_INTRC)) == 0) {
return ADV_FALSE;
}
/*
* Notify the driver of an asynchronous microcode condition by
* calling the adv_async_callback function. The function
* is passed the microcode ASC_MC_INTRB_CODE byte value.
*/
if (int_stat & ADV_INTR_STATUS_INTRB) {
uchar intrb_code;
AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
asc_dvc->carr_pending_cnt != 0) {
AdvWriteByteRegister(iop_base, IOPB_TICKLE,
ADV_TICKLE_A);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
AdvWriteByteRegister(iop_base,
IOPB_TICKLE,
ADV_TICKLE_NOP);
}
}
}
adv_async_callback(asc_dvc, intrb_code);
}
/*
* Check if the IRQ stopper carrier contains a completed request.
*/
while (((irq_next_vpa =
le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
/*
* Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
* The RISC will have set 'areq_vpa' to a virtual address.
*
* The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
* field to the carrier ADV_CARR_T.areq_vpa field. The conversion
* below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
* in AdvExeScsiQueue().
*/
u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
asc_dvc->irq_sp, pa_offset);
reqp = adv_get_reqp(asc_dvc, pa_offset);
scsiq = &reqp->scsi_req_q;
/*
* Request finished with good status and the queue was not
* DMAed to host memory by the firmware. Set all status fields
* to indicate good status.
*/
if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
scsiq->done_status = QD_NO_ERROR;
scsiq->host_status = scsiq->scsi_status = 0;
scsiq->data_cnt = 0L;
}
/*
* Advance the stopper pointer to the next carrier
* ignoring the lower four bits. Free the previous
* stopper carrier.
*/
free_carrp = asc_dvc->irq_sp;
asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
ADV_GET_CARRP(irq_next_vpa));
free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
asc_dvc->carr_freelist = free_carrp;
asc_dvc->carr_pending_cnt--;
target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
/*
* Clear request microcode control flag.
*/
scsiq->cntl = 0;
/*
* Notify the driver of the completed request by passing
* the ADV_SCSI_REQ_Q pointer to its callback function.
*/
adv_isr_callback(asc_dvc, scsiq);
/*
* Note: After the driver callback function is called, 'scsiq'
* can no longer be referenced.
*
* Fall through and continue processing other completed
* requests...
*/
}
return ADV_TRUE;
}
static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
{
if (asc_dvc->err_code == 0) {
asc_dvc->err_code = err_code;
AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
err_code);
}
return err_code;
}
static void AscAckInterrupt(PortAddr iop_base)
{
uchar host_flag;
uchar risc_flag;
ushort loop;
loop = 0;
do {
risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
if (loop++ > 0x7FFF) {
break;
}
} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
host_flag =
AscReadLramByte(iop_base,
ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
(uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
AscSetChipStatus(iop_base, CIW_INT_ACK);
loop = 0;
while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
AscSetChipStatus(iop_base, CIW_INT_ACK);
if (loop++ > 3) {
break;
}
}
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
}
static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
{
const uchar *period_table;
int max_index;
int min_index;
int i;
period_table = asc_dvc->sdtr_period_tbl;
max_index = (int)asc_dvc->max_sdtr_index;
min_index = (int)asc_dvc->min_sdtr_index;
if ((syn_time <= period_table[max_index])) {
for (i = min_index; i < (max_index - 1); i++) {
if (syn_time <= period_table[i]) {
return (uchar)i;
}
}
return (uchar)max_index;
} else {
return (uchar)(max_index + 1);
}
}
static uchar
AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
{
PortAddr iop_base = asc_dvc->iop_base;
uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
EXT_MSG sdtr_buf = {
.msg_type = EXTENDED_MESSAGE,
.msg_len = MS_SDTR_LEN,
.msg_req = EXTENDED_SDTR,
.xfer_period = sdtr_period,
.req_ack_offset = sdtr_offset,
};
sdtr_offset &= ASC_SYN_MAX_OFFSET;
if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
(uchar *)&sdtr_buf,
sizeof(EXT_MSG) >> 1);
return ((sdtr_period_index << 4) | sdtr_offset);
} else {
sdtr_buf.req_ack_offset = 0;
AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
(uchar *)&sdtr_buf,
sizeof(EXT_MSG) >> 1);
return 0;
}
}
static uchar
AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
{
uchar byte;
uchar sdtr_period_ix;
sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
if (sdtr_period_ix > asc_dvc->max_sdtr_index)
return 0xFF;
byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
return byte;
}
static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
{
ASC_SCSI_BIT_ID_TYPE org_id;
int i;
bool sta = true;
AscSetBank(iop_base, 1);
org_id = AscReadChipDvcID(iop_base);
for (i = 0; i <= ASC_MAX_TID; i++) {
if (org_id == (0x01 << i))
break;
}
org_id = (ASC_SCSI_BIT_ID_TYPE) i;
AscWriteChipDvcID(iop_base, id);
if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
AscSetBank(iop_base, 0);
AscSetChipSyn(iop_base, sdtr_data);
if (AscGetChipSyn(iop_base) != sdtr_data) {
sta = false;
}
} else {
sta = false;
}
AscSetBank(iop_base, 1);
AscWriteChipDvcID(iop_base, org_id);
AscSetBank(iop_base, 0);
return (sta);
}
static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
{
AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
}
static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
{
EXT_MSG ext_msg;
EXT_MSG out_msg;
ushort halt_q_addr;
bool sdtr_accept;
ushort int_halt_code;
ASC_SCSI_BIT_ID_TYPE scsi_busy;
ASC_SCSI_BIT_ID_TYPE target_id;
PortAddr iop_base;
uchar tag_code;
uchar q_status;
uchar halt_qp;
uchar sdtr_data;
uchar target_ix;
uchar q_cntl, tid_no;
uchar cur_dvc_qng;
uchar asyn_sdtr;
uchar scsi_status;
struct asc_board *boardp;
BUG_ON(!asc_dvc->drv_ptr);
boardp = asc_dvc->drv_ptr;
iop_base = asc_dvc->iop_base;
int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
target_ix = AscReadLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_TARGET_IX));
q_cntl = AscReadLramByte(iop_base,
(ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
tid_no = ASC_TIX_TO_TID(target_ix);
target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
if (asc_dvc->pci_fix_asyn_xfer & target_id) {
asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
} else {
asyn_sdtr = 0;
}
if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
if (asc_dvc->pci_fix_asyn_xfer & target_id) {
AscSetChipSDTR(iop_base, 0, tid_no);
boardp->sdtr_data[tid_no] = 0;
}
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
if (asc_dvc->pci_fix_asyn_xfer & target_id) {
AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
boardp->sdtr_data[tid_no] = asyn_sdtr;
}
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
AscMemWordCopyPtrFromLram(iop_base,
ASCV_MSGIN_BEG,
(uchar *)&ext_msg,
sizeof(EXT_MSG) >> 1);
if (ext_msg.msg_type == EXTENDED_MESSAGE &&
ext_msg.msg_req == EXTENDED_SDTR &&
ext_msg.msg_len == MS_SDTR_LEN) {
sdtr_accept = true;
if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
sdtr_accept = false;
ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
}
if ((ext_msg.xfer_period <
asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
|| (ext_msg.xfer_period >
asc_dvc->sdtr_period_tbl[asc_dvc->
max_sdtr_index])) {
sdtr_accept = false;
ext_msg.xfer_period =
asc_dvc->sdtr_period_tbl[asc_dvc->
min_sdtr_index];
}
if (sdtr_accept) {
sdtr_data =
AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
ext_msg.req_ack_offset);
if ((sdtr_data == 0xFF)) {
q_cntl |= QC_MSG_OUT;
asc_dvc->init_sdtr &= ~target_id;
asc_dvc->sdtr_done &= ~target_id;
AscSetChipSDTR(iop_base, asyn_sdtr,
tid_no);
boardp->sdtr_data[tid_no] = asyn_sdtr;
}
}
if (ext_msg.req_ack_offset == 0) {
q_cntl &= ~QC_MSG_OUT;
asc_dvc->init_sdtr &= ~target_id;
asc_dvc->sdtr_done &= ~target_id;
AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
} else {
if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
q_cntl &= ~QC_MSG_OUT;
asc_dvc->sdtr_done |= target_id;
asc_dvc->init_sdtr |= target_id;
asc_dvc->pci_fix_asyn_xfer &=
~target_id;
sdtr_data =
AscCalSDTRData(asc_dvc,
ext_msg.xfer_period,
ext_msg.
req_ack_offset);
AscSetChipSDTR(iop_base, sdtr_data,
tid_no);
boardp->sdtr_data[tid_no] = sdtr_data;
} else {
q_cntl |= QC_MSG_OUT;
AscMsgOutSDTR(asc_dvc,
ext_msg.xfer_period,
ext_msg.req_ack_offset);
asc_dvc->pci_fix_asyn_xfer &=
~target_id;
sdtr_data =
AscCalSDTRData(asc_dvc,
ext_msg.xfer_period,
ext_msg.
req_ack_offset);
AscSetChipSDTR(iop_base, sdtr_data,
tid_no);
boardp->sdtr_data[tid_no] = sdtr_data;
asc_dvc->sdtr_done |= target_id;
asc_dvc->init_sdtr |= target_id;
}
}
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL),
q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
ext_msg.msg_req == EXTENDED_WDTR &&
ext_msg.msg_len == MS_WDTR_LEN) {
ext_msg.wdtr_width = 0;
AscMemWordCopyPtrToLram(iop_base,
ASCV_MSGOUT_BEG,
(uchar *)&ext_msg,
sizeof(EXT_MSG) >> 1);
q_cntl |= QC_MSG_OUT;
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL),
q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
} else {
ext_msg.msg_type = MESSAGE_REJECT;
AscMemWordCopyPtrToLram(iop_base,
ASCV_MSGOUT_BEG,
(uchar *)&ext_msg,
sizeof(EXT_MSG) >> 1);
q_cntl |= QC_MSG_OUT;
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL),
q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
}
} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
q_cntl |= QC_REQ_SENSE;
if ((asc_dvc->init_sdtr & target_id) != 0) {
asc_dvc->sdtr_done &= ~target_id;
sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
q_cntl |= QC_MSG_OUT;
AscMsgOutSDTR(asc_dvc,
asc_dvc->
sdtr_period_tbl[(sdtr_data >> 4) &
(uchar)(asc_dvc->
max_sdtr_index -
1)],
(uchar)(sdtr_data & (uchar)
ASC_SYN_MAX_OFFSET));
}
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL), q_cntl);
tag_code = AscReadLramByte(iop_base,
(ushort)(halt_q_addr + (ushort)
ASC_SCSIQ_B_TAG_CODE));
tag_code &= 0xDC;
if ((asc_dvc->pci_fix_asyn_xfer & target_id)
&& !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
) {
tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
| ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
}
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_TAG_CODE),
tag_code);
q_status = AscReadLramByte(iop_base,
(ushort)(halt_q_addr + (ushort)
ASC_SCSIQ_B_STATUS));
q_status |= (QS_READY | QS_BUSY);
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_STATUS),
q_status);
scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
scsi_busy &= ~target_id;
AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
AscMemWordCopyPtrFromLram(iop_base,
ASCV_MSGOUT_BEG,
(uchar *)&out_msg,
sizeof(EXT_MSG) >> 1);
if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
(out_msg.msg_len == MS_SDTR_LEN) &&
(out_msg.msg_req == EXTENDED_SDTR)) {
asc_dvc->init_sdtr &= ~target_id;
asc_dvc->sdtr_done &= ~target_id;
AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
boardp->sdtr_data[tid_no] = asyn_sdtr;
}
q_cntl &= ~QC_MSG_OUT;
AscWriteLramByte(iop_base,
(ushort)(halt_q_addr +
(ushort)ASC_SCSIQ_B_CNTL), q_cntl);
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
scsi_status = AscReadLramByte(iop_base,
(ushort)((ushort)halt_q_addr +
(ushort)
ASC_SCSIQ_SCSI_STATUS));
cur_dvc_qng =
AscReadLramByte(iop_base,
(ushort)((ushort)ASC_QADR_BEG +
(ushort)target_ix));
if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
scsi_busy = AscReadLramByte(iop_base,
(ushort)ASCV_SCSIBUSY_B);
scsi_busy |= target_id;
AscWriteLramByte(iop_base,
(ushort)ASCV_SCSIBUSY_B, scsi_busy);
asc_dvc->queue_full_or_busy |= target_id;
if (scsi_status == SAM_STAT_TASK_SET_FULL) {
if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
cur_dvc_qng -= 1;
asc_dvc->max_dvc_qng[tid_no] =
cur_dvc_qng;
AscWriteLramByte(iop_base,
(ushort)((ushort)
ASCV_MAX_DVC_QNG_BEG
+ (ushort)
tid_no),
cur_dvc_qng);
/*
* Set the device queue depth to the
* number of active requests when the
* QUEUE FULL condition was encountered.
*/
boardp->queue_full |= target_id;
boardp->queue_full_cnt[tid_no] =
cur_dvc_qng;
}
}
}
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
return;
}
return;
}
/*
* void
* DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
*
* Calling/Exit State:
* none
*
* Description:
* Input an ASC_QDONE_INFO structure from the chip
*/
static void
DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
{
int i;
ushort word;
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
if (i == 10) {
continue;
}
word = inpw(iop_base + IOP_RAM_DATA);
inbuf[i] = word & 0xff;
inbuf[i + 1] = (word >> 8) & 0xff;
}
ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
}
static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,
ushort q_addr,
ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
{
ushort _val;
uchar sg_queue_cnt;
DvcGetQinfo(iop_base,
q_addr + ASC_SCSIQ_DONE_INFO_BEG,
(uchar *)scsiq,
(sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
_val = AscReadLramWord(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
scsiq->q_status = (uchar)_val;
scsiq->q_no = (uchar)(_val >> 8);
_val = AscReadLramWord(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
scsiq->cntl = (uchar)_val;
sg_queue_cnt = (uchar)(_val >> 8);
_val = AscReadLramWord(iop_base,
(ushort)(q_addr +
(ushort)ASC_SCSIQ_B_SENSE_LEN));
scsiq->sense_len = (uchar)_val;
scsiq->extra_bytes = (uchar)(_val >> 8);
/*
* Read high word of remain bytes from alternate location.
*/
scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
(ushort)(q_addr +
(ushort)
ASC_SCSIQ_W_ALT_DC1)))
<< 16);
/*
* Read low word of remain bytes from original location.
*/
scsiq->remain_bytes += AscReadLramWord(iop_base,
(ushort)(q_addr + (ushort)
ASC_SCSIQ_DW_REMAIN_XFER_CNT));
scsiq->remain_bytes &= max_dma_count;
return sg_queue_cnt;
}
/*
* asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
*
* Interrupt callback function for the Narrow SCSI Asc Library.
*/
static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
{
struct asc_board *boardp = asc_dvc_varp->drv_ptr;
u32 srb_tag;
struct scsi_cmnd *scp;
ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
/*
* Decrease the srb_tag by 1 to find the SCSI command
*/
srb_tag = qdonep->d2.srb_tag - 1;
scp = scsi_host_find_tag(boardp->shost, srb_tag);
if (!scp)
return;
ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
ASC_STATS(boardp->shost, callback);
dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
/*
* 'qdonep' contains the command's ending status.
*/
switch (qdonep->d3.done_stat) {
case QD_NO_ERROR:
ASC_DBG(2, "QD_NO_ERROR\n");
scp->result = 0;
/*
* Check for an underrun condition.
*
* If there was no error and an underrun condition, then
* return the number of underrun bytes.
*/
if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
qdonep->remain_bytes <= scsi_bufflen(scp)) {
ASC_DBG(1, "underrun condition %u bytes\n",
(unsigned)qdonep->remain_bytes);
scsi_set_resid(scp, qdonep->remain_bytes);
}
break;
case QD_WITH_ERROR:
ASC_DBG(2, "QD_WITH_ERROR\n");
switch (qdonep->d3.host_stat) {
case QHSTA_NO_ERROR:
if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE);
/*
* Note: The 'status_byte()' macro used by
* target drivers defined in scsi.h shifts the
* status byte returned by host drivers right
* by 1 bit. This is why target drivers also
* use right shifted status byte definitions.
* For instance target drivers use
* CHECK_CONDITION, defined to 0x1, instead of
* the SCSI defined check condition value of
* 0x2. Host drivers are supposed to return
* the status byte as it is defined by SCSI.
*/
scp->result = DRIVER_BYTE(DRIVER_SENSE) |
STATUS_BYTE(qdonep->d3.scsi_stat);
} else {
scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
}
break;
default:
/* QHSTA error occurred */
ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
scp->result = HOST_BYTE(DID_BAD_TARGET);
break;
}
break;
case QD_ABORTED_BY_HOST:
ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
scp->result =
HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
scsi_msg) |
STATUS_BYTE(qdonep->d3.scsi_stat);
break;
default:
ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
scp->result =
HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
scsi_msg) |
STATUS_BYTE(qdonep->d3.scsi_stat);
break;
}
/*
* If the 'init_tidmask' bit isn't already set for the target and the
* current request finished normally, then set the bit for the target
* to indicate that a device is present.
*/
if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
qdonep->d3.done_stat == QD_NO_ERROR &&
qdonep->d3.host_stat == QHSTA_NO_ERROR) {
boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
}
asc_scsi_done(scp);
}
static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
{
uchar next_qp;
uchar n_q_used;
uchar sg_list_qp;
uchar sg_queue_cnt;
uchar q_cnt;
uchar done_q_tail;
uchar tid_no;
ASC_SCSI_BIT_ID_TYPE scsi_busy;
ASC_SCSI_BIT_ID_TYPE target_id;
PortAddr iop_base;
ushort q_addr;
ushort sg_q_addr;
uchar cur_target_qng;
ASC_QDONE_INFO scsiq_buf;
ASC_QDONE_INFO *scsiq;
bool false_overrun;
iop_base = asc_dvc->iop_base;
n_q_used = 1;
scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
q_addr = ASC_QNO_TO_QADDR(done_q_tail);
next_qp = AscReadLramByte(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
if (next_qp != ASC_QLINK_END) {
AscPutVarDoneQTail(iop_base, next_qp);
q_addr = ASC_QNO_TO_QADDR(next_qp);
sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
asc_dvc->max_dma_count);
AscWriteLramByte(iop_base,
(ushort)(q_addr +
(ushort)ASC_SCSIQ_B_STATUS),
(uchar)(scsiq->
q_status & (uchar)~(QS_READY |
QS_ABORTED)));
tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
if ((scsiq->cntl & QC_SG_HEAD) != 0) {
sg_q_addr = q_addr;
sg_list_qp = next_qp;
for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
sg_list_qp = AscReadLramByte(iop_base,
(ushort)(sg_q_addr
+ (ushort)
ASC_SCSIQ_B_FWD));
sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
if (sg_list_qp == ASC_QLINK_END) {
AscSetLibErrorCode(asc_dvc,
ASCQ_ERR_SG_Q_LINKS);
scsiq->d3.done_stat = QD_WITH_ERROR;
scsiq->d3.host_stat =
QHSTA_D_QDONE_SG_LIST_CORRUPTED;
goto FATAL_ERR_QDONE;
}
AscWriteLramByte(iop_base,
(ushort)(sg_q_addr + (ushort)
ASC_SCSIQ_B_STATUS),
QS_FREE);
}
n_q_used = sg_queue_cnt + 1;
AscPutVarDoneQTail(iop_base, sg_list_qp);
}
if (asc_dvc->queue_full_or_busy & target_id) {
cur_target_qng = AscReadLramByte(iop_base,
(ushort)((ushort)
ASC_QADR_BEG
+ (ushort)
scsiq->d2.
target_ix));
if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
scsi_busy = AscReadLramByte(iop_base, (ushort)
ASCV_SCSIBUSY_B);
scsi_busy &= ~target_id;
AscWriteLramByte(iop_base,
(ushort)ASCV_SCSIBUSY_B,
scsi_busy);
asc_dvc->queue_full_or_busy &= ~target_id;
}
}
if (asc_dvc->cur_total_qng >= n_q_used) {
asc_dvc->cur_total_qng -= n_q_used;
if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
asc_dvc->cur_dvc_qng[tid_no]--;
}
} else {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
scsiq->d3.done_stat = QD_WITH_ERROR;
goto FATAL_ERR_QDONE;
}
if ((scsiq->d2.srb_tag == 0UL) ||
((scsiq->q_status & QS_ABORTED) != 0)) {
return (0x11);
} else if (scsiq->q_status == QS_DONE) {
/*
* This is also curious.
* false_overrun will _always_ be set to 'false'
*/
false_overrun = false;
if (scsiq->extra_bytes != 0) {
scsiq->remain_bytes += scsiq->extra_bytes;
}
if (scsiq->d3.done_stat == QD_WITH_ERROR) {
if (scsiq->d3.host_stat ==
QHSTA_M_DATA_OVER_RUN) {
if ((scsiq->
cntl & (QC_DATA_IN | QC_DATA_OUT))
== 0) {
scsiq->d3.done_stat =
QD_NO_ERROR;
scsiq->d3.host_stat =
QHSTA_NO_ERROR;
} else if (false_overrun) {
scsiq->d3.done_stat =
QD_NO_ERROR;
scsiq->d3.host_stat =
QHSTA_NO_ERROR;
}
} else if (scsiq->d3.host_stat ==
QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
AscStopChip(iop_base);
AscSetChipControl(iop_base,
(uchar)(CC_SCSI_RESET
| CC_HALT));
udelay(60);
AscSetChipControl(iop_base, CC_HALT);
AscSetChipStatus(iop_base,
CIW_CLR_SCSI_RESET_INT);
AscSetChipStatus(iop_base, 0);
AscSetChipControl(iop_base, 0);
}
}
if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
asc_isr_callback(asc_dvc, scsiq);
} else {
if ((AscReadLramByte(iop_base,
(ushort)(q_addr + (ushort)
ASC_SCSIQ_CDB_BEG))
== START_STOP)) {
asc_dvc->unit_not_ready &= ~target_id;
if (scsiq->d3.done_stat != QD_NO_ERROR) {
asc_dvc->start_motor &=
~target_id;
}
}
}
return (1);
} else {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
FATAL_ERR_QDONE:
if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
asc_isr_callback(asc_dvc, scsiq);
}
return (0x80);
}
}
return (0);
}
static int AscISR(ASC_DVC_VAR *asc_dvc)
{
ASC_CS_TYPE chipstat;
PortAddr iop_base;
ushort saved_ram_addr;
uchar ctrl_reg;
uchar saved_ctrl_reg;
int int_pending;
int status;
uchar host_flag;
iop_base = asc_dvc->iop_base;
int_pending = ASC_FALSE;
if (AscIsIntPending(iop_base) == 0)
return int_pending;
if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
return ASC_ERROR;
}
if (asc_dvc->in_critical_cnt != 0) {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
return ASC_ERROR;
}
if (asc_dvc->is_in_int) {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
return ASC_ERROR;
}
asc_dvc->is_in_int = true;
ctrl_reg = AscGetChipControl(iop_base);
saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
CC_SINGLE_STEP | CC_DIAG | CC_TEST));
chipstat = AscGetChipStatus(iop_base);
if (chipstat & CSW_SCSI_RESET_LATCH) {
if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
int i = 10;
int_pending = ASC_TRUE;
asc_dvc->sdtr_done = 0;
saved_ctrl_reg &= (uchar)(~CC_HALT);
while ((AscGetChipStatus(iop_base) &
CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
mdelay(100);
}
AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
AscSetChipControl(iop_base, CC_HALT);
AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
AscSetChipStatus(iop_base, 0);
chipstat = AscGetChipStatus(iop_base);
}
}
saved_ram_addr = AscGetChipLramAddr(iop_base);
host_flag = AscReadLramByte(iop_base,
ASCV_HOST_FLAG_B) &
(uchar)(~ASC_HOST_FLAG_IN_ISR);
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
(uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
AscAckInterrupt(iop_base);
int_pending = ASC_TRUE;
if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
AscIsrChipHalted(asc_dvc);
saved_ctrl_reg &= (uchar)(~CC_HALT);
} else {
if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
while (((status =
AscIsrQDone(asc_dvc)) & 0x01) != 0) {
}
} else {
do {
if ((status =
AscIsrQDone(asc_dvc)) == 1) {
break;
}
} while (status == 0x11);
}
if ((status & 0x80) != 0)
int_pending = ASC_ERROR;
}
}
AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
AscSetChipLramAddr(iop_base, saved_ram_addr);
AscSetChipControl(iop_base, saved_ctrl_reg);
asc_dvc->is_in_int = false;
return int_pending;
}
/*
* advansys_reset()
*
* Reset the host associated with the command 'scp'.
*
* This function runs its own thread. Interrupts must be blocked but
* sleeping is allowed and no locking other than for host structures is
* required. Returns SUCCESS or FAILED.
*/
static int advansys_reset(struct scsi_cmnd *scp)
{
struct Scsi_Host *shost = scp->device->host;
struct asc_board *boardp = shost_priv(shost);
unsigned long flags;
int status;
int ret = SUCCESS;
ASC_DBG(1, "0x%p\n", scp);
ASC_STATS(shost, reset);
scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
if (ASC_NARROW_BOARD(boardp)) {
ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
/* Reset the chip and SCSI bus. */
ASC_DBG(1, "before AscInitAsc1000Driver()\n");
status = AscInitAsc1000Driver(asc_dvc);
/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
"0x%x, status: 0x%x\n", asc_dvc->err_code,
status);
ret = FAILED;
} else if (status) {
scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
"0x%x\n", status);
} else {
scmd_printk(KERN_INFO, scp, "SCSI host reset "
"successful\n");
}
ASC_DBG(1, "after AscInitAsc1000Driver()\n");
} else {
/*
* If the suggest reset bus flags are set, then reset the bus.
* Otherwise only reset the device.
*/
ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
/*
* Reset the chip and SCSI bus.
*/
ASC_DBG(1, "before AdvResetChipAndSB()\n");
switch (AdvResetChipAndSB(adv_dvc)) {
case ASC_TRUE:
scmd_printk(KERN_INFO, scp, "SCSI host reset "
"successful\n");
break;
case ASC_FALSE:
default:
scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
ret = FAILED;
break;
}
spin_lock_irqsave(shost->host_lock, flags);
AdvISR(adv_dvc);
spin_unlock_irqrestore(shost->host_lock, flags);
}
ASC_DBG(1, "ret %d\n", ret);
return ret;
}
/*
* advansys_biosparam()
*
* Translate disk drive geometry if the "BIOS greater than 1 GB"
* support is enabled for a drive.
*
* ip (information pointer) is an int array with the following definition:
* ip[0]: heads
* ip[1]: sectors
* ip[2]: cylinders
*/
static int
advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int ip[])
{
struct asc_board *boardp = shost_priv(sdev->host);
ASC_DBG(1, "begin\n");
ASC_STATS(sdev->host, biosparam);
if (ASC_NARROW_BOARD(boardp)) {
if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
ip[0] = 255;
ip[1] = 63;
} else {
ip[0] = 64;
ip[1] = 32;
}
} else {
if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
ip[0] = 255;
ip[1] = 63;
} else {
ip[0] = 64;
ip[1] = 32;
}
}
ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
ASC_DBG(1, "end\n");
return 0;
}
/*
* First-level interrupt handler.
*
* 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
*/
static irqreturn_t advansys_interrupt(int irq, void *dev_id)
{
struct Scsi_Host *shost = dev_id;
struct asc_board *boardp = shost_priv(shost);
irqreturn_t result = IRQ_NONE;
unsigned long flags;
ASC_DBG(2, "boardp 0x%p\n", boardp);
spin_lock_irqsave(shost->host_lock, flags);
if (ASC_NARROW_BOARD(boardp)) {
if (AscIsIntPending(shost->io_port)) {
result = IRQ_HANDLED;
ASC_STATS(shost, interrupt);
ASC_DBG(1, "before AscISR()\n");
AscISR(&boardp->dvc_var.asc_dvc_var);
}
} else {
ASC_DBG(1, "before AdvISR()\n");
if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
result = IRQ_HANDLED;
ASC_STATS(shost, interrupt);
}
}
spin_unlock_irqrestore(shost->host_lock, flags);
ASC_DBG(1, "end\n");
return result;
}
static bool AscHostReqRiscHalt(PortAddr iop_base)
{
int count = 0;
bool sta = false;
uchar saved_stop_code;
if (AscIsChipHalted(iop_base))
return true;
saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
do {
if (AscIsChipHalted(iop_base)) {
sta = true;
break;
}
mdelay(100);
} while (count++ < 20);
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
return sta;
}
static bool
AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
{
bool sta = false;
if (AscHostReqRiscHalt(iop_base)) {
sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
AscStartChip(iop_base);
}
return sta;
}
static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
{
char type = sdev->type;
ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
return;
if (asc_dvc->init_sdtr & tid_bits)
return;
if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
asc_dvc->pci_fix_asyn_xfer |= tid_bits;
if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
(type == TYPE_ROM) || (type == TYPE_TAPE))
asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
ASYN_SDTR_DATA_FIX_PCI_REV_AB);
}
static void
advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
{
ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
if (sdev->lun == 0) {
ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
asc_dvc->init_sdtr |= tid_bit;
} else {
asc_dvc->init_sdtr &= ~tid_bit;
}
if (orig_init_sdtr != asc_dvc->init_sdtr)
AscAsyncFix(asc_dvc, sdev);
}
if (sdev->tagged_supported) {
if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
if (sdev->lun == 0) {
asc_dvc->cfg->can_tagged_qng |= tid_bit;
asc_dvc->use_tagged_qng |= tid_bit;
}
scsi_change_queue_depth(sdev,
asc_dvc->max_dvc_qng[sdev->id]);
}
} else {
if (sdev->lun == 0) {
asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
asc_dvc->use_tagged_qng &= ~tid_bit;
}
}
if ((sdev->lun == 0) &&
(orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
asc_dvc->cfg->disc_enable);
AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
asc_dvc->use_tagged_qng);
AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
asc_dvc->cfg->can_tagged_qng);
asc_dvc->max_dvc_qng[sdev->id] =
asc_dvc->cfg->max_tag_qng[sdev->id];
AscWriteLramByte(asc_dvc->iop_base,
(ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
asc_dvc->max_dvc_qng[sdev->id]);
}
}
/*
* Wide Transfers
*
* If the EEPROM enabled WDTR for the device and the device supports wide
* bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
* write the new value to the microcode.
*/
static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
{
unsigned short cfg_word;
AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
if ((cfg_word & tidmask) != 0)
return;
cfg_word |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
/*
* Clear the microcode SDTR and WDTR negotiation done indicators for
* the target to cause it to negotiate with the new setting set above.
* WDTR when accepted causes the target to enter asynchronous mode, so
* SDTR must be negotiated.
*/
AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
cfg_word &= ~tidmask;
AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
cfg_word &= ~tidmask;
AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
}
/*
* Synchronous Transfers
*
* If the EEPROM enabled SDTR for the device and the device
* supports synchronous transfers, then turn on the device's
* 'sdtr_able' bit. Write the new value to the microcode.
*/
static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
{
unsigned short cfg_word;
AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
if ((cfg_word & tidmask) != 0)
return;
cfg_word |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
/*
* Clear the microcode "SDTR negotiation" done indicator for the
* target to cause it to negotiate with the new setting set above.
*/
AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
cfg_word &= ~tidmask;
AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
}
/*
* PPR (Parallel Protocol Request) Capable
*
* If the device supports DT mode, then it must be PPR capable.
* The PPR message will be used in place of the SDTR and WDTR
* messages to negotiate synchronous speed and offset, transfer
* width, and protocol options.
*/
static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
AdvPortAddr iop_base, unsigned short tidmask)
{
AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
adv_dvc->ppr_able |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
}
static void
advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
{
AdvPortAddr iop_base = adv_dvc->iop_base;
unsigned short tidmask = 1 << sdev->id;
if (sdev->lun == 0) {
/*
* Handle WDTR, SDTR, and Tag Queuing. If the feature
* is enabled in the EEPROM and the device supports the
* feature, then enable it in the microcode.
*/
if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
advansys_wide_enable_wdtr(iop_base, tidmask);
if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
advansys_wide_enable_sdtr(iop_base, tidmask);
if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
/*
* Tag Queuing is disabled for the BIOS which runs in polled
* mode and would see no benefit from Tag Queuing. Also by
* disabling Tag Queuing in the BIOS devices with Tag Queuing
* bugs will at least work with the BIOS.
*/
if ((adv_dvc->tagqng_able & tidmask) &&
sdev->tagged_supported) {
unsigned short cfg_word;
AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
cfg_word |= tidmask;
AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
cfg_word);
AdvWriteByteLram(iop_base,
ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
adv_dvc->max_dvc_qng);
}
}
if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
}
/*
* Set the number of commands to queue per device for the
* specified host adapter.
*/
static int advansys_slave_configure(struct scsi_device *sdev)
{
struct asc_board *boardp = shost_priv(sdev->host);
if (ASC_NARROW_BOARD(boardp))
advansys_narrow_slave_configure(sdev,
&boardp->dvc_var.asc_dvc_var);
else
advansys_wide_slave_configure(sdev,
&boardp->dvc_var.adv_dvc_var);
return 0;
}
static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
{
struct asc_board *board = shost_priv(scp->device->host);
scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
ASC_DBG(1, "failed to map sense buffer\n");
return 0;
}
return cpu_to_le32(scp->SCp.dma_handle);
}
static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
struct asc_scsi_q *asc_scsi_q)
{
struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
int use_sg;
u32 srb_tag;
memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
/*
* Set the srb_tag to the command tag + 1, as
* srb_tag '0' is used internally by the chip.
*/
srb_tag = scp->request->tag + 1;
asc_scsi_q->q2.srb_tag = srb_tag;
/*
* Build the ASC_SCSI_Q request.
*/
asc_scsi_q->cdbptr = &scp->cmnd[0];
asc_scsi_q->q2.cdb_len = scp->cmd_len;
asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
asc_scsi_q->q1.target_lun = scp->device->lun;
asc_scsi_q->q2.target_ix =
ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
if (!asc_scsi_q->q1.sense_addr)
return ASC_BUSY;
/*
* If there are any outstanding requests for the current target,
* then every 255th request send an ORDERED request. This heuristic
* tries to retain the benefit of request sorting while preventing
* request starvation. 255 is the max number of tags or pending commands
* a device may have outstanding.
*
* The request count is incremented below for every successfully
* started request.
*
*/
if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
(boardp->reqcnt[scp->device->id] % 255) == 0) {
asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
} else {
asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
}
/* Build ASC_SCSI_Q */
use_sg = scsi_dma_map(scp);
if (use_sg < 0) {
ASC_DBG(1, "failed to map sglist\n");
return ASC_BUSY;
} else if (use_sg > 0) {
int sgcnt;
struct scatterlist *slp;
struct asc_sg_head *asc_sg_head;
if (use_sg > scp->device->host->sg_tablesize) {
scmd_printk(KERN_ERR, scp, "use_sg %d > "
"sg_tablesize %d\n", use_sg,
scp->device->host->sg_tablesize);
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_ERROR);
return ASC_ERROR;
}
asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
if (!asc_sg_head) {
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_SOFT_ERROR);
return ASC_ERROR;
}
asc_scsi_q->q1.cntl |= QC_SG_HEAD;
asc_scsi_q->sg_head = asc_sg_head;
asc_scsi_q->q1.data_cnt = 0;
asc_scsi_q->q1.data_addr = 0;
/* This is a byte value, otherwise it would need to be swapped. */
asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
ASC_STATS_ADD(scp->device->host, xfer_elem,
asc_sg_head->entry_cnt);
/*
* Convert scatter-gather list into ASC_SG_HEAD list.
*/
scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
asc_sg_head->sg_list[sgcnt].addr =
cpu_to_le32(sg_dma_address(slp));
asc_sg_head->sg_list[sgcnt].bytes =
cpu_to_le32(sg_dma_len(slp));
ASC_STATS_ADD(scp->device->host, xfer_sect,
DIV_ROUND_UP(sg_dma_len(slp), 512));
}
}
ASC_STATS(scp->device->host, xfer_cnt);
ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
return ASC_NOERROR;
}
/*
* Build scatter-gather list for Adv Library (Wide Board).
*
* Additional ADV_SG_BLOCK structures will need to be allocated
* if the total number of scatter-gather elements exceeds
* NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
* assumed to be physically contiguous.
*
* Return:
* ADV_SUCCESS(1) - SG List successfully created
* ADV_ERROR(-1) - SG List creation failed
*/
static int
adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
{
adv_sgblk_t *sgblkp, *prev_sgblkp;
struct scatterlist *slp;
int sg_elem_cnt;
ADV_SG_BLOCK *sg_block, *prev_sg_block;
dma_addr_t sgblk_paddr;
int i;
slp = scsi_sglist(scp);
sg_elem_cnt = use_sg;
prev_sgblkp = NULL;
prev_sg_block = NULL;
reqp->sgblkp = NULL;
for (;;) {
/*
* Allocate a 'adv_sgblk_t' structure from the board free
* list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
* (15) scatter-gather elements.
*/
sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
&sgblk_paddr);
if (!sgblkp) {
ASC_DBG(1, "no free adv_sgblk_t\n");
ASC_STATS(scp->device->host, adv_build_nosg);
/*
* Allocation failed. Free 'adv_sgblk_t' structures
* already allocated for the request.
*/
while ((sgblkp = reqp->sgblkp) != NULL) {
/* Remove 'sgblkp' from the request list. */
reqp->sgblkp = sgblkp->next_sgblkp;
sgblkp->next_sgblkp = NULL;
dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
sgblkp->sg_addr);
}
return ASC_BUSY;
}
/* Complete 'adv_sgblk_t' board allocation. */
sgblkp->sg_addr = sgblk_paddr;
sgblkp->next_sgblkp = NULL;
sg_block = &sgblkp->sg_block;
/*
* Check if this is the first 'adv_sgblk_t' for the
* request.
*/
if (reqp->sgblkp == NULL) {
/* Request's first scatter-gather block. */
reqp->sgblkp = sgblkp;
/*
* Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
* address pointers.
*/
scsiqp->sg_list_ptr = sg_block;
scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
} else {
/* Request's second or later scatter-gather block. */
prev_sgblkp->next_sgblkp = sgblkp;
/*
* Point the previous ADV_SG_BLOCK structure to
* the newly allocated ADV_SG_BLOCK structure.
*/
prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
}
for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
sg_block->sg_list[i].sg_addr =
cpu_to_le32(sg_dma_address(slp));
sg_block->sg_list[i].sg_count =
cpu_to_le32(sg_dma_len(slp));
ASC_STATS_ADD(scp->device->host, xfer_sect,
DIV_ROUND_UP(sg_dma_len(slp), 512));
if (--sg_elem_cnt == 0) {
/*
* Last ADV_SG_BLOCK and scatter-gather entry.
*/
sg_block->sg_cnt = i + 1;
sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
return ADV_SUCCESS;
}
slp++;
}
sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
prev_sg_block = sg_block;
prev_sgblkp = sgblkp;
}
}
/*
* Build a request structure for the Adv Library (Wide Board).
*
* If an adv_req_t can not be allocated to issue the request,
* then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
*
* Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
* microcode for DMA addresses or math operations are byte swapped
* to little-endian order.
*/
static int
adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
adv_req_t **adv_reqpp)
{
u32 srb_tag = scp->request->tag;
adv_req_t *reqp;
ADV_SCSI_REQ_Q *scsiqp;
int ret;
int use_sg;
dma_addr_t sense_addr;
/*
* Allocate an adv_req_t structure from the board to execute
* the command.
*/
reqp = &boardp->adv_reqp[srb_tag];
if (reqp->cmndp && reqp->cmndp != scp ) {
ASC_DBG(1, "no free adv_req_t\n");
ASC_STATS(scp->device->host, adv_build_noreq);
return ASC_BUSY;
}
reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
scsiqp = &reqp->scsi_req_q;
/*
* Initialize the structure.
*/
scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
/*
* Set the srb_tag to the command tag.
*/
scsiqp->srb_tag = srb_tag;
/*
* Set 'host_scribble' to point to the adv_req_t structure.
*/
reqp->cmndp = scp;
scp->host_scribble = (void *)reqp;
/*
* Build the ADV_SCSI_REQ_Q request.
*/
/* Set CDB length and copy it to the request structure. */
scsiqp->cdb_len = scp->cmd_len;
/* Copy first 12 CDB bytes to cdb[]. */
memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
/* Copy last 4 CDB bytes, if present, to cdb16[]. */
if (scp->cmd_len > 12) {
int cdb16_len = scp->cmd_len - 12;
memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
}
scsiqp->target_id = scp->device->id;
scsiqp->target_lun = scp->device->lun;
sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(boardp->dev, sense_addr)) {
ASC_DBG(1, "failed to map sense buffer\n");
ASC_STATS(scp->device->host, adv_build_noreq);
return ASC_BUSY;
}
scsiqp->sense_addr = cpu_to_le32(sense_addr);
scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
/* Build ADV_SCSI_REQ_Q */
use_sg = scsi_dma_map(scp);
if (use_sg < 0) {
ASC_DBG(1, "failed to map SG list\n");
ASC_STATS(scp->device->host, adv_build_noreq);
return ASC_BUSY;
} else if (use_sg == 0) {
/* Zero-length transfer */
reqp->sgblkp = NULL;
scsiqp->data_cnt = 0;
scsiqp->data_addr = 0;
scsiqp->sg_list_ptr = NULL;
scsiqp->sg_real_addr = 0;
} else {
if (use_sg > ADV_MAX_SG_LIST) {
scmd_printk(KERN_ERR, scp, "use_sg %d > "
"ADV_MAX_SG_LIST %d\n", use_sg,
scp->device->host->sg_tablesize);
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_ERROR);
reqp->cmndp = NULL;
scp->host_scribble = NULL;
return ASC_ERROR;
}
scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
if (ret != ADV_SUCCESS) {
scsi_dma_unmap(scp);
scp->result = HOST_BYTE(DID_ERROR);
reqp->cmndp = NULL;
scp->host_scribble = NULL;
return ret;
}
ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
}
ASC_STATS(scp->device->host, xfer_cnt);
ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
*adv_reqpp = reqp;
return ASC_NOERROR;
}
static int AscSgListToQueue(int sg_list)
{
int n_sg_list_qs;
n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
n_sg_list_qs++;
return n_sg_list_qs + 1;
}
static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
{
uint cur_used_qs;
uint cur_free_qs;
ASC_SCSI_BIT_ID_TYPE target_id;
uchar tid_no;
target_id = ASC_TIX_TO_TARGET_ID(target_ix);
tid_no = ASC_TIX_TO_TID(target_ix);
if ((asc_dvc->unit_not_ready & target_id) ||
(asc_dvc->queue_full_or_busy & target_id)) {
return 0;
}
if (n_qs == 1) {
cur_used_qs = (uint) asc_dvc->cur_total_qng +
(uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
} else {
cur_used_qs = (uint) asc_dvc->cur_total_qng +
(uint) ASC_MIN_FREE_Q;
}
if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
if (asc_dvc->cur_dvc_qng[tid_no] >=
asc_dvc->max_dvc_qng[tid_no]) {
return 0;
}
return cur_free_qs;
}
if (n_qs > 1) {
if ((n_qs > asc_dvc->last_q_shortage)
&& (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
asc_dvc->last_q_shortage = n_qs;
}
}
return 0;
}
static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
{
ushort q_addr;
uchar next_qp;
uchar q_status;
q_addr = ASC_QNO_TO_QADDR(free_q_head);
q_status = (uchar)AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_STATUS));
next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
return next_qp;
return ASC_QLINK_END;
}
static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
{
uchar i;
for (i = 0; i < n_free_q; i++) {
free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
if (free_q_head == ASC_QLINK_END)
break;
}
return free_q_head;
}
/*
* void
* DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
*
* Calling/Exit State:
* none
*
* Description:
* Output an ASC_SCSI_Q structure to the chip
*/
static void
DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
{
int i;
ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
AscSetChipLramAddr(iop_base, s_addr);
for (i = 0; i < 2 * words; i += 2) {
if (i == 4 || i == 20) {
continue;
}
outpw(iop_base + IOP_RAM_DATA,
((ushort)outbuf[i + 1] << 8) | outbuf[i]);
}
}
static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
{
ushort q_addr;
uchar tid_no;
uchar sdtr_data;
uchar syn_period_ix;
uchar syn_offset;
PortAddr iop_base;
iop_base = asc_dvc->iop_base;
if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
syn_period_ix =
(sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
AscMsgOutSDTR(asc_dvc,
asc_dvc->sdtr_period_tbl[syn_period_ix],
syn_offset);
scsiq->q1.cntl |= QC_MSG_OUT;
}
q_addr = ASC_QNO_TO_QADDR(q_no);
if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
}
scsiq->q1.status = QS_FREE;
AscMemWordCopyPtrToLram(iop_base,
q_addr + ASC_SCSIQ_CDB_BEG,
(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
DvcPutScsiQ(iop_base,
q_addr + ASC_SCSIQ_CPY_BEG,
(uchar *)&scsiq->q1.cntl,
((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
AscWriteLramWord(iop_base,
(ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
(ushort)(((ushort)scsiq->q1.
q_no << 8) | (ushort)QS_READY));
return 1;
}
static int
AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
{
int sta;
int i;
ASC_SG_HEAD *sg_head;
ASC_SG_LIST_Q scsi_sg_q;
__le32 saved_data_addr;
__le32 saved_data_cnt;
PortAddr iop_base;
ushort sg_list_dwords;
ushort sg_index;
ushort sg_entry_cnt;
ushort q_addr;
uchar next_qp;
iop_base = asc_dvc->iop_base;
sg_head = scsiq->sg_head;
saved_data_addr = scsiq->q1.data_addr;
saved_data_cnt = scsiq->q1.data_cnt;
scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
/*
* Set sg_entry_cnt to be the number of SG elements that
* will fit in the allocated SG queues. It is minus 1, because
* the first SG element is handled above.
*/
sg_entry_cnt = sg_head->entry_cnt - 1;
if (sg_entry_cnt != 0) {
scsiq->q1.cntl |= QC_SG_HEAD;
q_addr = ASC_QNO_TO_QADDR(q_no);
sg_index = 1;
scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
scsi_sg_q.sg_head_qp = q_no;
scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
for (i = 0; i < sg_head->queue_cnt; i++) {
scsi_sg_q.seq_no = i + 1;
if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
sg_entry_cnt -= ASC_SG_LIST_PER_Q;
if (i == 0) {
scsi_sg_q.sg_list_cnt =
ASC_SG_LIST_PER_Q;
scsi_sg_q.sg_cur_list_cnt =
ASC_SG_LIST_PER_Q;
} else {
scsi_sg_q.sg_list_cnt =
ASC_SG_LIST_PER_Q - 1;
scsi_sg_q.sg_cur_list_cnt =
ASC_SG_LIST_PER_Q - 1;
}
} else {
scsi_sg_q.cntl |= QCSG_SG_XFER_END;
sg_list_dwords = sg_entry_cnt << 1;
if (i == 0) {
scsi_sg_q.sg_list_cnt = sg_entry_cnt;
scsi_sg_q.sg_cur_list_cnt =
sg_entry_cnt;
} else {
scsi_sg_q.sg_list_cnt =
sg_entry_cnt - 1;
scsi_sg_q.sg_cur_list_cnt =
sg_entry_cnt - 1;
}
sg_entry_cnt = 0;
}
next_qp = AscReadLramByte(iop_base,
(ushort)(q_addr +
ASC_SCSIQ_B_FWD));
scsi_sg_q.q_no = next_qp;
q_addr = ASC_QNO_TO_QADDR(next_qp);
AscMemWordCopyPtrToLram(iop_base,
q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
(uchar *)&scsi_sg_q,
sizeof(ASC_SG_LIST_Q) >> 1);
AscMemDWordCopyPtrToLram(iop_base,
q_addr + ASC_SGQ_LIST_BEG,
(uchar *)&sg_head->
sg_list[sg_index],
sg_list_dwords);
sg_index += ASC_SG_LIST_PER_Q;
scsiq->next_sg_index = sg_index;
}
} else {
scsiq->q1.cntl &= ~QC_SG_HEAD;
}
sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
scsiq->q1.data_addr = saved_data_addr;
scsiq->q1.data_cnt = saved_data_cnt;
return (sta);
}
static int
AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
{
PortAddr iop_base;
uchar free_q_head;
uchar next_qp;
uchar tid_no;
uchar target_ix;
int sta;
iop_base = asc_dvc->iop_base;
target_ix = scsiq->q2.target_ix;
tid_no = ASC_TIX_TO_TID(target_ix);
sta = 0;
free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
if (n_q_required > 1) {
next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
(uchar)n_q_required);
if (next_qp != ASC_QLINK_END) {
asc_dvc->last_q_shortage = 0;
scsiq->sg_head->queue_cnt = n_q_required - 1;
scsiq->q1.q_no = free_q_head;
sta = AscPutReadySgListQueue(asc_dvc, scsiq,
free_q_head);
}
} else if (n_q_required == 1) {
next_qp = AscAllocFreeQueue(iop_base, free_q_head);
if (next_qp != ASC_QLINK_END) {
scsiq->q1.q_no = free_q_head;
sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
}
}
if (sta == 1) {
AscPutVarFreeQHead(iop_base, next_qp);
asc_dvc->cur_total_qng += n_q_required;
asc_dvc->cur_dvc_qng[tid_no]++;
}
return sta;
}
#define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
INQUIRY,
REQUEST_SENSE,
READ_CAPACITY,
READ_TOC,
MODE_SELECT,
MODE_SENSE,
MODE_SELECT_10,
MODE_SENSE_10,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF
};
static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
{
PortAddr iop_base;
int sta;
int n_q_required;
bool disable_syn_offset_one_fix;
int i;
u32 addr;
ushort sg_entry_cnt = 0;
ushort sg_entry_cnt_minus_one = 0;
uchar target_ix;
uchar tid_no;
uchar sdtr_data;
uchar extra_bytes;
uchar scsi_cmd;
uchar disable_cmd;
ASC_SG_HEAD *sg_head;
unsigned long data_cnt;
iop_base = asc_dvc->iop_base;
sg_head = scsiq->sg_head;
if (asc_dvc->err_code != 0)
return ASC_ERROR;
scsiq->q1.q_no = 0;
if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
scsiq->q1.extra_bytes = 0;
}
sta = 0;
target_ix = scsiq->q2.target_ix;
tid_no = ASC_TIX_TO_TID(target_ix);
n_q_required = 1;
if (scsiq->cdbptr[0] == REQUEST_SENSE) {
if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
AscMsgOutSDTR(asc_dvc,
asc_dvc->
sdtr_period_tbl[(sdtr_data >> 4) &
(uchar)(asc_dvc->
max_sdtr_index -
1)],
(uchar)(sdtr_data & (uchar)
ASC_SYN_MAX_OFFSET));
scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
}
}
if (asc_dvc->in_critical_cnt != 0) {
AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
return ASC_ERROR;
}
asc_dvc->in_critical_cnt++;
if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
asc_dvc->in_critical_cnt--;
return ASC_ERROR;
}
if (sg_entry_cnt > ASC_MAX_SG_LIST) {
asc_dvc->in_critical_cnt--;
return ASC_ERROR;
}
if (sg_entry_cnt == 1) {
scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
}
sg_entry_cnt_minus_one = sg_entry_cnt - 1;
}
scsi_cmd = scsiq->cdbptr[0];
disable_syn_offset_one_fix = false;
if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
!(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
if (scsiq->q1.cntl & QC_SG_HEAD) {
data_cnt = 0;
for (i = 0; i < sg_entry_cnt; i++) {
data_cnt += le32_to_cpu(sg_head->sg_list[i].
bytes);
}
} else {
data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
}
if (data_cnt != 0UL) {
if (data_cnt < 512UL) {
disable_syn_offset_one_fix = true;
} else {
for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
i++) {
disable_cmd =
_syn_offset_one_disable_cmd[i];
if (disable_cmd == 0xFF) {
break;
}
if (scsi_cmd == disable_cmd) {
disable_syn_offset_one_fix =
true;
break;
}
}
}
}
}
if (disable_syn_offset_one_fix) {
scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
ASC_TAG_FLAG_DISABLE_DISCONNECT);
} else {
scsiq->q2.tag_code &= 0x27;
}
if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
if (asc_dvc->bug_fix_cntl) {
if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
if ((scsi_cmd == READ_6) ||
(scsi_cmd == READ_10)) {
addr = le32_to_cpu(sg_head->
sg_list
[sg_entry_cnt_minus_one].
addr) +
le32_to_cpu(sg_head->
sg_list
[sg_entry_cnt_minus_one].
bytes);
extra_bytes =
(uchar)((ushort)addr & 0x0003);
if ((extra_bytes != 0)
&&
((scsiq->q2.
tag_code &
ASC_TAG_FLAG_EXTRA_BYTES)
== 0)) {
scsiq->q2.tag_code |=
ASC_TAG_FLAG_EXTRA_BYTES;
scsiq->q1.extra_bytes =
extra_bytes;
data_cnt =
le32_to_cpu(sg_head->
sg_list
[sg_entry_cnt_minus_one].
bytes);
data_cnt -= extra_bytes;
sg_head->
sg_list
[sg_entry_cnt_minus_one].
bytes =
cpu_to_le32(data_cnt);
}
}
}
}
sg_head->entry_to_copy = sg_head->entry_cnt;
n_q_required = AscSgListToQueue(sg_entry_cnt);
if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
(uint) n_q_required)
|| ((scsiq->q1.cntl & QC_URGENT) != 0)) {
if ((sta =
AscSendScsiQueue(asc_dvc, scsiq,
n_q_required)) == 1) {
asc_dvc->in_critical_cnt--;
return (sta);
}
}
} else {
if (asc_dvc->bug_fix_cntl) {
if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
if ((scsi_cmd == READ_6) ||
(scsi_cmd == READ_10)) {
addr =
le32_to_cpu(scsiq->q1.data_addr) +
le32_to_cpu(scsiq->q1.data_cnt);
extra_bytes =
(uchar)((ushort)addr & 0x0003);
if ((extra_bytes != 0)
&&
((scsiq->q2.
tag_code &
ASC_TAG_FLAG_EXTRA_BYTES)
== 0)) {
data_cnt =
le32_to_cpu(scsiq->q1.
data_cnt);
if (((ushort)data_cnt & 0x01FF)
== 0) {
scsiq->q2.tag_code |=
ASC_TAG_FLAG_EXTRA_BYTES;
data_cnt -= extra_bytes;
scsiq->q1.data_cnt =
cpu_to_le32
(data_cnt);
scsiq->q1.extra_bytes =
extra_bytes;
}
}
}
}
}
n_q_required = 1;
if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
((scsiq->q1.cntl & QC_URGENT) != 0)) {
if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
n_q_required)) == 1) {
asc_dvc->in_critical_cnt--;
return (sta);
}
}
}
asc_dvc->in_critical_cnt--;
return (sta);
}
/*
* AdvExeScsiQueue() - Send a request to the RISC microcode program.
*
* Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
* add the carrier to the ICQ (Initiator Command Queue), and tickle the
* RISC to notify it a new command is ready to be executed.
*
* If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
* set to SCSI_MAX_RETRY.
*
* Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
* for DMA addresses or math operations are byte swapped to little-endian
* order.
*
* Return:
* ADV_SUCCESS(1) - The request was successfully queued.
* ADV_BUSY(0) - Resource unavailable; Retry again after pending
* request completes.
* ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
* host IC error.
*/
static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
{
AdvPortAddr iop_base;
ADV_CARR_T *new_carrp;
ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
/*
* The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
*/
if (scsiq->target_id > ADV_MAX_TID) {
scsiq->host_status = QHSTA_M_INVALID_DEVICE;
scsiq->done_status = QD_WITH_ERROR;
return ADV_ERROR;
}
iop_base = asc_dvc->iop_base;
/*
* Allocate a carrier ensuring at least one carrier always
* remains on the freelist and initialize fields.
*/
new_carrp = adv_get_next_carrier(asc_dvc);
if (!new_carrp) {
ASC_DBG(1, "No free carriers\n");
return ADV_BUSY;
}
asc_dvc->carr_pending_cnt++;
/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
scsiq->carr_va = asc_dvc->icq_sp->carr_va;
scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
/*
* Use the current stopper to send the ADV_SCSI_REQ_Q command to
* the microcode. The newly allocated stopper will become the new
* stopper.
*/
asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
/*
* Set the 'next_vpa' pointer for the old stopper to be the
* physical address of the new stopper. The RISC can only
* follow physical addresses.
*/
asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
/*
* Set the host adapter stopper pointer to point to the new carrier.
*/
asc_dvc->icq_sp = new_carrp;
if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
/*
* Tickle the RISC to tell it to read its Command Queue Head pointer.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
/*
* Clear the tickle value. In the ASC-3550 the RISC flag
* command 'clr_tickle_a' does not work unless the host
* value is cleared.
*/
AdvWriteByteRegister(iop_base, IOPB_TICKLE,
ADV_TICKLE_NOP);
}
} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
/*
* Notify the RISC a carrier is ready by writing the physical
* address of the new carrier stopper to the COMMA register.
*/
AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
le32_to_cpu(new_carrp->carr_pa));
}
return ADV_SUCCESS;
}
/*
* Execute a single 'Scsi_Cmnd'.
*/
static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
{
int ret, err_code;
struct asc_board *boardp = shost_priv(scp->device->host);
ASC_DBG(1, "scp 0x%p\n", scp);
if (ASC_NARROW_BOARD(boardp)) {
ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
struct asc_scsi_q asc_scsi_q;
ret = asc_build_req(boardp, scp, &asc_scsi_q);
if (ret != ASC_NOERROR) {
ASC_STATS(scp->device->host, build_error);
return ret;
}
ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
kfree(asc_scsi_q.sg_head);
err_code = asc_dvc->err_code;
} else {
ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
adv_req_t *adv_reqp;
switch (adv_build_req(boardp, scp, &adv_reqp)) {
case ASC_NOERROR:
ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
break;
case ASC_BUSY:
ASC_DBG(1, "adv_build_req ASC_BUSY\n");
/*
* The asc_stats fields 'adv_build_noreq' and
* 'adv_build_nosg' count wide board busy conditions.
* They are updated in adv_build_req and
* adv_get_sglist, respectively.
*/
return ASC_BUSY;
case ASC_ERROR:
default:
ASC_DBG(1, "adv_build_req ASC_ERROR\n");
ASC_STATS(scp->device->host, build_error);
return ASC_ERROR;
}
ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
err_code = adv_dvc->err_code;
}
switch (ret) {
case ASC_NOERROR:
ASC_STATS(scp->device->host, exe_noerror);
/*
* Increment monotonically increasing per device
* successful request counter. Wrapping doesn't matter.
*/
boardp->reqcnt[scp->device->id]++;
ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
break;
case ASC_BUSY:
ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
ASC_STATS(scp->device->host, exe_busy);
break;
case ASC_ERROR:
scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
"err_code 0x%x\n", err_code);
ASC_STATS(scp->device->host, exe_error);
scp->result = HOST_BYTE(DID_ERROR);
break;
default:
scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
"err_code 0x%x\n", err_code);
ASC_STATS(scp->device->host, exe_unknown);
scp->result = HOST_BYTE(DID_ERROR);
break;
}
ASC_DBG(1, "end\n");
return ret;
}
/*
* advansys_queuecommand() - interrupt-driven I/O entrypoint.
*
* This function always returns 0. Command return status is saved
* in the 'scp' result field.
*/
static int
advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
{
struct Scsi_Host *shost = scp->device->host;
int asc_res, result = 0;
ASC_STATS(shost, queuecommand);
scp->scsi_done = done;
asc_res = asc_execute_scsi_cmnd(scp);
switch (asc_res) {
case ASC_NOERROR:
break;
case ASC_BUSY:
result = SCSI_MLQUEUE_HOST_BUSY;
break;
case ASC_ERROR:
default:
asc_scsi_done(scp);
break;
}
return result;
}
static DEF_SCSI_QCMD(advansys_queuecommand)
static ushort AscGetEisaChipCfg(PortAddr iop_base)
{
PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
(PortAddr) (ASC_EISA_CFG_IOP_MASK);
return inpw(eisa_cfg_iop);
}
/*
* Return the BIOS address of the adapter at the specified
* I/O port and with the specified bus type.
*/
static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
unsigned short bus_type)
{
unsigned short cfg_lsw;
unsigned short bios_addr;
/*
* The PCI BIOS is re-located by the motherboard BIOS. Because
* of this the driver can not determine where a PCI BIOS is
* loaded and executes.
*/
if (bus_type & ASC_IS_PCI)
return 0;
if ((bus_type & ASC_IS_EISA) != 0) {
cfg_lsw = AscGetEisaChipCfg(iop_base);
cfg_lsw &= 0x000F;
bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
return bios_addr;
}
cfg_lsw = AscGetChipCfgLsw(iop_base);
/*
* ISA PnP uses the top bit as the 32K BIOS flag
*/
if (bus_type == ASC_IS_ISAPNP)
cfg_lsw &= 0x7FFF;
bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
return bios_addr;
}
static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
{
ushort cfg_lsw;
if (AscGetChipScsiID(iop_base) == new_host_id) {
return (new_host_id);
}
cfg_lsw = AscGetChipCfgLsw(iop_base);
cfg_lsw &= 0xF8FF;
cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
AscSetChipCfgLsw(iop_base, cfg_lsw);
return (AscGetChipScsiID(iop_base));
}
static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
{
unsigned char sc;
AscSetBank(iop_base, 1);
sc = inp(iop_base + IOP_REG_SC);
AscSetBank(iop_base, 0);
return sc;
}
static unsigned char AscGetChipVersion(PortAddr iop_base,
unsigned short bus_type)
{
if (bus_type & ASC_IS_EISA) {
PortAddr eisa_iop;
unsigned char revision;
eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
(PortAddr) ASC_EISA_REV_IOP_MASK;
revision = inp(eisa_iop);
return ASC_CHIP_MIN_VER_EISA - 1 + revision;
}
return AscGetChipVerNo(iop_base);
}
#ifdef CONFIG_ISA
static void AscEnableIsaDma(uchar dma_channel)
{
if (dma_channel < 4) {
outp(0x000B, (ushort)(0xC0 | dma_channel));
outp(0x000A, dma_channel);
} else if (dma_channel < 8) {
outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
outp(0x00D4, (ushort)(dma_channel - 4));
}
}
#endif /* CONFIG_ISA */
static int AscStopQueueExe(PortAddr iop_base)
{
int count = 0;
if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
ASC_STOP_REQ_RISC_STOP);
do {
if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
ASC_STOP_ACK_RISC_STOP) {
return (1);
}
mdelay(100);
} while (count++ < 20);
}
return (0);
}
static unsigned int AscGetMaxDmaCount(ushort bus_type)
{
if (bus_type & ASC_IS_ISA)
return ASC_MAX_ISA_DMA_COUNT;
else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
return ASC_MAX_VL_DMA_COUNT;
return ASC_MAX_PCI_DMA_COUNT;
}
#ifdef CONFIG_ISA
static ushort AscGetIsaDmaChannel(PortAddr iop_base)
{
ushort channel;
channel = AscGetChipCfgLsw(iop_base) & 0x0003;
if (channel == 0x03)
return (0);
else if (channel == 0x00)
return (7);
return (channel + 4);
}
static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
{
ushort cfg_lsw;
uchar value;
if ((dma_channel >= 5) && (dma_channel <= 7)) {
if (dma_channel == 7)
value = 0x00;
else
value = dma_channel - 4;
cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
cfg_lsw |= value;
AscSetChipCfgLsw(iop_base, cfg_lsw);
return (AscGetIsaDmaChannel(iop_base));
}
return 0;
}
static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
{
uchar speed_value;
AscSetBank(iop_base, 1);
speed_value = AscReadChipDmaSpeed(iop_base);
speed_value &= 0x07;
AscSetBank(iop_base, 0);
return speed_value;
}
static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
{
speed_value &= 0x07;
AscSetBank(iop_base, 1);
AscWriteChipDmaSpeed(iop_base, speed_value);
AscSetBank(iop_base, 0);
return AscGetIsaDmaSpeed(iop_base);
}
#endif /* CONFIG_ISA */
static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
{
int i;
PortAddr iop_base;
uchar chip_version;
iop_base = asc_dvc->iop_base;
asc_dvc->err_code = 0;
if ((asc_dvc->bus_type &
(ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
}
AscSetChipControl(iop_base, CC_HALT);
AscSetChipStatus(iop_base, 0);
asc_dvc->bug_fix_cntl = 0;
asc_dvc->pci_fix_asyn_xfer = 0;
asc_dvc->pci_fix_asyn_xfer_always = 0;
/* asc_dvc->init_state initialized in AscInitGetConfig(). */
asc_dvc->sdtr_done = 0;
asc_dvc->cur_total_qng = 0;
asc_dvc->is_in_int = false;
asc_dvc->in_critical_cnt = 0;
asc_dvc->last_q_shortage = 0;
asc_dvc->use_tagged_qng = 0;
asc_dvc->no_scam = 0;
asc_dvc->unit_not_ready = 0;
asc_dvc->queue_full_or_busy = 0;
asc_dvc->redo_scam = 0;
asc_dvc->res2 = 0;
asc_dvc->min_sdtr_index = 0;
asc_dvc->cfg->can_tagged_qng = 0;
asc_dvc->cfg->cmd_qng_enabled = 0;
asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
asc_dvc->init_sdtr = 0;
asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
asc_dvc->scsi_reset_wait = 3;
asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
asc_dvc->cfg->chip_version = chip_version;
asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
asc_dvc->max_sdtr_index = 7;
if ((asc_dvc->bus_type & ASC_IS_PCI) &&
(chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
asc_dvc->max_sdtr_index = 15;
if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
AscSetExtraControl(iop_base,
(SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
AscSetExtraControl(iop_base,
(SEC_ACTIVE_NEGATE |
SEC_ENABLE_FILTER));
}
}
if (asc_dvc->bus_type == ASC_IS_PCI) {
AscSetExtraControl(iop_base,
(SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
}
asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
#ifdef CONFIG_ISA
if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
asc_dvc->bus_type = ASC_IS_ISAPNP;
}
asc_dvc->cfg->isa_dma_channel =
(uchar)AscGetIsaDmaChannel(iop_base);
}
#endif /* CONFIG_ISA */
for (i = 0; i <= ASC_MAX_TID; i++) {
asc_dvc->cur_dvc_qng[i] = 0;
asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
}
}
static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
{
int retry;
for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
unsigned char read_back;
AscSetChipEEPCmd(iop_base, cmd_reg);
mdelay(1);
read_back = AscGetChipEEPCmd(iop_base);
if (read_back == cmd_reg)
return 1;
}
return 0;
}
static void AscWaitEEPRead(void)
{
mdelay(1);
}
static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
{
ushort read_wval;
uchar cmd_reg;
AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
AscWaitEEPRead();
cmd_reg = addr | ASC_EEP_CMD_READ;
AscWriteEEPCmdReg(iop_base, cmd_reg);
AscWaitEEPRead();
read_wval = AscGetChipEEPData(iop_base);
AscWaitEEPRead();
return read_wval;
}
static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
ushort bus_type)
{
ushort wval;
ushort sum;
ushort *wbuf;
int cfg_beg;
int cfg_end;
int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
int s_addr;
wbuf = (ushort *)cfg_buf;
sum = 0;
/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
sum += *wbuf;
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
wval = AscReadEEPWord(iop_base, (uchar)s_addr);
if (s_addr <= uchar_end_in_config) {
/*
* Swap all char fields - must unswap bytes already swapped
* by AscReadEEPWord().
*/
*wbuf = le16_to_cpu(wval);
} else {
/* Don't swap word field at the end - cntl field. */
*wbuf = wval;
}
sum += wval; /* Checksum treats all EEPROM data as words. */
}
/*
* Read the checksum word which will be compared against 'sum'
* by the caller. Word field already swapped.
*/
*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
return sum;
}
static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
{
PortAddr iop_base;
ushort q_addr;
ushort saved_word;
int sta;
iop_base = asc_dvc->iop_base;
sta = 0;
q_addr = ASC_QNO_TO_QADDR(241);
saved_word = AscReadLramWord(iop_base, q_addr);
AscSetChipLramAddr(iop_base, q_addr);
AscSetChipLramData(iop_base, 0x55AA);
mdelay(10);
AscSetChipLramAddr(iop_base, q_addr);
if (AscGetChipLramData(iop_base) == 0x55AA) {
sta = 1;
AscWriteLramWord(iop_base, q_addr, saved_word);
}
return (sta);
}
static void AscWaitEEPWrite(void)
{
mdelay(20);
}
static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
{
ushort read_back;
int retry;
retry = 0;
while (true) {
AscSetChipEEPData(iop_base, data_reg);
mdelay(1);
read_back = AscGetChipEEPData(iop_base);
if (read_back == data_reg) {
return (1);
}
if (retry++ > ASC_EEP_MAX_RETRY) {
return (0);
}
}
}
static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
{
ushort read_wval;
read_wval = AscReadEEPWord(iop_base, addr);
if (read_wval != word_val) {
AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
AscWaitEEPRead();
AscWriteEEPDataReg(iop_base, word_val);
AscWaitEEPRead();
AscWriteEEPCmdReg(iop_base,
(uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
AscWaitEEPWrite();
AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
AscWaitEEPRead();
return (AscReadEEPWord(iop_base, addr));
}
return (read_wval);
}
static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
ushort bus_type)
{
int n_error;
ushort *wbuf;
ushort word;
ushort sum;
int s_addr;
int cfg_beg;
int cfg_end;
int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
wbuf = (ushort *)cfg_buf;
n_error = 0;
sum = 0;
/* Write two config words; AscWriteEEPWord() will swap bytes. */
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
sum += *wbuf;
if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
n_error++;
}
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
if (s_addr <= uchar_end_in_config) {
/*
* This is a char field. Swap char fields before they are
* swapped again by AscWriteEEPWord().
*/
word = cpu_to_le16(*wbuf);
if (word !=
AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
n_error++;
}
} else {
/* Don't swap word field at the end - cntl field. */
if (*wbuf !=
AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
n_error++;
}
}
sum += *wbuf; /* Checksum calculated from word values. */
}
/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
*wbuf = sum;
if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
n_error++;
}
/* Read EEPROM back again. */
wbuf = (ushort *)cfg_buf;
/*
* Read two config words; Byte-swapping done by AscReadEEPWord().
*/
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
n_error++;
}
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
if (s_addr <= uchar_end_in_config) {
/*
* Swap all char fields. Must unswap bytes already swapped
* by AscReadEEPWord().
*/
word =
le16_to_cpu(AscReadEEPWord
(iop_base, (uchar)s_addr));
} else {
/* Don't swap word field at the end - cntl field. */
word = AscReadEEPWord(iop_base, (uchar)s_addr);
}
if (*wbuf != word) {
n_error++;
}
}
/* Read checksum; Byte swapping not needed. */
if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
n_error++;
}
return n_error;
}
static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
ushort bus_type)
{
int retry;
int n_error;
retry = 0;
while (true) {
if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
bus_type)) == 0) {
break;
}
if (++retry > ASC_EEP_MAX_RETRY) {
break;
}
}
return n_error;
}
static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
{
ASCEEP_CONFIG eep_config_buf;
ASCEEP_CONFIG *eep_config;
PortAddr iop_base;
ushort chksum;
ushort warn_code;
ushort cfg_msw, cfg_lsw;
int i;
int write_eep = 0;
iop_base = asc_dvc->iop_base;
warn_code = 0;
AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
AscStopQueueExe(iop_base);
if ((AscStopChip(iop_base)) ||
(AscGetChipScsiCtrl(iop_base) != 0)) {
asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
AscResetChipAndScsiBus(asc_dvc);
mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
}
if (!AscIsChipHalted(iop_base)) {
asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
return (warn_code);
}
AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
return (warn_code);
}
eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
cfg_msw = AscGetChipCfgMsw(iop_base);
cfg_lsw = AscGetChipCfgLsw(iop_base);
if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
warn_code |= ASC_WARN_CFG_MSW_RECOVER;
AscSetChipCfgMsw(iop_base, cfg_msw);
}
chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
ASC_DBG(1, "chksum 0x%x\n", chksum);
if (chksum == 0) {
chksum = 0xaa55;
}
if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
warn_code |= ASC_WARN_AUTO_CONFIG;
if (asc_dvc->cfg->chip_version == 3) {
if (eep_config->cfg_lsw != cfg_lsw) {
warn_code |= ASC_WARN_EEPROM_RECOVER;
eep_config->cfg_lsw =
AscGetChipCfgLsw(iop_base);
}
if (eep_config->cfg_msw != cfg_msw) {
warn_code |= ASC_WARN_EEPROM_RECOVER;
eep_config->cfg_msw =
AscGetChipCfgMsw(iop_base);
}
}
}
eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
if (chksum != eep_config->chksum) {
if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
ASC_CHIP_VER_PCI_ULTRA_3050) {
ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
eep_config->init_sdtr = 0xFF;
eep_config->disc_enable = 0xFF;
eep_config->start_motor = 0xFF;
eep_config->use_cmd_qng = 0;
eep_config->max_total_qng = 0xF0;
eep_config->max_tag_qng = 0x20;
eep_config->cntl = 0xBFFF;
ASC_EEP_SET_CHIP_ID(eep_config, 7);
eep_config->no_scam = 0;
eep_config->adapter_info[0] = 0;
eep_config->adapter_info[1] = 0;
eep_config->adapter_info[2] = 0;
eep_config->adapter_info[3] = 0;
eep_config->adapter_info[4] = 0;
/* Indicate EEPROM-less board. */
eep_config->adapter_info[5] = 0xBB;
} else {
ASC_PRINT
("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
write_eep = 1;
warn_code |= ASC_WARN_EEPROM_CHKSUM;
}
}
asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
asc_dvc->cfg->disc_enable = eep_config->disc_enable;
asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
asc_dvc->start_motor = eep_config->start_motor;
asc_dvc->dvc_cntl = eep_config->cntl;
asc_dvc->no_scam = eep_config->no_scam;
asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
if (!AscTestExternalLram(asc_dvc)) {
if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
ASC_IS_PCI_ULTRA)) {
eep_config->max_total_qng =
ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
eep_config->max_tag_qng =
ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
} else {
eep_config->cfg_msw |= 0x0800;
cfg_msw |= 0x0800;
AscSetChipCfgMsw(iop_base, cfg_msw);
eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
}
} else {
}
if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
}
if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
}
if (eep_config->max_tag_qng > eep_config->max_total_qng) {
eep_config->max_tag_qng = eep_config->max_total_qng;
}
if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
}
asc_dvc->max_total_qng = eep_config->max_total_qng;
if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
eep_config->use_cmd_qng) {
eep_config->disc_enable = eep_config->use_cmd_qng;
warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
}
ASC_EEP_SET_CHIP_ID(eep_config,
ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
!(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
}
for (i = 0; i <= ASC_MAX_TID; i++) {
asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
asc_dvc->cfg->sdtr_period_offset[i] =
(uchar)(ASC_DEF_SDTR_OFFSET |
(asc_dvc->min_sdtr_index << 4));
}
eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
if (write_eep) {
if ((i = AscSetEEPConfig(iop_base, eep_config,
asc_dvc->bus_type)) != 0) {
ASC_PRINT1
("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
i);
} else {
ASC_PRINT
("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
}
}
return (warn_code);
}
static int AscInitGetConfig(struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
unsigned short warn_code = 0;
asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
if (asc_dvc->err_code != 0)
return asc_dvc->err_code;
if (AscFindSignature(asc_dvc->iop_base)) {
AscInitAscDvcVar(asc_dvc);
warn_code = AscInitFromEEP(asc_dvc);
asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
} else {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
}
switch (warn_code) {
case 0: /* No error */
break;
case ASC_WARN_IO_PORT_ROTATE:
shost_printk(KERN_WARNING, shost, "I/O port address "
"modified\n");
break;
case ASC_WARN_AUTO_CONFIG:
shost_printk(KERN_WARNING, shost, "I/O port increment switch "
"enabled\n");
break;
case ASC_WARN_EEPROM_CHKSUM:
shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
break;
case ASC_WARN_IRQ_MODIFIED:
shost_printk(KERN_WARNING, shost, "IRQ modified\n");
break;
case ASC_WARN_CMD_QNG_CONFLICT:
shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
"disconnects\n");
break;
default:
shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
warn_code);
break;
}
if (asc_dvc->err_code != 0)
shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
return asc_dvc->err_code;
}
static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
PortAddr iop_base = asc_dvc->iop_base;
unsigned short cfg_msw;
unsigned short warn_code = 0;
asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
if (asc_dvc->err_code != 0)
return asc_dvc->err_code;
if (!AscFindSignature(asc_dvc->iop_base)) {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
return asc_dvc->err_code;
}
cfg_msw = AscGetChipCfgMsw(iop_base);
if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
warn_code |= ASC_WARN_CFG_MSW_RECOVER;
AscSetChipCfgMsw(iop_base, cfg_msw);
}
if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
asc_dvc->cfg->cmd_qng_enabled) {
asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
}
if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
warn_code |= ASC_WARN_AUTO_CONFIG;
}
#ifdef CONFIG_PCI
if (asc_dvc->bus_type & ASC_IS_PCI) {
cfg_msw &= 0xFFC0;
AscSetChipCfgMsw(iop_base, cfg_msw);
if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
} else {
if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
(pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
asc_dvc->bug_fix_cntl |=
ASC_BUG_FIX_ASYN_USE_SYN;
}
}
} else
#endif /* CONFIG_PCI */
if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
== ASC_CHIP_VER_ASYN_BUG) {
asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
}
}
if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
asc_dvc->cfg->chip_scsi_id) {
asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
}
#ifdef CONFIG_ISA
if (asc_dvc->bus_type & ASC_IS_ISA) {
AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
}
#endif /* CONFIG_ISA */
asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
switch (warn_code) {
case 0: /* No error. */
break;
case ASC_WARN_IO_PORT_ROTATE:
shost_printk(KERN_WARNING, shost, "I/O port address "
"modified\n");
break;
case ASC_WARN_AUTO_CONFIG:
shost_printk(KERN_WARNING, shost, "I/O port increment switch "
"enabled\n");
break;
case ASC_WARN_EEPROM_CHKSUM:
shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
break;
case ASC_WARN_IRQ_MODIFIED:
shost_printk(KERN_WARNING, shost, "IRQ modified\n");
break;
case ASC_WARN_CMD_QNG_CONFLICT:
shost_printk(KERN_WARNING, shost, "tag queuing w/o "
"disconnects\n");
break;
default:
shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
warn_code);
break;
}
if (asc_dvc->err_code != 0)
shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
return asc_dvc->err_code;
}
/*
* EEPROM Configuration.
*
* All drivers should use this structure to set the default EEPROM
* configuration. The BIOS now uses this structure when it is built.
* Additional structure information can be found in a_condor.h where
* the structure is defined.
*
* The *_Field_IsChar structs are needed to correct for endianness.
* These values are read from the board 16 bits at a time directly
* into the structs. Because some fields are char, the values will be
* in the wrong order. The *_Field_IsChar tells when to flip the
* bytes. Data read and written to PCI memory is automatically swapped
* on big-endian platforms so char fields read as words are actually being
* unswapped on big-endian platforms.
*/
#ifdef CONFIG_PCI
static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
0x0000, /* cfg_msw */
0xFFFF, /* disc_enable */
0xFFFF, /* wdtr_able */
0xFFFF, /* sdtr_able */
0xFFFF, /* start_motor */
0xFFFF, /* tagqng_able */
0xFFFF, /* bios_scan */
0, /* scam_tolerant */
7, /* adapter_scsi_id */
0, /* bios_boot_delay */
3, /* scsi_reset_delay */
0, /* bios_id_lun */
0, /* termination */
0, /* reserved1 */
0xFFE7, /* bios_ctrl */
0xFFFF, /* ultra_able */
0, /* reserved2 */
ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* dvc_cntl */
0, /* bug_fix */
0, /* serial_number_word1 */
0, /* serial_number_word2 */
0, /* serial_number_word3 */
0, /* check_sum */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
, /* oem_name[16] */
0, /* dvc_err_code */
0, /* adv_err_code */
0, /* adv_err_addr */
0, /* saved_dvc_err_code */
0, /* saved_adv_err_code */
0, /* saved_adv_err_addr */
0 /* num_of_err */
};
static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
0, /* cfg_lsw */
0, /* cfg_msw */
0, /* -disc_enable */
0, /* wdtr_able */
0, /* sdtr_able */
0, /* start_motor */
0, /* tagqng_able */
0, /* bios_scan */
0, /* scam_tolerant */
1, /* adapter_scsi_id */
1, /* bios_boot_delay */
1, /* scsi_reset_delay */
1, /* bios_id_lun */
1, /* termination */
1, /* reserved1 */
0, /* bios_ctrl */
0, /* ultra_able */
0, /* reserved2 */
1, /* max_host_qng */
1, /* max_dvc_qng */
0, /* dvc_cntl */
0, /* bug_fix */
0, /* serial_number_word1 */
0, /* serial_number_word2 */
0, /* serial_number_word3 */
0, /* check_sum */
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
, /* oem_name[16] */
0, /* dvc_err_code */
0, /* adv_err_code */
0, /* adv_err_addr */
0, /* saved_dvc_err_code */
0, /* saved_adv_err_code */
0, /* saved_adv_err_addr */
0 /* num_of_err */
};
static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
0x4444, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
0x4444, /* 13 sdtr_speed2 */
0x4444, /* 14 sdtr_speed3 */
ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0x4444, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
PCI_VENDOR_ID_ASP, /* 58 subsysvid */
PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
0, /* 00 cfg_lsw */
0, /* 01 cfg_msw */
0, /* 02 disc_enable */
0, /* 03 wdtr_able */
0, /* 04 sdtr_speed1 */
0, /* 05 start_motor */
0, /* 06 tagqng_able */
0, /* 07 bios_scan */
0, /* 08 scam_tolerant */
1, /* 09 adapter_scsi_id */
1, /* bios_boot_delay */
1, /* 10 scsi_reset_delay */
1, /* bios_id_lun */
1, /* 11 termination_se */
1, /* termination_lvd */
0, /* 12 bios_ctrl */
0, /* 13 sdtr_speed2 */
0, /* 14 sdtr_speed3 */
1, /* 15 max_host_qng */
1, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
0, /* 58 subsysvid */
0, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
0x5555, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
0x5555, /* 13 sdtr_speed2 */
0x5555, /* 14 sdtr_speed3 */
ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0x5555, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
PCI_VENDOR_ID_ASP, /* 58 subsysvid */
PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
0, /* 00 cfg_lsw */
0, /* 01 cfg_msw */
0, /* 02 disc_enable */
0, /* 03 wdtr_able */
0, /* 04 sdtr_speed1 */
0, /* 05 start_motor */
0, /* 06 tagqng_able */
0, /* 07 bios_scan */
0, /* 08 scam_tolerant */
1, /* 09 adapter_scsi_id */
1, /* bios_boot_delay */
1, /* 10 scsi_reset_delay */
1, /* bios_id_lun */
1, /* 11 termination_se */
1, /* termination_lvd */
0, /* 12 bios_ctrl */
0, /* 13 sdtr_speed2 */
0, /* 14 sdtr_speed3 */
1, /* 15 max_host_qng */
1, /* max_dvc_qng */
0, /* 16 dvc_cntl */
0, /* 17 sdtr_speed4 */
0, /* 18 serial_number_word1 */
0, /* 19 serial_number_word2 */
0, /* 20 serial_number_word3 */
0, /* 21 check_sum */
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
, /* 22-29 oem_name[16] */
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
0, /* 36 reserved */
0, /* 37 reserved */
0, /* 38 reserved */
0, /* 39 reserved */
0, /* 40 reserved */
0, /* 41 reserved */
0, /* 42 reserved */
0, /* 43 reserved */
0, /* 44 reserved */
0, /* 45 reserved */
0, /* 46 reserved */
0, /* 47 reserved */
0, /* 48 reserved */
0, /* 49 reserved */
0, /* 50 reserved */
0, /* 51 reserved */
0, /* 52 reserved */
0, /* 53 reserved */
0, /* 54 reserved */
0, /* 55 reserved */
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
0, /* 58 subsysvid */
0, /* 59 subsysid */
0, /* 60 reserved */
0, /* 61 reserved */
0, /* 62 reserved */
0 /* 63 reserved */
};
/*
* Wait for EEPROM command to complete
*/
static void AdvWaitEEPCmd(AdvPortAddr iop_base)
{
int eep_delay_ms;
for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
ASC_EEP_CMD_DONE) {
break;
}
mdelay(1);
}
if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
0)
BUG();
}
/*
* Read the EEPROM from specified location
*/
static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
{
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_READ | eep_word_addr);
AdvWaitEEPCmd(iop_base);
return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
ADVEEP_3550_CONFIG *cfg_buf)
{
ushort *wbuf;
ushort addr, chksum;
ushort *charfields;
wbuf = (ushort *)cfg_buf;
charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
chksum = 0;
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdvWaitEEPCmd(iop_base);
/*
* Write EEPROM from word 0 to word 20.
*/
for (addr = ADV_EEP_DVC_CFG_BEGIN;
addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
chksum += *wbuf; /* Checksum is calculated from word values. */
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
mdelay(ADV_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21.
*/
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
wbuf++;
charfields++;
/*
* Write EEPROM OEM name at words 22 to 29.
*/
for (addr = ADV_EEP_DVC_CTL_BEGIN;
addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
}
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
AdvWaitEEPCmd(iop_base);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
ADVEEP_38C0800_CONFIG *cfg_buf)
{
ushort *wbuf;
ushort *charfields;
ushort addr, chksum;
wbuf = (ushort *)cfg_buf;
charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
chksum = 0;
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdvWaitEEPCmd(iop_base);
/*
* Write EEPROM from word 0 to word 20.
*/
for (addr = ADV_EEP_DVC_CFG_BEGIN;
addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
chksum += *wbuf; /* Checksum is calculated from word values. */
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
mdelay(ADV_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21.
*/
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
wbuf++;
charfields++;
/*
* Write EEPROM OEM name at words 22 to 29.
*/
for (addr = ADV_EEP_DVC_CTL_BEGIN;
addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
}
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
AdvWaitEEPCmd(iop_base);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
ADVEEP_38C1600_CONFIG *cfg_buf)
{
ushort *wbuf;
ushort *charfields;
ushort addr, chksum;
wbuf = (ushort *)cfg_buf;
charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
chksum = 0;
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdvWaitEEPCmd(iop_base);
/*
* Write EEPROM from word 0 to word 20.
*/
for (addr = ADV_EEP_DVC_CFG_BEGIN;
addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
chksum += *wbuf; /* Checksum is calculated from word values. */
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
mdelay(ADV_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21.
*/
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
wbuf++;
charfields++;
/*
* Write EEPROM OEM name at words 22 to 29.
*/
for (addr = ADV_EEP_DVC_CTL_BEGIN;
addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ushort word;
if (*charfields++) {
word = cpu_to_le16(*wbuf);
} else {
word = *wbuf;
}
AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdvWaitEEPCmd(iop_base);
}
AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
AdvWaitEEPCmd(iop_base);
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
ADVEEP_3550_CONFIG *cfg_buf)
{
ushort wval, chksum;
ushort *wbuf;
int eep_addr;
ushort *charfields;
charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
wbuf = (ushort *)cfg_buf;
chksum = 0;
for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
wval = AdvReadEEPWord(iop_base, eep_addr);
chksum += wval; /* Checksum is calculated from word values. */
if (*charfields++) {
*wbuf = le16_to_cpu(wval);
} else {
*wbuf = wval;
}
}
/* Read checksum word. */
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
wbuf++;
charfields++;
/* Read rest of EEPROM not covered by the checksum. */
for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
if (*charfields++) {
*wbuf = le16_to_cpu(*wbuf);
}
}
return chksum;
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
ADVEEP_38C0800_CONFIG *cfg_buf)
{
ushort wval, chksum;
ushort *wbuf;
int eep_addr;
ushort *charfields;
charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
wbuf = (ushort *)cfg_buf;
chksum = 0;
for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
wval = AdvReadEEPWord(iop_base, eep_addr);
chksum += wval; /* Checksum is calculated from word values. */
if (*charfields++) {
*wbuf = le16_to_cpu(wval);
} else {
*wbuf = wval;
}
}
/* Read checksum word. */
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
wbuf++;
charfields++;
/* Read rest of EEPROM not covered by the checksum. */
for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
if (*charfields++) {
*wbuf = le16_to_cpu(*wbuf);
}
}
return chksum;
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
ADVEEP_38C1600_CONFIG *cfg_buf)
{
ushort wval, chksum;
ushort *wbuf;
int eep_addr;
ushort *charfields;
charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
wbuf = (ushort *)cfg_buf;
chksum = 0;
for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
wval = AdvReadEEPWord(iop_base, eep_addr);
chksum += wval; /* Checksum is calculated from word values. */
if (*charfields++) {
*wbuf = le16_to_cpu(wval);
} else {
*wbuf = wval;
}
}
/* Read checksum word. */
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
wbuf++;
charfields++;
/* Read rest of EEPROM not covered by the checksum. */
for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
*wbuf = AdvReadEEPWord(iop_base, eep_addr);
if (*charfields++) {
*wbuf = le16_to_cpu(*wbuf);
}
}
return chksum;
}
/*
* Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
* ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADVEEP_3550_CONFIG eep_config;
iop_base = asc_dvc->iop_base;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*/
if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
warn_code |= ASC_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
memcpy(&eep_config, &Default_3550_EEPROM_Config,
sizeof(ADVEEP_3550_CONFIG));
/*
* Assume the 6 byte board serial number that was read from
* EEPROM is correct even if the EEPROM checksum failed.
*/
eep_config.serial_number_word3 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
eep_config.serial_number_word2 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
eep_config.serial_number_word1 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
AdvSet3550EEPConfig(iop_base, &eep_config);
}
/*
* Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
* EEPROM configuration that was read.
*
* This is the mapping of EEPROM fields to Adv Library fields.
*/
asc_dvc->wdtr_able = eep_config.wdtr_able;
asc_dvc->sdtr_able = eep_config.sdtr_able;
asc_dvc->ultra_able = eep_config.ultra_able;
asc_dvc->tagqng_able = eep_config.tagqng_able;
asc_dvc->cfg->disc_enable = eep_config.disc_enable;
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
asc_dvc->start_motor = eep_config.start_motor;
asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
asc_dvc->bios_ctrl = eep_config.bios_ctrl;
asc_dvc->no_scam = eep_config.scam_tolerant;
asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ADV_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ADV_DVC_CFG
* 'termination' field appropriately.
*/
if (eep_config.termination == 0) {
asc_dvc->cfg->termination = 0; /* auto termination */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination == 1) {
asc_dvc->cfg->termination = TERM_CTL_SEL;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination == 2) {
asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination == 3) {
asc_dvc->cfg->termination =
TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
} else {
/*
* The EEPROM 'termination' field contains a bad value. Use
* automatic termination instead.
*/
asc_dvc->cfg->termination = 0;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
return warn_code;
}
/*
* Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
* ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADVEEP_38C0800_CONFIG eep_config;
uchar tid, termination;
ushort sdtr_speed = 0;
iop_base = asc_dvc->iop_base;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*/
if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
eep_config.check_sum) {
warn_code |= ASC_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
sizeof(ADVEEP_38C0800_CONFIG));
/*
* Assume the 6 byte board serial number that was read from
* EEPROM is correct even if the EEPROM checksum failed.
*/
eep_config.serial_number_word3 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
eep_config.serial_number_word2 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
eep_config.serial_number_word1 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
AdvSet38C0800EEPConfig(iop_base, &eep_config);
}
/*
* Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
* EEPROM configuration that was read.
*
* This is the mapping of EEPROM fields to Adv Library fields.
*/
asc_dvc->wdtr_able = eep_config.wdtr_able;
asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
asc_dvc->tagqng_able = eep_config.tagqng_able;
asc_dvc->cfg->disc_enable = eep_config.disc_enable;
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
asc_dvc->start_motor = eep_config.start_motor;
asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
asc_dvc->bios_ctrl = eep_config.bios_ctrl;
asc_dvc->no_scam = eep_config.scam_tolerant;
asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
/*
* For every Target ID if any of its 'sdtr_speed[1234]' bits
* are set, then set an 'sdtr_able' bit for it.
*/
asc_dvc->sdtr_able = 0;
for (tid = 0; tid <= ADV_MAX_TID; tid++) {
if (tid == 0) {
sdtr_speed = asc_dvc->sdtr_speed1;
} else if (tid == 4) {
sdtr_speed = asc_dvc->sdtr_speed2;
} else if (tid == 8) {
sdtr_speed = asc_dvc->sdtr_speed3;
} else if (tid == 12) {
sdtr_speed = asc_dvc->sdtr_speed4;
}
if (sdtr_speed & ADV_MAX_TID) {
asc_dvc->sdtr_able |= (1 << tid);
}
sdtr_speed >>= 4;
}
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ADV_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ADV_DVC_CFG
* 'termination' field appropriately.
*/
if (eep_config.termination_se == 0) {
termination = 0; /* auto termination for SE */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_se == 1) {
termination = 0;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_se == 2) {
termination = TERM_SE_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_se == 3) {
termination = TERM_SE;
} else {
/*
* The EEPROM 'termination_se' field contains a bad value.
* Use automatic termination instead.
*/
termination = 0;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
if (eep_config.termination_lvd == 0) {
asc_dvc->cfg->termination = termination; /* auto termination for LVD */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_lvd == 1) {
asc_dvc->cfg->termination = termination;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_lvd == 2) {
asc_dvc->cfg->termination = termination | TERM_LVD_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_lvd == 3) {
asc_dvc->cfg->termination = termination | TERM_LVD;
} else {
/*
* The EEPROM 'termination_lvd' field contains a bad value.
* Use automatic termination instead.
*/
asc_dvc->cfg->termination = termination;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
return warn_code;
}
/*
* Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
* ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
{
AdvPortAddr iop_base;
ushort warn_code;
ADVEEP_38C1600_CONFIG eep_config;
uchar tid, termination;
ushort sdtr_speed = 0;
iop_base = asc_dvc->iop_base;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*/
if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
eep_config.check_sum) {
struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
warn_code |= ASC_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
sizeof(ADVEEP_38C1600_CONFIG));
if (PCI_FUNC(pdev->devfn) != 0) {
u8 ints;
/*
* Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
* and old Mac system booting problem. The Expansion
* ROM must be disabled in Function 1 for these systems
*/
eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
/*
* Clear the INTAB (bit 11) if the GPIO 0 input
* indicates the Function 1 interrupt line is wired
* to INTB.
*
* Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
* 1 - Function 1 interrupt line wired to INT A.
* 0 - Function 1 interrupt line wired to INT B.
*
* Note: Function 0 is always wired to INTA.
* Put all 5 GPIO bits in input mode and then read
* their input values.
*/
AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
if ((ints & 0x01) == 0)
eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
}
/*
* Assume the 6 byte board serial number that was read from
* EEPROM is correct even if the EEPROM checksum failed.
*/
eep_config.serial_number_word3 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
eep_config.serial_number_word2 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
eep_config.serial_number_word1 =
AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
AdvSet38C1600EEPConfig(iop_base, &eep_config);
}
/*
* Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
* EEPROM configuration that was read.
*
* This is the mapping of EEPROM fields to Adv Library fields.
*/
asc_dvc->wdtr_able = eep_config.wdtr_able;
asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
asc_dvc->ppr_able = 0;
asc_dvc->tagqng_able = eep_config.tagqng_able;
asc_dvc->cfg->disc_enable = eep_config.disc_enable;
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
asc_dvc->start_motor = eep_config.start_motor;
asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
asc_dvc->bios_ctrl = eep_config.bios_ctrl;
asc_dvc->no_scam = eep_config.scam_tolerant;
/*
* For every Target ID if any of its 'sdtr_speed[1234]' bits
* are set, then set an 'sdtr_able' bit for it.
*/
asc_dvc->sdtr_able = 0;
for (tid = 0; tid <= ASC_MAX_TID; tid++) {
if (tid == 0) {
sdtr_speed = asc_dvc->sdtr_speed1;
} else if (tid == 4) {
sdtr_speed = asc_dvc->sdtr_speed2;
} else if (tid == 8) {
sdtr_speed = asc_dvc->sdtr_speed3;
} else if (tid == 12) {
sdtr_speed = asc_dvc->sdtr_speed4;
}
if (sdtr_speed & ASC_MAX_TID) {
asc_dvc->sdtr_able |= (1 << tid);
}
sdtr_speed >>= 4;
}
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
asc_dvc->max_host_qng = eep_config.max_host_qng;
asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ASC_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ASC_DVC_CFG
* 'termination' field appropriately.
*/
if (eep_config.termination_se == 0) {
termination = 0; /* auto termination for SE */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_se == 1) {
termination = 0;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_se == 2) {
termination = TERM_SE_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_se == 3) {
termination = TERM_SE;
} else {
/*
* The EEPROM 'termination_se' field contains a bad value.
* Use automatic termination instead.
*/
termination = 0;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
if (eep_config.termination_lvd == 0) {
asc_dvc->cfg->termination = termination; /* auto termination for LVD */
} else {
/* Enable manual control with low off / high off. */
if (eep_config.termination_lvd == 1) {
asc_dvc->cfg->termination = termination;
/* Enable manual control with low off / high on. */
} else if (eep_config.termination_lvd == 2) {
asc_dvc->cfg->termination = termination | TERM_LVD_HI;
/* Enable manual control with low on / high on. */
} else if (eep_config.termination_lvd == 3) {
asc_dvc->cfg->termination = termination | TERM_LVD;
} else {
/*
* The EEPROM 'termination_lvd' field contains a bad value.
* Use automatic termination instead.
*/
asc_dvc->cfg->termination = termination;
warn_code |= ASC_WARN_EEPROM_TERMINATION;
}
}
return warn_code;
}
/*
* Initialize the ADV_DVC_VAR structure.
*
* On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*/
static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
unsigned short warn_code = 0;
AdvPortAddr iop_base = asc_dvc->iop_base;
u16 cmd;
int status;
asc_dvc->err_code = 0;
/*
* Save the state of the PCI Configuration Command Register
* "Parity Error Response Control" Bit. If the bit is clear (0),
* in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
* DMA parity errors.
*/
asc_dvc->cfg->control_flag = 0;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if ((cmd & PCI_COMMAND_PARITY) == 0)
asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
asc_dvc->cfg->chip_version =
AdvGetChipVersion(iop_base, asc_dvc->bus_type);
ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
(ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
(ushort)ADV_CHIP_ID_BYTE);
ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
(ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
(ushort)ADV_CHIP_ID_WORD);
/*
* Reset the chip to start and allow register writes.
*/
if (AdvFindSignature(iop_base) == 0) {
asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
return ADV_ERROR;
} else {
/*
* The caller must set 'chip_type' to a valid setting.
*/
if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
return ADV_ERROR;
}
/*
* Reset Chip.
*/
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
ADV_CTRL_REG_CMD_RESET);
mdelay(100);
AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
ADV_CTRL_REG_CMD_WR_IO_REG);
if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
status = AdvInitFrom38C1600EEP(asc_dvc);
} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
status = AdvInitFrom38C0800EEP(asc_dvc);
} else {
status = AdvInitFrom3550EEP(asc_dvc);
}
warn_code |= status;
}
if (warn_code != 0)
shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
if (asc_dvc->err_code)
shost_printk(KERN_ERR, shost, "error code 0x%x\n",
asc_dvc->err_code);
return asc_dvc->err_code;
}
#endif
static struct scsi_host_template advansys_template = {
.proc_name = DRV_NAME,
#ifdef CONFIG_PROC_FS
.show_info = advansys_show_info,
#endif
.name = DRV_NAME,
.info = advansys_info,
.queuecommand = advansys_queuecommand,
.eh_host_reset_handler = advansys_reset,
.bios_param = advansys_biosparam,
.slave_configure = advansys_slave_configure,
/*
* Because the driver may control an ISA adapter 'unchecked_isa_dma'
* must be set. The flag will be cleared in advansys_board_found
* for non-ISA adapters.
*/
.unchecked_isa_dma = true,
/*
* All adapters controlled by this driver are capable of large
* scatter-gather lists. According to the mid-level SCSI documentation
* this obviates any performance gain provided by setting
* 'use_clustering'. But empirically while CPU utilization is increased
* by enabling clustering, I/O throughput increases as well.
*/
.use_clustering = ENABLE_CLUSTERING,
};
static int advansys_wide_init_chip(struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
size_t sgblk_pool_size;
int warn_code, err_code;
/*
* Allocate buffer carrier structures. The total size
* is about 8 KB, so allocate all at once.
*/
adv_dvc->carrier = dma_alloc_coherent(board->dev,
ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
if (!adv_dvc->carrier)
goto kmalloc_failed;
/*
* Allocate up to 'max_host_qng' request structures for the Wide
* board. The total size is about 16 KB, so allocate all at once.
* If the allocation fails decrement and try again.
*/
board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
if (board->adv_reqp_size & 0x1f) {
ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
}
board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
&board->adv_reqp_addr, GFP_KERNEL);
if (!board->adv_reqp)
goto kmalloc_failed;
ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
adv_dvc->max_host_qng, board->adv_reqp_size);
/*
* Allocate up to ADV_TOT_SG_BLOCK request structures for
* the Wide board. Each structure is about 136 bytes.
*/
sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
sgblk_pool_size, 32, 0);
ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
sizeof(adv_sgblk_t), sgblk_pool_size);
if (!board->adv_sgblk_pool)
goto kmalloc_failed;
if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
ASC_DBG(2, "AdvInitAsc3550Driver()\n");
warn_code = AdvInitAsc3550Driver(adv_dvc);
} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
warn_code = AdvInitAsc38C0800Driver(adv_dvc);
} else {
ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
warn_code = AdvInitAsc38C1600Driver(adv_dvc);
}
err_code = adv_dvc->err_code;
if (warn_code || err_code) {
shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
"0x%x\n", warn_code, err_code);
}
goto exit;
kmalloc_failed:
shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
err_code = ADV_ERROR;
exit:
return err_code;
}
static void advansys_wide_free_mem(struct asc_board *board)
{
struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
if (adv_dvc->carrier) {
dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
adv_dvc->carrier, adv_dvc->carrier_addr);
adv_dvc->carrier = NULL;
}
if (board->adv_reqp) {
dma_free_coherent(board->dev, board->adv_reqp_size,
board->adv_reqp, board->adv_reqp_addr);
board->adv_reqp = NULL;
}
if (board->adv_sgblk_pool) {
dma_pool_destroy(board->adv_sgblk_pool);
board->adv_sgblk_pool = NULL;
}
}
static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
int bus_type)
{
struct pci_dev *pdev;
struct asc_board *boardp = shost_priv(shost);
ASC_DVC_VAR *asc_dvc_varp = NULL;
ADV_DVC_VAR *adv_dvc_varp = NULL;
int share_irq, warn_code, ret;
pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
if (ASC_NARROW_BOARD(boardp)) {
ASC_DBG(1, "narrow board\n");
asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
asc_dvc_varp->bus_type = bus_type;
asc_dvc_varp->drv_ptr = boardp;
asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
asc_dvc_varp->iop_base = iop;
} else {
#ifdef CONFIG_PCI
adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
adv_dvc_varp->drv_ptr = boardp;
adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
ASC_DBG(1, "wide board ASC-3550\n");
adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
ASC_DBG(1, "wide board ASC-38C0800\n");
adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
} else {
ASC_DBG(1, "wide board ASC-38C1600\n");
adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
}
boardp->asc_n_io_port = pci_resource_len(pdev, 1);
boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
if (!boardp->ioremap_addr) {
shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
"returned NULL\n",
(long)pci_resource_start(pdev, 1),
boardp->asc_n_io_port);
ret = -ENODEV;
goto err_shost;
}
adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
/*
* Even though it isn't used to access wide boards, other
* than for the debug line below, save I/O Port address so
* that it can be reported.
*/
boardp->ioport = iop;
ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
(ushort)inp(iop + 1), (ushort)inpw(iop));
#endif /* CONFIG_PCI */
}
if (ASC_NARROW_BOARD(boardp)) {
/*
* Set the board bus type and PCI IRQ before
* calling AscInitGetConfig().
*/
switch (asc_dvc_varp->bus_type) {
#ifdef CONFIG_ISA
case ASC_IS_ISA:
shost->unchecked_isa_dma = true;
share_irq = 0;
break;
case ASC_IS_VL:
shost->unchecked_isa_dma = false;
share_irq = 0;
break;
case ASC_IS_EISA:
shost->unchecked_isa_dma = false;
share_irq = IRQF_SHARED;
break;
#endif /* CONFIG_ISA */
#ifdef CONFIG_PCI
case ASC_IS_PCI:
shost->unchecked_isa_dma = false;
share_irq = IRQF_SHARED;
break;
#endif /* CONFIG_PCI */
default:
shost_printk(KERN_ERR, shost, "unknown adapter type: "
"%d\n", asc_dvc_varp->bus_type);
shost->unchecked_isa_dma = false;
share_irq = 0;
break;
}
/*
* NOTE: AscInitGetConfig() may change the board's
* bus_type value. The bus_type value should no
* longer be used. If the bus_type field must be
* referenced only use the bit-wise AND operator "&".
*/
ASC_DBG(2, "AscInitGetConfig()\n");
ret = AscInitGetConfig(shost) ? -ENODEV : 0;
} else {
#ifdef CONFIG_PCI
/*
* For Wide boards set PCI information before calling
* AdvInitGetConfig().
*/
shost->unchecked_isa_dma = false;
share_irq = IRQF_SHARED;
ASC_DBG(2, "AdvInitGetConfig()\n");
ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
#else
share_irq = 0;
ret = -ENODEV;
#endif /* CONFIG_PCI */
}
if (ret)
goto err_unmap;
/*
* Save the EEPROM configuration so that it can be displayed
* from /proc/scsi/advansys/[0...].
*/
if (ASC_NARROW_BOARD(boardp)) {
ASCEEP_CONFIG *ep;
/*
* Set the adapter's target id bit in the 'init_tidmask' field.
*/
boardp->init_tidmask |=
ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
/*
* Save EEPROM settings for the board.
*/
ep = &boardp->eep_config.asc_eep;
ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
ep->start_motor = asc_dvc_varp->start_motor;
ep->cntl = asc_dvc_varp->dvc_cntl;
ep->no_scam = asc_dvc_varp->no_scam;
ep->max_total_qng = asc_dvc_varp->max_total_qng;
ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
/* 'max_tag_qng' is set to the same value for every device. */
ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
/*
* Modify board configuration.
*/
ASC_DBG(2, "AscInitSetConfig()\n");
ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
if (ret)
goto err_unmap;
} else {
ADVEEP_3550_CONFIG *ep_3550;
ADVEEP_38C0800_CONFIG *ep_38C0800;
ADVEEP_38C1600_CONFIG *ep_38C1600;
/*
* Save Wide EEP Configuration Information.
*/
if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
ep_3550 = &boardp->eep_config.adv_3550_eep;
ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
ep_3550->termination = adv_dvc_varp->cfg->termination;
ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
ep_3550->ultra_able = adv_dvc_varp->ultra_able;
ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
ep_3550->start_motor = adv_dvc_varp->start_motor;
ep_3550->scsi_reset_delay =
adv_dvc_varp->scsi_reset_wait;
ep_3550->serial_number_word1 =
adv_dvc_varp->cfg->serial1;
ep_3550->serial_number_word2 =
adv_dvc_varp->cfg->serial2;
ep_3550->serial_number_word3 =
adv_dvc_varp->cfg->serial3;
} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
ep_38C0800->adapter_scsi_id =
adv_dvc_varp->chip_scsi_id;
ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
ep_38C0800->termination_lvd =
adv_dvc_varp->cfg->termination;
ep_38C0800->disc_enable =
adv_dvc_varp->cfg->disc_enable;
ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C0800->start_motor = adv_dvc_varp->start_motor;
ep_38C0800->scsi_reset_delay =
adv_dvc_varp->scsi_reset_wait;
ep_38C0800->serial_number_word1 =
adv_dvc_varp->cfg->serial1;
ep_38C0800->serial_number_word2 =
adv_dvc_varp->cfg->serial2;
ep_38C0800->serial_number_word3 =
adv_dvc_varp->cfg->serial3;
} else {
ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
ep_38C1600->adapter_scsi_id =
adv_dvc_varp->chip_scsi_id;
ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
ep_38C1600->termination_lvd =
adv_dvc_varp->cfg->termination;
ep_38C1600->disc_enable =
adv_dvc_varp->cfg->disc_enable;
ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
ep_38C1600->start_motor = adv_dvc_varp->start_motor;
ep_38C1600->scsi_reset_delay =
adv_dvc_varp->scsi_reset_wait;
ep_38C1600->serial_number_word1 =
adv_dvc_varp->cfg->serial1;
ep_38C1600->serial_number_word2 =
adv_dvc_varp->cfg->serial2;
ep_38C1600->serial_number_word3 =
adv_dvc_varp->cfg->serial3;
}
/*
* Set the adapter's target id bit in the 'init_tidmask' field.
*/
boardp->init_tidmask |=
ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
}
/*
* Channels are numbered beginning with 0. For AdvanSys one host
* structure supports one channel. Multi-channel boards have a
* separate host structure for each channel.
*/
shost->max_channel = 0;
if (ASC_NARROW_BOARD(boardp)) {
shost->max_id = ASC_MAX_TID + 1;
shost->max_lun = ASC_MAX_LUN + 1;
shost->max_cmd_len = ASC_MAX_CDB_LEN;
shost->io_port = asc_dvc_varp->iop_base;
boardp->asc_n_io_port = ASC_IOADR_GAP;
shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
/* Set maximum number of queues the adapter can handle. */
shost->can_queue = asc_dvc_varp->max_total_qng;
} else {
shost->max_id = ADV_MAX_TID + 1;
shost->max_lun = ADV_MAX_LUN + 1;
shost->max_cmd_len = ADV_MAX_CDB_LEN;
/*
* Save the I/O Port address and length even though
* I/O ports are not used to access Wide boards.
* Instead the Wide boards are accessed with
* PCI Memory Mapped I/O.
*/
shost->io_port = iop;
shost->this_id = adv_dvc_varp->chip_scsi_id;
/* Set maximum number of queues the adapter can handle. */
shost->can_queue = adv_dvc_varp->max_host_qng;
}
/*
* Set the maximum number of scatter-gather elements the
* adapter can handle.
*/
if (ASC_NARROW_BOARD(boardp)) {
/*
* Allow two commands with 'sg_tablesize' scatter-gather
* elements to be executed simultaneously. This value is
* the theoretical hardware limit. It may be decreased
* below.
*/
shost->sg_tablesize =
(((asc_dvc_varp->max_total_qng - 2) / 2) *
ASC_SG_LIST_PER_Q) + 1;
} else {
shost->sg_tablesize = ADV_MAX_SG_LIST;
}
/*
* The value of 'sg_tablesize' can not exceed the SCSI
* mid-level driver definition of SG_ALL. SG_ALL also
* must not be exceeded, because it is used to define the
* size of the scatter-gather table in 'struct asc_sg_head'.
*/
if (shost->sg_tablesize > SG_ALL) {
shost->sg_tablesize = SG_ALL;
}
ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
/* BIOS start address. */
if (ASC_NARROW_BOARD(boardp)) {
shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
asc_dvc_varp->bus_type);
} else {
/*
* Fill-in BIOS board variables. The Wide BIOS saves
* information in LRAM that is used by the driver.
*/
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_SIGNATURE, boardp->bios_signature);
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_VERSION, boardp->bios_version);
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_CODESEG, boardp->bios_codeseg);
AdvReadWordLram(adv_dvc_varp->iop_base,
BIOS_CODELEN, boardp->bios_codelen);
ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
boardp->bios_signature, boardp->bios_version);
ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
boardp->bios_codeseg, boardp->bios_codelen);
/*
* If the BIOS saved a valid signature, then fill in
* the BIOS code segment base address.
*/
if (boardp->bios_signature == 0x55AA) {
/*
* Convert x86 realmode code segment to a linear
* address by shifting left 4.
*/
shost->base = ((ulong)boardp->bios_codeseg << 4);
} else {
shost->base = 0;
}
}
/*
* Register Board Resources - I/O Port, DMA, IRQ
*/
/* Register DMA Channel for Narrow boards. */
shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
#ifdef CONFIG_ISA
if (ASC_NARROW_BOARD(boardp)) {
/* Register DMA channel for ISA bus. */
if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
ret = request_dma(shost->dma_channel, DRV_NAME);
if (ret) {
shost_printk(KERN_ERR, shost, "request_dma() "
"%d failed %d\n",
shost->dma_channel, ret);
goto err_unmap;
}
AscEnableIsaDma(shost->dma_channel);
}
}
#endif /* CONFIG_ISA */
/* Register IRQ Number. */
ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
DRV_NAME, shost);
if (ret) {
if (ret == -EBUSY) {
shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
"already in use\n", boardp->irq);
} else if (ret == -EINVAL) {
shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
"not valid\n", boardp->irq);
} else {
shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
"failed with %d\n", boardp->irq, ret);
}
goto err_free_dma;
}
/*
* Initialize board RISC chip and enable interrupts.
*/
if (ASC_NARROW_BOARD(boardp)) {
ASC_DBG(2, "AscInitAsc1000Driver()\n");
asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
if (!asc_dvc_varp->overrun_buf) {
ret = -ENOMEM;
goto err_free_irq;
}
warn_code = AscInitAsc1000Driver(asc_dvc_varp);
if (warn_code || asc_dvc_varp->err_code) {
shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
"warn 0x%x, error 0x%x\n",
asc_dvc_varp->init_state, warn_code,
asc_dvc_varp->err_code);
if (!asc_dvc_varp->overrun_dma) {
ret = -ENODEV;
goto err_free_mem;
}
}
} else {
if (advansys_wide_init_chip(shost)) {
ret = -ENODEV;
goto err_free_mem;
}
}
ASC_DBG_PRT_SCSI_HOST(2, shost);
ret = scsi_add_host(shost, boardp->dev);
if (ret)
goto err_free_mem;
scsi_scan_host(shost);
return 0;
err_free_mem:
if (ASC_NARROW_BOARD(boardp)) {
if (asc_dvc_varp->overrun_dma)
dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
kfree(asc_dvc_varp->overrun_buf);
} else
advansys_wide_free_mem(boardp);
err_free_irq:
free_irq(boardp->irq, shost);
err_free_dma:
#ifdef CONFIG_ISA
if (shost->dma_channel != NO_ISA_DMA)
free_dma(shost->dma_channel);
#endif
err_unmap:
if (boardp->ioremap_addr)
iounmap(boardp->ioremap_addr);
#ifdef CONFIG_PCI
err_shost:
#endif
return ret;
}
/*
* advansys_release()
*
* Release resources allocated for a single AdvanSys adapter.
*/
static int advansys_release(struct Scsi_Host *shost)
{
struct asc_board *board = shost_priv(shost);
ASC_DBG(1, "begin\n");
scsi_remove_host(shost);
free_irq(board->irq, shost);
#ifdef CONFIG_ISA
if (shost->dma_channel != NO_ISA_DMA) {
ASC_DBG(1, "free_dma()\n");
free_dma(shost->dma_channel);
}
#endif
if (ASC_NARROW_BOARD(board)) {
dma_unmap_single(board->dev,
board->dvc_var.asc_dvc_var.overrun_dma,
ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
kfree(board->dvc_var.asc_dvc_var.overrun_buf);
} else {
iounmap(board->ioremap_addr);
advansys_wide_free_mem(board);
}
scsi_host_put(shost);
ASC_DBG(1, "end\n");
return 0;
}
#define ASC_IOADR_TABLE_MAX_IX 11
static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
0x0210, 0x0230, 0x0250, 0x0330
};
/*
* The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
* 00: 10
* 01: 11
* 10: 12
* 11: 15
*/
static unsigned int advansys_isa_irq_no(PortAddr iop_base)
{
unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
if (chip_irq == 13)
chip_irq = 15;
return chip_irq;
}
static int advansys_isa_probe(struct device *dev, unsigned int id)
{
int err = -ENODEV;
PortAddr iop_base = _asc_def_iop_base[id];
struct Scsi_Host *shost;
struct asc_board *board;
if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
return -ENODEV;
}
ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
if (!AscFindSignature(iop_base))
goto release_region;
if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
goto release_region;
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = advansys_isa_irq_no(iop_base);
board->dev = dev;
board->shost = shost;
err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
if (err)
goto free_host;
dev_set_drvdata(dev, shost);
return 0;
free_host:
scsi_host_put(shost);
release_region:
release_region(iop_base, ASC_IOADR_GAP);
return err;
}
static int advansys_isa_remove(struct device *dev, unsigned int id)
{
int ioport = _asc_def_iop_base[id];
advansys_release(dev_get_drvdata(dev));
release_region(ioport, ASC_IOADR_GAP);
return 0;
}
static struct isa_driver advansys_isa_driver = {
.probe = advansys_isa_probe,
.remove = advansys_isa_remove,
.driver = {
.owner = THIS_MODULE,
.name = DRV_NAME,
},
};
/*
* The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
* 000: invalid
* 001: 10
* 010: 11
* 011: 12
* 100: invalid
* 101: 14
* 110: 15
* 111: invalid
*/
static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
{
unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
return 0;
return chip_irq;
}
static int advansys_vlb_probe(struct device *dev, unsigned int id)
{
int err = -ENODEV;
PortAddr iop_base = _asc_def_iop_base[id];
struct Scsi_Host *shost;
struct asc_board *board;
if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
return -ENODEV;
}
ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
if (!AscFindSignature(iop_base))
goto release_region;
/*
* I don't think this condition can actually happen, but the old
* driver did it, and the chances of finding a VLB setup in 2007
* to do testing with is slight to none.
*/
if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
goto release_region;
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = advansys_vlb_irq_no(iop_base);
board->dev = dev;
board->shost = shost;
err = advansys_board_found(shost, iop_base, ASC_IS_VL);
if (err)
goto free_host;
dev_set_drvdata(dev, shost);
return 0;
free_host:
scsi_host_put(shost);
release_region:
release_region(iop_base, ASC_IOADR_GAP);
return -ENODEV;
}
static struct isa_driver advansys_vlb_driver = {
.probe = advansys_vlb_probe,
.remove = advansys_isa_remove,
.driver = {
.owner = THIS_MODULE,
.name = "advansys_vlb",
},
};
static struct eisa_device_id advansys_eisa_table[] = {
{ "ABP7401" },
{ "ABP7501" },
{ "" }
};
MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
/*
* EISA is a little more tricky than PCI; each EISA device may have two
* channels, and this driver is written to make each channel its own Scsi_Host
*/
struct eisa_scsi_data {
struct Scsi_Host *host[2];
};
/*
* The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
* 000: 10
* 001: 11
* 010: 12
* 011: invalid
* 100: 14
* 101: 15
* 110: invalid
* 111: invalid
*/
static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
{
unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
if ((chip_irq == 13) || (chip_irq > 15))
return 0;
return chip_irq;
}
static int advansys_eisa_probe(struct device *dev)
{
int i, ioport, irq = 0;
int err;
struct eisa_device *edev = to_eisa_device(dev);
struct eisa_scsi_data *data;
err = -ENOMEM;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
goto fail;
ioport = edev->base_addr + 0xc30;
err = -ENODEV;
for (i = 0; i < 2; i++, ioport += 0x20) {
struct asc_board *board;
struct Scsi_Host *shost;
if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
printk(KERN_WARNING "Region %x-%x busy\n", ioport,
ioport + ASC_IOADR_GAP - 1);
continue;
}
if (!AscFindSignature(ioport)) {
release_region(ioport, ASC_IOADR_GAP);
continue;
}
/*
* I don't know why we need to do this for EISA chips, but
* not for any others. It looks to be equivalent to
* AscGetChipCfgMsw, but I may have overlooked something,
* so I'm not converting it until I get an EISA board to
* test with.
*/
inw(ioport + 4);
if (!irq)
irq = advansys_eisa_irq_no(edev);
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = irq;
board->dev = dev;
board->shost = shost;
err = advansys_board_found(shost, ioport, ASC_IS_EISA);
if (!err) {
data->host[i] = shost;
continue;
}
scsi_host_put(shost);
release_region:
release_region(ioport, ASC_IOADR_GAP);
break;
}
if (err)
goto free_data;
dev_set_drvdata(dev, data);
return 0;
free_data:
kfree(data->host[0]);
kfree(data->host[1]);
kfree(data);
fail:
return err;
}
static int advansys_eisa_remove(struct device *dev)
{
int i;
struct eisa_scsi_data *data = dev_get_drvdata(dev);
for (i = 0; i < 2; i++) {
int ioport;
struct Scsi_Host *shost = data->host[i];
if (!shost)
continue;
ioport = shost->io_port;
advansys_release(shost);
release_region(ioport, ASC_IOADR_GAP);
}
kfree(data);
return 0;
}
static struct eisa_driver advansys_eisa_driver = {
.id_table = advansys_eisa_table,
.driver = {
.name = DRV_NAME,
.probe = advansys_eisa_probe,
.remove = advansys_eisa_remove,
}
};
/* PCI Devices supported by this driver */
static struct pci_device_id advansys_pci_tbl[] = {
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{}
};
MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
static void advansys_set_latency(struct pci_dev *pdev)
{
if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
(pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
} else {
u8 latency;
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
if (latency < 0x20)
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
}
}
static int advansys_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err, ioport;
struct Scsi_Host *shost;
struct asc_board *board;
err = pci_enable_device(pdev);
if (err)
goto fail;
err = pci_request_regions(pdev, DRV_NAME);
if (err)
goto disable_device;
pci_set_master(pdev);
advansys_set_latency(pdev);
err = -ENODEV;
if (pci_resource_len(pdev, 0) == 0)
goto release_region;
ioport = pci_resource_start(pdev, 0);
err = -ENOMEM;
shost = scsi_host_alloc(&advansys_template, sizeof(*board));
if (!shost)
goto release_region;
board = shost_priv(shost);
board->irq = pdev->irq;
board->dev = &pdev->dev;
board->shost = shost;
if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
board->flags |= ASC_IS_WIDE_BOARD;
}
err = advansys_board_found(shost, ioport, ASC_IS_PCI);
if (err)
goto free_host;
pci_set_drvdata(pdev, shost);
return 0;
free_host:
scsi_host_put(shost);
release_region:
pci_release_regions(pdev);
disable_device:
pci_disable_device(pdev);
fail:
return err;
}
static void advansys_pci_remove(struct pci_dev *pdev)
{
advansys_release(pci_get_drvdata(pdev));
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver advansys_pci_driver = {
.name = DRV_NAME,
.id_table = advansys_pci_tbl,
.probe = advansys_pci_probe,
.remove = advansys_pci_remove,
};
static int __init advansys_init(void)
{
int error;
error = isa_register_driver(&advansys_isa_driver,
ASC_IOADR_TABLE_MAX_IX);
if (error)
goto fail;
error = isa_register_driver(&advansys_vlb_driver,
ASC_IOADR_TABLE_MAX_IX);
if (error)
goto unregister_isa;
error = eisa_driver_register(&advansys_eisa_driver);
if (error)
goto unregister_vlb;
error = pci_register_driver(&advansys_pci_driver);
if (error)
goto unregister_eisa;
return 0;
unregister_eisa:
eisa_driver_unregister(&advansys_eisa_driver);
unregister_vlb:
isa_unregister_driver(&advansys_vlb_driver);
unregister_isa:
isa_unregister_driver(&advansys_isa_driver);
fail:
return error;
}
static void __exit advansys_exit(void)
{
pci_unregister_driver(&advansys_pci_driver);
eisa_driver_unregister(&advansys_eisa_driver);
isa_unregister_driver(&advansys_vlb_driver);
isa_unregister_driver(&advansys_isa_driver);
}
module_init(advansys_init);
module_exit(advansys_exit);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("advansys/mcode.bin");
MODULE_FIRMWARE("advansys/3550.bin");
MODULE_FIRMWARE("advansys/38C0800.bin");
MODULE_FIRMWARE("advansys/38C1600.bin");